Phylogenetische Methoden in der Historischen Linguistik Phylogenetische Inferenz mit den ASJP-Daten

Gerhard Jäger

13. Januar 2015 Forum Scientiarum

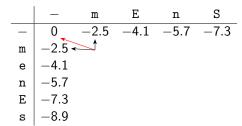
Determining distances between word lists

- two steps:
 - compute similarity/distance between individual word forms
 - aggregate word distances to doculect distances

Word distances

- based on string *alignment*
- \bullet baseline: Levenshtein alignment \Rightarrow count matches and mis-matches

h	а	n	t	h	а	n	t
h	Ė	'n	d	m	a	n	0


• too crude as it totally ignores sound correspondences

Capturing sound correspondences

• weighted alignment using **P**ointwise **M**utual Information (PMI, a.k.a. *log-odds*):

$$s(a,b) = \log \frac{p(a,b)}{q(a)q(b)}$$

- p(a,b): probability of sound a being etymologically related to sound b in a pair of cognates
- q(a): relative frequency of sound a
- Needleman-Wunsch algorithm: given a matrix of pairwise PMI scores between individual symbols and two strings, it returns the alignment that maximizes the aggregate PMI score
- $\bullet\,$ but first we need to estimate p(a,b) and q(a),q(b) for all soundclasses a and b
- q(a): relative frequency of occurence of segment a in all words in ASJP
- p(a,b): that's a bit more complicated...

Dynamic Programming

13.1.2015

10 / 60

Dynamic Programming

13.1.2015

11 / 60

	-		E		S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47
е	-4.1	1.53	5.65	3.05	
n	-5.7 -7.3				
Е	-7.3				
S	-8.9				

	-		Е		S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47 1.55
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7 -7.3 -8.9				
Е	-7.3				
S	-8.9				

	-		Е		S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47 1.55
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03			
Е	-7.3 -8.9				
S	-8.9				

	-		E		S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47 1.55
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05		
Е	-7.3 -8.9				
s	-8.9				

	-		Е		S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47 1.55
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	
Е	-7.3				
S	-8.9				

	-		Е		
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-7.3 -1.47 1.55 6.6
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3 -8.9				
s	-8.9				

	—	m			
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	-2.5 4.13 1.53 0.03 -1.47	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47			
s	-8.9				

	—	m	Е	n	S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	4.13 1.53 0.03 -1.47	3.05	9.2	6.6
Е	-7.3	-1.47	4.75		
S	-8.9				

	—	m			
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	-2.5 4.13 1.53 0.03 -1.47	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	
S	-8.9				

	—			n	
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13 1.53 0.03 -1.47	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9				

	—	m			
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
S	-8.9	-2.5 4.13 1.53 0.03 -1.47 -2.97			

	—	m			
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	-2.5 4.13 1.53 0.03 -1.47 -2.97	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15		

		m			
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
S	-8.9	-2.3 4.13 1.53 0.03 -1.47 -2.97	2.15	5.1	

	—	m	E	n	S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
S	-8.9	-2.3 4.13 1.53 0.03 -1.47 -2.97	2.15	5.1	8.84

Dynamic Programming

	—	m	E	n	S
_		-2.5			
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	1.53 0.03 -1.47 -2.97	2.15	5.1	8.84

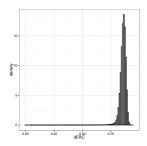
Dynamic Programming

	—	m	E	n	S
_		-2.5			
m	-2.5	4.13	1.53	0.03	-1.47
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2,	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	1.53 0.03 -1.47 -2.97	2.15	5.1	8.84

Dynamic Programming

	—	m	E	n	S
_	0	-2.5	-4.1	-5.7	-7.3
		4.13			
е	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05 ົ	`9.2 ,	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

Dynamic Programming


	—	m	E	n	S
_	0	-2.5	-4.1	-5.7	-7.3
m	-2.5				-1.47
е	-4.1	1.53 `	<u>_5.65</u>	3.05	1.55
n	-5.7	0.03	3.05 ົ	`9.2 ,	6.6
		-1.47			7.62
s	-8.9	-2.97	2.15	5.1	8.84

Dynamic Programming

	—	m	Е	n	S
_	0_	-2.5	-4.1	-5.7	-7.3
m	-2.5			0.03	
е	-4.1	1.53	<u>`</u> 5.65 ຼ	3.05	1.55
n	-5.7	0.03	3.05 ົ	`9.2 ∤	6.6
Е	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

Capturing sound correspondences

- First step: automatically compile a list of language pairs that are (fairly) certain to be related
- start with a measure for language dissimilarity based on Levenshtein alignment

• all language pairs with dissimilarity ≤ 0.7 (ca. 1% of all pairs) qualify as *probably related*

Capturing sound correspondences

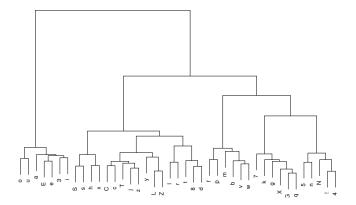
• doculects probably related (in this sense) to English:

AFRIKAANS, ALSATIAN, BERNESE_GERMAN, BRABANTIC, CIMBRIAN, DANISH, DUTCH, EASTERN_FRISIAN, FAROESE, FRANS_VLAAMS, FRISIAN_WESTERN, GJESTAL_NORWEGIAN, ICELANDIC, JAMTLANDIC, LIMBURGISH, LUXEMBOURGISH, NORTH_FRISIAN_AMRUM, NORTHERN_LOW_SAXON, NORWEGIAN_BOKMAAL, NORWEGIAN_NYNORSK_TOTEN, NORWEGIAN_RIKSMAL, PLAUTDIETSCH, SANDNES_NORWEGIAN, SAXON_UPPER, SCOTS, STANDARD_GERMAN, STELLINGWERFS, SWABIAN, SWEDISH, WESTVLAAMS, YIDDISH_EASTERN, YIDDISH_WESTERN, ZEEUWS

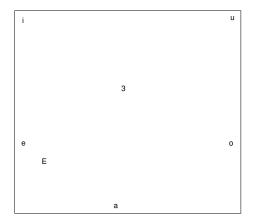
- these are all and only the Germanic languages
- 99.9% of all probably related pairs belong to the same family, and 60% to the same genus

• Second step:

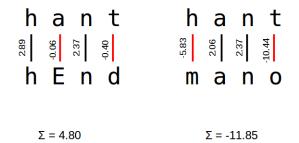
- let L_1 and L_2 be probably related
- every pair of words w_1/w_2 from L_1/L_2 sharing the same meaning are considered *potentially cognate*
- all potential cognate pairs are (Levenshtein-)aligned
- $\bullet\,$ relative frequency of a being aligned with b is used as estimate of s(a,b)
- all potential cognate pairs are Needleman-Wunsch aligned using PMI scores obtained in the previous step
- all potential cognate pairs with an aggregate PMI score ≥ 5.0 are considered probable cognates
- s(a,b) is re-estimated using only probable cognate pairs
- this is repeated ten times


- only probabe cognate between English and Latin: pers3n/persona
- probable cognates English/German:

fiS	fiS
laus	laus
bl3d	blut
horn	horn
brest	brust
liv3r	leb3r
star	StErn
wat3r	vas3r
ful	fol


- procedures results in pairwise PMI scores for each pair from the 41 ASJP sound classes
- positive PMI-score between *a* and *b*: evidence for etymological relatedness
- negative PMI-score between *a* and *b*: evidence against etymological relatedness

	а	е	i	0	u	р	b	\mathbf{d}	t	8	\mathbf{s}	h
a	1.88	-1.35	-2.35	-1.66	-2.54	-8.49	-8.82	-7.07	-7.03	-4.64	-8.78	-8.40
е	-1.35	2.40	-0.48	-1.52	-2.88	-7.47	-7.80	-7.66	-6.01	-5.01	-7.76	-7.38
i	-2.35	-0.48	2.37	-2.81	-1.32	-6.75	-8.46	-8.33	-8.98	-3.48	-7.04	-6.66
0	-1.66	-1.52	-2.81	2.48	-0.27	-7.08	-8.10	-7.96	-8.61	-5.31	-8.06	-7.68
u	-2.54	-2.88	-1.32	-0.27	2.76	-6.62	-8.05	-7.91	-8.56	-5.26	-8.01	-7.63
р	-8.49	-7.47	-6.75	-7.08	-6.62	3.69	0.36	-6.59	-4.30	-3.94	-2.70	-0.49
b	-8.82	-7.80	-8.46	-8.10	-8.05	0.36	3.62	-4.84	-5.09	-3.58	-5.63	-3.24
\mathbf{d}	-7.07	-7.66	-8.33	-7.96	-7.91	-6.59	-4.84	3.41	-0.10	2.52	-2.29	-2.81
t	-7.03	-6.01	-8.98	-8.61	-8.56	-4.30	-5.09	-0.10	3.15	2.11	-1.67	-1.76
8	-4.64	-5.01	-3.48	-5.31	-5.26	-3.94	-3.58	2.52	2.11	5.49	1.92	-0.85
s	-8.78	-7.76	-7.04	-8.06	-8.01	-2.70	-5.63	-2.29	-1.67	1.92	3.50	0.26
h	-8.40	-7.38	-6.66	-7.68	-7.63	-0.49	-3.24	-2.81	-1.76	-0.85	0.26	3.50


• hierarchical clustering of sound classes according to PMI scores:

• multidimensional scaling of vowel classes according to PMI scores:

Weighted alignment

Weighted alignment

• alignments German/Latin:

iX-	baum	cuN-3	kom3n	fol
ego	arb-or	liNgE	wenire	plenus
du	b-lat	k-ni	zon3	no-i-
tu	folu-	genu	sol-	nowus
vir	haut	han-t	StErn-	nam3-
nos	k-utis	manus	ste-la	nomen
ain-s	blut	brust	vas3r	
-unus	saNgis	pektus-	-aka-	
cvai	knoX3n	leb3r	Sta-in	
d-uo	os	yekur	-lapis	
mEnS	-or	triNk3n-	foia-	
homo	auris	b-i-bere	iNnis	
fiS	a-ug3-	ze-3n	pat	
piskis	okulus	widere-	viya-	
hun-t	naz3-	her3n	bErk	
kanis	nasus	audire-	mons	
la-us	can-	Sterb3n	naxt	
pedikulus	dens	-mor-i-	noks	
Gerhard Jä	ger	ASJP		13.1.2015

44 / 60

Weighted alignment

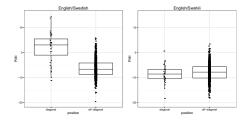
• alignments German/Cimbrian:

iX	blut	leb3r-	St-ain
ix	plut	lEbara	stoa-n
du	knoX3n	triNk3n	foia-
dE	-po-an	trink	bo-ar
vir	horn	ze3n	vek
bar	horn	ze-g	bEgale
cvai-	o-r	her3n	bErk
sb-en	oar	hor	perg
mEn-S	aug3	Sterb3n	naxt
menEs	-ogE	sterb	naxt
hunt	naz3	kom3n	fol
hunt	kanipa	kEm	gabasEt
laus	cuN3	zon3	noi
laus	gaprext	zuna	noy
baum	hant	StE-rn	nam3
p-om	hant	stEarn	namo
blat	brust	vas3r	12.1
-lop	p-uzamEn	basar	

Gerhard Jäger

Aggregating word similarites

- Needleman-Wunsch alignment returns a *similarity score* for each word pair
- not too reliable to identify cognates:
 - often low scores for genuine cognate pairs ('false negatives'):
 - lat. genu/eng. knee: -3.39
 - lat. unus/eng. one: -5.00
 - occasionally high scores for non-cognates ('chance similarities'/'false positives'):
 - grm. *Blatt* ('leaf')/Tilquiapan *bldag* ('leaf'): 0.22
 - lat. oculus ('eye)/Lachixio ikulu ('eye'): 6.72
- approach pursued here:
 - for each language pair, estimate amount of chance similarities
 - quantify to what degree the observed similarities exceed expected chance similarities


Aggregating word distances

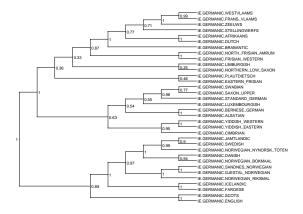
English / Swedish

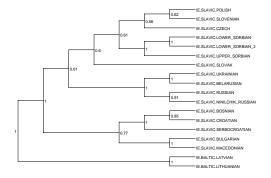
	\mathbf{Ei}	$\mathbf{y}\mathbf{u}$	wi	w3n	\mathbf{tu}	\mathbf{fiS}	
yog	-7.77	0.75	-7.68	-7.90	-8.57	-10.50	
du	-7.62	0.33	-5.71	-7.41	2.66	-8.57	
vi	-2.72	-2.83	4.04	-1.34	-6.45	0.70	
\mathbf{et}	-5.47	-7.87	-5.47	-6.43	-1.83	-4.70	
\mathbf{tvo}	-7.91	-4.27	-3.64	-4.57	0.39	-6.98	
\mathbf{fisk}	-7.45	-11.2	-3.07	-9.97	-8.66	7.58	
÷							

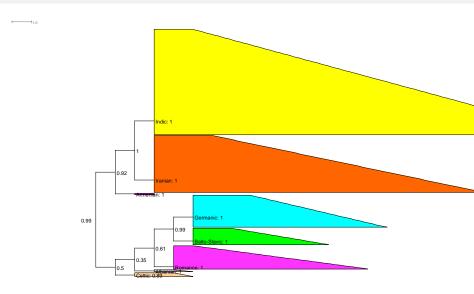
- values along diagonal give similarity between candidates for cognacy (possibility of meaning change is disregarded)
- values off diagonal provide sample of similarity distribution between non-cognates

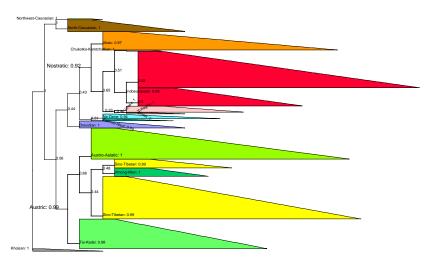
Aggregating word distances

• distance between two word lists is a measure for how much the distribution along the diagonal differs from the distribution off the diagonal

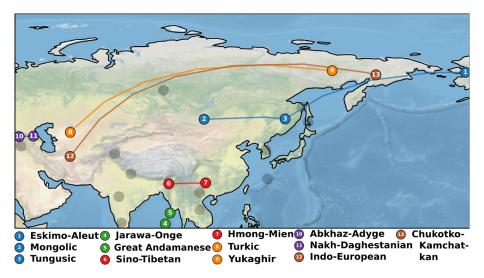

Aggregating word distances

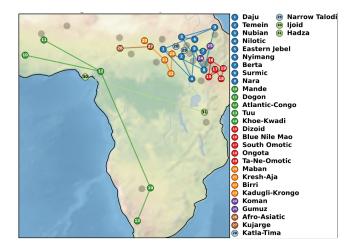

_

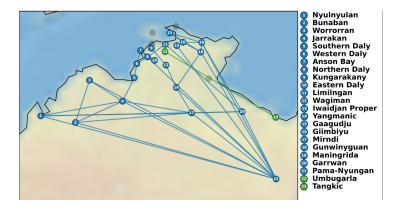

• some examples

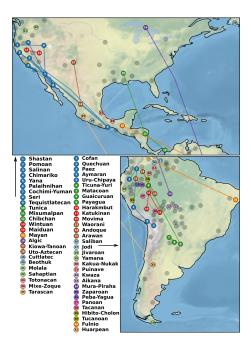

A	В	d(A, B)
English	Scots	0.2139
Danish	Swedish	0.2773
English	Swedish	0.3981
English	Frisian	0.4215
English	Dutch	0.4040
Hindi	Farsi	0.6231
English	French	0.7720
English	Hindi	0.7735
Amharic	Vietnamese	0.8566
Swahili	Warlpiri	0.8573
Navajo	Dyirbal	0.8436
Japanese	Haida	0.8504
English	Swahili	0.8901

- pairwise distances for all (extant) languages present in ASJP are computed
- resulting distance matrix is fed into distance-based phylogenetic algorithm (*Neighbor Joining + Ordinary Least Square Nearest Neighbor Interchange Optimization*)
- outcome recognizes language families and their internal structure remarkably well






(joint work with Cecil Brown, Eric Holman, Johann-Mattis List and Søren Wichmann)


- compute aggregate distances between language families
- find threshold with *false discovery rate* of 5%: all families pairs with a distance below this threshold are genuinely related (due to common descent or contact) with a confidence or 95%

