Phylogenetische Methoden
 in der Historischen Linguistik
 Phylogenetische Inferenz mit den ASJP-Daten

Gerhard Jäger

13. Januar 2015
Forum Scientiarum

Determining distances between word lists

- two steps:
- compute similarity/distance between individual word forms
- aggregate word distances to doculect distances

Word distances

- based on string alignment
- baseline: Levenshtein alignment \Rightarrow count matches and mis-matches

- too crude as it totally ignores sound correspondences

Capturing sound correspondences

- weighted alignment using Pointwise Mutual Information (PMI, a.k.a. log-odds):

$$
s(a, b)=\log \frac{p(a, b)}{q(a) q(b)}
$$

- $p(a, b)$: probability of sound a being etymologically related to sound b in a pair of cognates
- $q(a)$: relative frequency of sound a
- Needleman-Wunsch algorithm: given a matrix of pairwise PMI scores between individual symbols and two strings, it returns the alignment that maximizes the aggregate PMI score
- but first we need to estimate $p(a, b)$ and $q(a), q(b)$ for all soundclasses a and b
- $q(a)$: relative frequency of occurence of segment a in all words in ASJP
- $p(a, b)$: that's a bit more complicated...

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5				
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

Computing the weighted alignment score

- Dynamic Programming

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13			
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

Computing the weighted alignment score

- Dynamic Programming

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53		
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53			
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65		
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03			
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05		
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47			
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75		
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97			

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15		

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

m	E	n	-	S
m	e	n	E	S

Capturing sound correspondences

- First step: automatically compile a list of language pairs that are (fairly) certain to be related
- start with a measure for language dissimilarity based on Levenshtein alignment

- all language pairs with dissimilarity ≤ 0.7 (ca. 1% of all pairs) qualify as probably related

Capturing sound correspondences

- doculects probably related (in this sense) to English:

AFRIKAANS, ALSATIAN, BERNESE_GERMAN, BRABANTIC, CIMBRIAN, DANISH, DUTCH, EASTERN_FRISIAN, FAROESE, FRANS_VLAAMS, FRISIAN_WESTERN, GJESTAL_NORWEGIAN, ICELANDIC, JAMTLANDIC, LIMBURGISH, LUXEMBOURGISH, NORTH_FRISIAN_AMRUM, NORTHERN_LOW_SAXON, NORWEGIAN_BOKMAAL, NORWEGIAN_NYNORSK_TOTEN, NORWEGIAN_RIKSMAL, PLAUTDIETSCH, SANDNES_NORWEGIAN, SAXON_UPPER, SCOTS, STANDARD_GERMAN, STELLINGWERFS, SWABIAN, SWEDISH, WESTVLAAMS, YIDDISH_EASTERN, YIDDISH_WESTERN, ZEEUWS

- these are all and only the Germanic languages
- 99.9% of all probably related pairs belong to the same family, and 60% to the same genus

Capturing sound correspondences

- Second step:
- let L_{1} and L_{2} be probably related
- every pair of words w_{1} / w_{2} from L_{1} / L_{2} sharing the same meaning are considered potentially cognate
- all potential cognate pairs are (Levenshtein-)aligned
- relative frequency of a being aligned with b is used as estimate of $s(a, b)$
- all potential cognate pairs are Needleman-Wunsch aligned using PMI scores obtained in the previous step
- all potential cognate pairs with an aggregate PMI score ≥ 5.0 are considered probable cognates
- $s(a, b)$ is re-estimated using only probable cognate pairs
- this is repeated ten times

Capturing sound correspondences

- only probabe cognate between English and Latin: pers3n/persona
- probable cognates English/German:

fiS	fiS
laus	laus
bl3d	blut
horn	horn
brest	brust
liv3r	leb3r
star	StErn
wat3r	vas3r
ful	fol

Capturing sound correspondences

- procedures results in pairwise PMI scores for each pair from the 41 ASJP sound classes
- positive PMI-score between a and b : evidence for etymological relatedness
- negative PMI-score between a and b : evidence against etymological relatedness

| | \mathbf{a} | \mathbf{e} | \mathbf{i} | \mathbf{o} | \mathbf{u} | \mathbf{p} | \mathbf{b} | \mathbf{d} | \mathbf{t} | $\mathbf{8}$ | \mathbf{s} | \mathbf{h} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \mathbf{a} | $\mathbf{1 . 8 8}$ | -1.35 | -2.35 | -1.66 | -2.54 | -8.49 | -8.82 | -7.07 | -7.03 | -4.64 | -8.78 | -8.40 |
| \mathbf{e} | -1.35 | $\mathbf{2 . 4 0}$ | -0.48 | -1.52 | -2.88 | -7.47 | -7.80 | -7.66 | -6.01 | -5.01 | -7.76 | -7.38 |
| \mathbf{i} | -2.35 | -0.48 | $\mathbf{2 . 3 7}$ | -2.81 | -1.32 | -6.75 | -8.46 | -8.33 | -8.98 | -3.48 | -7.04 | -6.66 |
| \mathbf{o} | -1.66 | -1.52 | -2.81 | $\mathbf{2 . 4 8}$ | -0.27 | -7.08 | -8.10 | -7.96 | -8.61 | -5.31 | -8.06 | -7.68 |
| \mathbf{u} | -2.54 | -2.88 | -1.32 | -0.27 | $\mathbf{2 . 7 6}$ | -6.62 | -8.05 | -7.91 | -8.56 | -5.26 | -8.01 | -7.63 |
| \mathbf{p} | -8.49 | -7.47 | -6.75 | -7.08 | -6.62 | $\mathbf{3 . 6 9}$ | $\mathbf{0 . 3 6}$ | -6.59 | -4.30 | -3.94 | -2.70 | -0.49 |
| \mathbf{b} | -8.82 | -7.80 | -8.46 | -8.10 | -8.05 | $\mathbf{0 . 3 6}$ | $\mathbf{3 . 6 2}$ | -4.84 | -5.09 | -3.58 | -5.63 | -3.24 |
| \mathbf{d} | -7.07 | -7.66 | -8.33 | -7.96 | -7.91 | -6.59 | -4.84 | $\mathbf{3 . 4 1}$ | -0.10 | $\mathbf{2 . 5 2}$ | -2.29 | -2.81 |
| \mathbf{t} | -7.03 | -6.01 | -8.98 | -8.61 | -8.56 | -4.30 | -5.09 | -0.10 | $\mathbf{3 . 1 5}$ | $\mathbf{2 . 1 1}$ | -1.67 | -1.76 |
| $\mathbf{8}$ | -4.64 | -5.01 | -3.48 | -5.31 | -5.26 | -3.94 | -3.58 | $\mathbf{2 . 5 2}$ | $\mathbf{2 . 1 1}$ | $\mathbf{5 . 4 9}$ | $\mathbf{1 . 9 2}$ | -0.85 |
| \mathbf{s} | -8.78 | -7.76 | -7.04 | -8.06 | -8.01 | -2.70 | -5.63 | -2.29 | -1.67 | $\mathbf{1 . 9 2}$ | $\mathbf{3 . 5 0}$ | $\mathbf{0 . 2 6}$ |
| \mathbf{h} | -8.40 | -7.38 | -6.66 | -7.68 | -7.63 | -0.49 | -3.24 | -2.81 | -1.76 | -0.85 | $\mathbf{0 . 2 6}$ | $\mathbf{3 . 5 0}$ |

Capturing sound correspondences

- hierarchical clustering of sound classes according to PMI scores:

Capturing sound correspondences

- multidimensional scaling of vowel classes according to PMI scores:

Weighted alignment

$$
\begin{aligned}
& \text { h a n t }
\end{aligned}
$$

$$
\begin{aligned}
& \text { h E n d } \\
& \mathrm{h} a \mathrm{n} \mathrm{t}
\end{aligned}
$$

$$
\begin{aligned}
& \text { mano } \\
& \Sigma=4.80 \\
& \Sigma=-11.85
\end{aligned}
$$

Weighted alignment

- alignments German/Latin:
iX-
ego
du
tu
vir--
$--n o s$
ain-s
- unus
cvai
d-uo
$--m E n S$
homo--
fiS---
piskis
hun-t
kanis
--la-u--s
pedikulus

--baum
arb-or

b-lat
folu-
haut--
k-utis
--blut
saNgis
knoX3n
$--o s--$
-or--
auris
a-ug3-
okulus
naz3-
nasus
can-
dens

cuN-3	kom3n---	f---ol
liNgE	w--enire	plenus
k-ni	zon3	no-i-
genu	sol-	nowus
han-t	StErn-	nam3-
manus	ste-la	nomen
b--rust	vas3r	
pektus-	-aka-	
leb3r	Sta-in	
yekur	-lapis	
triNk3n-	foi--a-	
b-i-bere	--iNnis	
--ze-3n	p--at	
widere-	viya-	
--her3n	bErk	
audire-	mons	
Sterb3n	naxt	
-mor-i-	noks	

Weighted alignment

- alignments German/Cimbrian:
iX
ix
du
$d E$
vir
bar
cvai-
sb-en
mEn-S
menEs
hunt
hunt
laus
laus
baum
p-om
blat
-lop

blut		
plut	leb3r-	St-ain
knoX3n	lEbara	stoa-n
-po-an	triNk3n	foia-
horn	trink--	bo-ar
horn	ze3n	vek---
o-r	her3n	bEgale
oar	hor--	bErk
aug3	Sterb3n	perg
-ogE	sterb--	naxt
--n--az3	kom3n	naxt
kanipa--	kEm--	--fol--
cun3-----	zon3	gabasEt
--gaprext	StE-rn	noi
hant	stEarn	noy
hant	vas3r	basar

Aggregating word similarites

- Needleman-Wunsch alignment returns a similarity score for each word pair
- not too reliable to identify cognates:
- often low scores for genuine cognate pairs ('false negatives'):
- lat. genu/eng. knee: -3.39
- lat. unus/eng. one: -5.00
- occasionally high scores for non-cognates ('chance similarities' /'false positives'):
- grm. Blatt ('leaf')/Tilquiapan bldag ('leaf'): 0.22
- lat. oculus ('eye)/Lachixio ikulu ('eye'): 6.72
- approach pursued here:
- for each language pair, estimate amount of chance similarities
- quantify to what degree the observed similarities exceed expected chance similarities

Aggregating word distances

English / Swedish

	Ei	yu	wi	w3n	tu	fiS	\ldots
yog	$-\mathbf{7 . 7 7}$	0.75	-7.68	-7.90	-8.57	-10.50	
du	-7.62	$\mathbf{0 . 3 3}$	-5.71	-7.41	2.66	-8.57	
vi	-2.72	-2.83	$\mathbf{4 . 0 4}$	-1.34	-6.45	0.70	
et	-5.47	-7.87	-5.47	$-\mathbf{6 . 4 3}$	-1.83	-4.70	
tvo	-7.91	-4.27	-3.64	-4.57	$\mathbf{0 . 3 9}$	-6.98	
fisk	-7.45	-11.2	-3.07	-9.97	-8.66	$\mathbf{7 . 5 8}$	

- values along diagonal give similarity between candidates for cognacy (possibility of meaning change is disregarded)
- values off diagonal provide sample of similarity distribution between non-cognates

Aggregating word distances

- distance between two word lists is a measure for how much the distribution along the diagonal differs from the distribution off the diagonal

Aggregating word distances

- some examples

A	B	$d(A, B)$
English	Scots	0.2139
Danish	Swedish	0.2773
English	Swedish	0.3981
English	Frisian	0.4215
English	Dutch	0.4040
Hindi	Farsi	0.6231
English	French	0.7720
English	Hindi	0.7735
Amharic	Vietnamese	0.8566
Swahili	Warlpiri	0.8573
Navajo	Dyirbal	0.8436
Japanese	Haida	0.8504
English	Swahili	0.8901

Phylogenetic inference

- pairwise distances for all (extant) languages present in ASJP are computed
- resulting distance matrix is fed into distance-based phylogenetic algorithm (Neighbor Joining + Ordinary Least Square Nearest Neighbor Interchange Optimization)
- outcome recognizes language families and their internal structure remarkably well

Phylogenetic inference

Phylogenetic inference

Phylogenetic inference

Phylogenetic inference

Distant relationships

(joint work with Cecil Brown, Eric Holman, Johann-Mattis List and Søren Wichmann)

- compute aggregate distances between language families
- find threshold with false discovery rate of 5% : all families pairs with a distance below this threshold are genuinely related (due to common descent or contact) with a confidence or 95%

Distant relationships

(1) Eskimo-Aleut (4) Jarawa-Onge
(7) Hmong-Mien 10 Abkhaz-Adyge ${ }^{13}$ Chukotko-
(2) Mongolic
(3) Tungusic
(5) Great Andamanese
(8) Turkic
(?) Yukaghir
(12) Indo-European kan

Distant relationships

Distant relationships

Distant relationships

