Wie die Bioinformatik hilft, Sprachgeschichte zu rekonstruieren

Gerhard Jäger

SfS, Tübingen

24. November 2011

Sprachwandel und Evolution

,,The formation of different languages and of distinct species, and the proofs that both have been developed through a gradual process, are curiously parallel. [...] We find in distinct languages striking homologies due to community of descent, and analogies due to a similar process of formation. The manner in which certain letters or sounds change when others change is very like correlated growth. [...] The frequent presence of rudiments, both in languages and in species, is still more remarkable. [...]
Languages, like organic beings, can be classed in groups under groups; and they can be classed either naturally according to descent, or artificially by other characters. Dominant languages and dialects spread widely, and lead to the gradual extinction of other tongues."
(Darwin, The Descent of Man)

Sprachwandel und Evolution

Vater Unser im Himmel, geheiligt werde Dein Name

Onze Vader in de Hemel, laat Uw Naam geheiligd worden

Our Father in heaven, hallowed be your name

Fader Vor, du som er i himlene! Helliget vorde dit navn

Sprachwandel und Evolution

Sprachwandel und Evolution

Mittelhochdeutsch:
Got vater unser, dâ du bist in dem himelrîche gewaltic alles des dir ist, geheiliget sô werde dîn nam

Althochdeutsch:
Fater unser thû thâr bist in himile, si giheilagôt thîn namo

Gotisch:
Atta unsar pu in himinam, weihnai namo bein

Equus

Recent

Pliohippus
Late Miocene

Merychippus
Middle Miocene

Sprachwandel und Evolution

Höherentwicklung im Sprachwandel

Pidgin- und Kreolsprachen

- eine Indianerin zu einem weißen Verehrer in Pidgin-English:

You silly. You weak. You baby-hand. No catch horse. No kill buffalo. No good but for sit still-read book.

- Satz aus dem Sranan, einer Englisch-basierten Kreolsprache aus Surinam:

A hondiman datai ben bai wan oso gi en mati.
'Der Jäger, der ein Haus gekauft hat, gab es seinem Freund.'
(aus John McWhorter, 2003, The Power of Babel)

Höherentwicklung im Sprachwandel

Anpassung der Grammatik an soziale Gegebenheiten

(aus G. Lyupan \& R. Dale, 2010, PLoS ONE 5(1))

Konvergente Evolution

- Altenglisch docga > Englisch dog ('Hund')
- Proto-Paman *gudaga > Mbabaram dog ('Hund')

Evolution via Mutation in der Biologie

Lautgesetze

Erste bzw. Germanische Lautverschiebung (Indoeuropäisch \rightarrow Germanisch)	Phase	Zweite bzw. Hochdeutsche Lautverschiebung (Germanisch \rightarrow Althochdeutsch)	Beisplele (Neuhochdeutsch)	Jahrhundert	Dialektgebiete
G: /*b/ $\rightarrow / * \mathrm{p} /$	1	/*p/ $/$ /ff/ $/$ /f/ $/$	niederdeutsch: slapen, englisch: sleep \rightarrow schlafen; niederdeutsch und englisch: Schipp, ship \rightarrow Schiff niederdeutsch: scherp, englisch: sharp \rightarrow scharf	4/5	oberdeutsch und mitteldeutsch
	2	/*p/ $/$ /pf/	niederdeutsch: Peper, englisch: pepper \rightarrow Pfeffer; niederdeutsch: Plauch, englisch: plough \rightarrow Pflug; niederdeutsch: scherp, englisch: sharp, althochdeutsch: scarph, mittelhochdeutsch: scharpf	6/7	oberdeutsch
$\mathrm{G}: 1 * \mathrm{~d} / \rightarrow / * * /$	1	$\mid * \mathbf{t} / \rightarrow / \mathbf{s s} / \rightarrow / \mathbf{s} /$	niederdeutsch: dat, wat, eten; englisch: that, what, eat \rightarrow das, was, essen	4/5	ober- und mitteldeutsch ${ }^{1}$
	2	/ + / $/ \rightarrow /$ ts/	niederdeutsch: Tiet, englisch: tide (Gezeiten), schwedisch: tid \rightarrow Zeit; niederdeutsch: ver-tellen, englisch: tell \rightarrow er-zählen; Timmermann \rightarrow Zimmermann	5/6	ober- und mitteldeutsch
$\mathrm{G}: / / \mathrm{g} / \rightarrow / * \mathrm{k} /$	1	$\|* \mathbf{k} / \rightarrow\| \mathbf{x x} / \rightarrow\|\mathbf{x}\|$	niederdeutsch: ik, altenglisch: ic \rightarrow ich; niederdeutsch und englisch: maken, make \rightarrow machen; niederdeutsch: auk \rightarrow auch	4/5	ober- und mitteldeutsch ${ }^{2}$
	2	$\mid * \mathbf{k} / \rightarrow / \mathbf{k x} /$	Kind \rightarrow bairisch: Kchind	7/8	südbairisch, hoch- und höchstalemannisch
$\begin{aligned} & \mathrm{G}: / \mathrm{A}^{\mathrm{b} / / \rightarrow / * \mathrm{~b} /} \\ & \mathrm{V}: / \mathrm{L}^{\mathrm{p} / \rightarrow / * \mathrm{~b} /} \end{aligned}$	3	/*b/ \rightarrow / \mathbf{p} /	Berg, bist \rightarrow bairisch: perg, pist	8/9	tellweise bairisch und alemannisch
$\begin{aligned} & \text { G: }: / \mathrm{d} / \rightarrow\|* \mathrm{~d} / \rightarrow\| * \mathrm{~d} / \\ & \mathrm{v}: / \mathrm{d} / \rightarrow / \rightarrow \mathrm{d} / \rightarrow\|=/ \mathrm{d}\| \end{aligned}$	3	/*d/ \rightarrow /t/	niederdeutsch: Dag oder Dach, englisch: $\mathbf{d a y} \rightarrow \mathbf{T a g}$; niederfränkisch: vader \rightarrow Vater	8/9	oberdeutsch
$\begin{aligned} & \mathrm{G}: / * \mathrm{~g}^{\prime / / \rightarrow / * g} \\ & \mathrm{~V}: / * \mathrm{k} / \rightarrow / * \mathrm{~g} / \end{aligned}$	3	$1 * \mathbf{g} / \rightarrow / \mathbf{k} /$	Gott \rightarrow bairisch: Kott	8/9	teilweise bairisch und alemannisch
$\mathrm{G}: / 7 \mathrm{t} / \rightarrow / \mathrm{p} /[0]$	4	$\begin{aligned} & l \mathrm{p} / \rightarrow \mathrm{d} / \mathrm{d} / \\ & / \mathrm{d} / \rightarrow / \mathrm{d} / / \end{aligned}$	englisch: thorn, thistle, through, brother \rightarrow Dorn, Distel, durch, Bruder	9/10	gesamtes deutsches Dialektkontinuum

Lautgesetze

- Lautgesetze sind spezifisch für eine bestimmte Sprachwandel-Periode
- gelten nahezu universell für alle Instanzen des betroffenen Lautes in der betroffenen Sprache
- im Idealfall gibt es schriftliche Zeugnisse der älteren und der jüngeren Sprachstufe (z.B. Latein/romanischen Sprachen, Althochdeutsch/Mittelhochdeutsch)
- meistens müssen Lautgesetze durch systematischen Vergleich verwandter Sprachen identifiziert werden
- erlaubt partielle Rekonstruktion der gemeinsamen Ursprungssprache

Sprachrekonstruktion durch die komparative Methode

The Indo-European language family

- William Jones 1786:
"The Sanskrit Language, whatever be its antiquity, is of wonderful structure; more perfect than the Greek, more copious than the Latin, and more exquisitely refined than either; yet bearing to both of them a stronger affinity both in the roots of verbs and the forms of grammar, than could possibly have been produced by accident; so strong indeed that no philologer could examine them at all without believing them to have sprung from some common source, which perhaps no longer exists: there is similar reason, so not quite so forcible, for supposing that both the Gothic and the Celtic, though blended with a different idiom, had the same origin with the Sanskrit; and the old Persian might be added to the same family, if this were the place for discussing any question concerning the antiquities of Persia."

Sprachrekonstruktion durch die komparative Methode

- erste erfolgreiche Anwendung auf Indo-europäisch im 19. Jhd.

	Griechisch	Vedisch	Awestisch	Latein	Walisisch	Gotisch	Armenisch	Tocharisch A	A.K.Slawisch	Litauisch	Indogermanisch (rekonstruiert)
1	heis (<*hens < *sems)	éka	aēuua	ūnus (Altlatein: oinos)	un	ains	mi	sas	inǔ	vienas	*оупо-, oyko-, sem-
2	dúō	dvá	duиa	duō	dau	twai	erkow	wu	dưva	dù	*duwóh ${ }_{1}$
3	treis	tri	Өrāiiō	trēs	tri	preis	erek*	tre	trije	trys	*tréyes
4	téttares	catváras	caӨuuārō	quattuor	pedwar	fidwor	cork ${ }^{\text { }}$	stwar	cetyre	keturì	*k*etwóres
5	pénte	páñca	panca	quīnque	pump	fimf	hing	pän̆	peetī	penki	*pénkwe
6	héks	sát	xšuuaš	sex	chwech	saihs	več	şäk	šestĭ	šešl	*swéks
7	heptá	saptá	hapta	septem	saith	sibun	ewt'n	spät	sedmi	septyni	*septr!
8	oktô	aștấ	ašta	octō	wyth	ahtau	owt ${ }^{2}$	okät	osmĭ	aštuoni	*oktō
9	ennéa	náva	nauua	novern	naw	niun	inn	ก̃u	devętí	devyni	*néwn
10	déka	dáśa	daśa	decem	deg	taihun	tasn	säk	desętí	dēšimt	*dékm
20	wikati (dorisch)	vimśati	vīsaiti	vigintī	ugeint (Mittelwalisisch)		k'san	wiki			*wîkmtī
100	hekatón	satám	satəm	centum	cant	hund		kănt	sŭto	sirñtas	*kıntóm

Language trees

- komparative Methode ergibt Abstammungsbaum einer Sprachfamilie

Grenzen der komparativen Methode

- Zeittiefe beschränkt auf 2000 bis 8000 Jahre

Tiefe Sprachverwandtschaften

- Vielzahl von Vorschlägen für Meta-Familien
- Nostratisch:
- erstmals von Pedersen (1903) vorgeschlagen
- ursprünglicher Vorschlage: Indo-europäisch, Finno-ugrisch, Samoyedisch, Turk-Sprachen, Mongolisch, Manchu, Yukaghir, Eskimo, Semitisch und Hamitisch
- weiterentwickelt durch „Moskauer Schule" in den 1960ern
- Versuch der Rekonstruktion von Wortschatz

Tiefe Sprachverwandtschaften

- Vielzahl von Vorschlägen für Meta-Familien
- Eurasiatisch
- vorgeschlagen von Greenberg (2000)
- umfasst Indo-europäisch, Uralisch-Yukaghirisch, Altaisch, Tschuktscho-Kamtschadalisch, Eskimo-Aleutisch, Koreanisch-Japanisch-Ainu, Gilyak, Etruskisch
- diverse Argumente, v.a. Morphologie und Phonologie

Tiefe Sprachverwandtschaften

- Vielzahl von Vorschlägen für Meta-Familien
- Dene-Kaukasisch
- umfasst Ne-Dene, Kaukasisch, Sino-Tibetisch, Jenniseiisch, Burushaski, manchmal auch Baskisch

Tiefe Sprachverwandtschaften

- Vielzahl von Vorschlägen für Meta-Familien
- Amerindisch
- vorgeschlagen von Greenberg (1987)
- umfasst alle Indianersprachen außer Na -Dene

Tiefe Sprachverwandtschaften

- Merritt Ruhlen, ein Schüler von Greenberg, behauptet sogar, „Proto-World" z.T. rekonstruieren zu können, z.B. das Wort akwa für Wasser (das sich faszinierenderweise von Adam und Eva über Cicero bis zu Umberto Eco im Indoeuropäisch/Italisch/Lateinisch/Italienischen Zweig nicht verändert hat)
- derartige Vorschläge basieren häufig auf geographischen Häufungen einzelner Merkmale, wie z.B. Pronominalformen

Tiefe Sprachverwandtschaften

- N/M-Pronomina

Tiefe Sprachverwandtschaften

- M/T-Pronomina

Phylogenetische Rekonstruktion in der Bioinformatik

Sequenzalinierung

- Algorithmus findet optimale Alinerung zwischen Sequenzen
- Anzahl der Mutationen wird somit abgeschätzt
- ergibt Abschätzung des evolutionären Abstands zwischen den entsprechenden Organismen

Phylogenetische Rekonstruktion in der Bioinformatik

Phylogenetische Bäume

- statistische Verfahren zur Rekonstruktion des wahrscheinlichsten Stammbaums
- häufig konfligierende Information wegen:
- konvergenter Evolution
- Rück-Mutation
- lateraler Gen-Transfer
- Darstellung alternativer Rekonstruktionen in

SplitsTree Software, Huson \& Bryant, MatNat-Fakultät

Phylogenetische Rekonstruktion in der Bioinformatik

Alternative: Cluster-Karten

- Organisation aller Datenpunkte (=Molekularsequenzen) in 2oder 3-dimensionalen Raum
- größere Ähnlichkeit entspricht (simulierter) physikalischer Anziehungskraft und umgekehrt
- Algorithmus findet

Energie-Minimum
\Rightarrow verwandte Sequenzen bilden

Software: Frickey \& Lupas, MPI für Entwicklungsbiologie Cluster

Die Daten des Automated Similarity Judgment Project

- Projekt am MPI EVA in Leipzig um Sören Wichmann
- erfasst inzwischen über 5000 Sprachen
- für jede Sprache Grundwortschatz von 40 Wörtern in (vereinfachter) phonetischer Umschrift
- frei elektronisch verfügbar
verwendete Konzepte: I, you, we, one, two, person, fish, dog, louse, tree, leaf, skin, blood, bone, horn, ear, eye, nose, tooth, tongue, knee, hand, breast, liver, drink, see, hear, die, come, sun, star, water, stone, fire, path, mountain, night, full, new, name

Automated Similarity Judgment Project

Konzept	Deutsch	Englisch
l	iX	Ei
you	du	yu
we	vir	wi
one	ains	8 is
two	cvai	8 Et
person	mEnS	pers3n
fish	fiS	fiS
dog	hunt	dag
louse	laus	laus
tree	baum	tri
leaf	blat	lif
skin	haut	skin
blood	blut	bl3d
bone	knoX3n	bon
horn	horn	horn
ear	XXX	ir
eye	aug3	Ei

Konzept	Deutsch	Englisch
nose	naz3	nos
tooth	ch an	tu8
tongue	ch uN3	t3N
knee	kni	ni
hand	hant	hEnd
breast	brust	brest
liver	leb3r	liv3r
drink	triNk3n	drink
see	ze3n	si
hear	her3n	hir
die	Sterb3n	dEi
come	kh om3n	k3m
sun	zon3	s3n
star	StErn	star
water	vas3r	wat3r
stone	Stain	ston
fire	foia	fEir

Einfache Sequenz-Alinierung

Einfache Sequenz-Alinierung

Einfache Sequenz-Alinierung

Einfache Sequenz-Alinierung

- Störeffekt: bei Sprachen mit kleineren Lautinventaren ergeben sich mehr Zufallsähnlichkeiten also bei Sprachen mit vielen verschiedenen Lauten
- Daher erscheinen Sprachen mit wenigen Lauten einander ähnlicher, als sie es tatsächlich sind.

Kalibrierte Alinierung

Ähnlichkeit des Deutschen zu:

- Niederländisch: 35,4
- Englisch: 17,7
- Ur-Indoeuropäisch: 11,0
- Latein: 6,4
- Spanisch: 1,7
- Russisch: 3,3
- Türkisch: 0,5
- Ungarisch: 0,3

Kalibrierte Alinierung

Kalibrierte Alinierung

Alle 5000 Sprachen:

Kalibrierte Alinierung

- etablierte Sprachfamilien bilden stabile Cluster
- keine darüber hinausgehenden sichtbaren Muster

Kalibrierte Alinierung

- Methode ist relativ grobkörnig

- Ähnlichkeit ist in beiden Fällen 50%
- Korrespondenz $a \sim E, t \sim d$ sind nach linguistischen Kriterien viel natürlicher als $h \sim m$ or $t \sim 0$
- Deutsch/Englisch und Deutsch/Spanisch erscheinen hier äquidistant, obwohl die Ähnlichkeit zwischen Deutsch und Englisch intuitiv viel größer ist

Gewichtete Alinierung

Needleman-Wunsch-Algorithmus

- Analogie zur Bioinformatik: Mutationen zwischen verschiedenen Aminosäuren-Paaren sind unterschiedlich wahrscheinlich
- Algorithmus sucht wahrscheinlichste Übereinstimmungen zwischen Sequenzen
- $a \sim E, d \sim t$ sind im Sprachwandel wahrscheinlicher als $t \sim o$

Gewichtete Alinierung

- automatisch bestimmte Gewichte:
- $d \sim t: 0.69$
- $a \sim E: 0.07$
- $h \sim m:-0.61$
- $t \sim o:-0.80$

Gewichtete Alinierung

- Ähnlichkeit des Deutschen zu:
- Dutch 35.4 / 38.3
- English: 17.7 / 20.5
- Proto-Indoeuropean: 11.0 / 14.6
- Latin: 6.4 / 12.4
- Spanish: 1.7 / 1.8
- Russian: 3.3 / 6.5
- Turkish: 0.5 / 0.6
- Hungarian: 0.3 / 2.1

Gewichtete Alinierung

Gewichtete Alinierung

Gewichtete Alinierung

Gewichtete Alinierung

[^0]Sprachgeschichte und Bioinformatik

Menu Penutian(14) Algonquian(15)
 Arewakan(32)

Cariban(13)
-okan(8)
NaDene(10)
Panoan(11)
Penutian(14)
Quechua(17)

Salish(16) Slouan(13) | Totanacan(3) |
| :--- |
| Tucanoan(17) |

Tupian(26)
Uto-Atztecan(62)
ranoman(7)
al(500)

Gewichtete Alinierung

- einige interessante Meta-Verwandtschaften werden sichtbar, v.a.
- Indo-europäisch/Uralisch
- Austronesisch/Tai-Kadai

Indo-europäisch/Uralisch

- p-Werte für Vergleich Ähnlichkeiten IE/Ura vs. Zufallspaarungen

p-Wert: $1,5 \times 10^{-20}$

Indo-europäisch/Uralisch

- p-Werte für Vergleich Ähnlichkeiten IE/Sino-Tibetisch vs.

Zufallspaarungen

p-Wert: 1

Indo-europäisch/Uralisch

- p-Werte für Vergleich Ähnlichkeiten Sino-Tibetisch/Na-Dene vs. Zufallspaarungen

p-Wert: 1

Indo-europäisch/Uralisch

- p-Werte für Vergleich Ähnlichkeiten Tai-Kadai/Austronesisch vs. Zufallspaarungen

p-Wert: 5×10^{-5}

[^0]: Gerhard Jäger (SfS, Tübingen)

