Computational Historical Linguistics

Gerhard Jäger
Current Trends in Linguistics

November 3, 2016

Similarity between languages

Eine Klassifikationsübung nach der vergleichenden Methode à la Merritt Ruhlen:

Sprache	zwei	drei	ich	du	wer?	nicht	Mutter	Vater	Zahn	Herz	Fuß	Maus	er trägt
A	2i日n-	Өalā θ -	-ni	-ka	man	lā	?umm-	abū	sinn	lubb	rijl-	fār	yaḥmil-
B	fn-	šaloš	-ni	-ka	mi	10	?em	a β	šen	le β	regel	Yakbor	nośch
C	duvấ	tráyas	mắm	tuvám	kás	ná	mātár	pitár-	dant-	hṛd-	pád	muş	bhárati
D	duva	θ rāyō	mam	tuvam	čis	naē-	mātar-	pitar-	dantan-	zarad	paiðya		baraiti
E	duo	treîs	eme	sú	tís	ou(k)	māter	pater	odốn	kardiā	pod-	mûs	phérei
F	duo	trēs	mē	tū	kwis	ne-	māter	pater	dent-	kord-	ped-	mūs	fert
G	twai	θ reis	mik	$\theta \mathrm{u}$	hwas	ni	aiӨei	faðar	tun ${ }^{\text {us }}$	haírtō	fōt		baírie
H	dó	trí	-m	tú	kía	ní-	má日ir	a Air $^{\text {a }}$	dēt	kride	traig	lux	berid
1	iki	üč	ben-i	sen	kim	deyil	anne	baba	dis	kalp	ayak	sičan	tašiyor

Similarity between languages

Klassifizieren Sie die angegebenen neun Sprachen (von A bis I) in Familien und Unterfamilien und vergleichen Sie den Wortschatz für die 13 Wörter, die hier in phonetischer Umschrift geboten werden. Lösung: Sprache A und B (Arabisch und Hebräisch) gehören zur Familie der semitischen Sprachen. Die sechs Sprachen C bis H (Sanskrit, Awestisch, Altgrie-
chisch, Latein, Gotisch und Altirisch) sind indogermanische Sprachen. I (Türkisch) läßt sich keiner Familie zuordnen. Mit einer längeren Wortliste kann man nach demselben Verfahren die Familien wieder in Überfamilien einteilen usw. Der Stammbaum, den man so erhält, würde dann beweisen, daß alle Sprachen von einer Muttersprache abstammen.

Similarity between languages

Multilateraler Sprachenvergleich

Schlichtes Vergleichen einiger Allerweltswörter erhellt bereits die Verwandtschaftsverhältnisse unter den Sprachfamilien Indoeuropäisch (mit den Zweigen Germanisch, Romanisch und Slawisch) sowie Uralisch-Jukagirisch und Baskisch.

Sprachfamilie	Sprache	eins	zwei	drei	Kopf	Auge	Nase	Mund
Germanisch	Schwedisch Niederländisch Englisch Deutsch	en ēn wən ains	tvo tvē tū tsvai	tre drī өrī drai	hyvud hōft hed kopf	øga ōx ai augə	næsa nø̄s nouz nāzə	mun mont maue munt
Romanisch	Französisch Italienisch Spanisch Rumänisch	œe/yn uno uno un	dø due dos doi	trwa tre tres trei	tet testa kabesa kap	œj okjo oxo oki	ne naso naso nas	buš boka boka gurə
Slawisch	Polnisch Russisch Bulgarisch	jeden adin edin	dva dva dva	trii tri tri	gwova galava glava	oko oko oko	nos nos nos	usta rot usta
UralischJukagirisch	Finnisch Estnisch	yksi yks	kaksi kaks	kolme kolm	рæ pea	silmæ silm	nenæ nina	$\begin{aligned} & \text { sū } \\ & \text { sū } \end{aligned}$
Baskisch	Baskisch	bat	bi	hiryr	byry	begi	sydyr	aho

Sound laws

Erste bzw. Germanische Lautverschiebung (Indoeuropäisch \rightarrow Germanisch)	Phase	Zweite bzw. Hochdeutsche Lautverschiebung (Germanisch \rightarrow Althochdeutsch)	Beispiele (Neuhochdeutsch)	Jahrhundert	Dialektgebiete
$\mathrm{G}: / * \mathrm{~b} / \rightarrow / * \mathrm{p} /$	1	/*p/ $\rightarrow / \mathrm{ff} / \rightarrow / \mathrm{f} /$	niederdeutsch: slapen, englisch: sleep \rightarrow schlafen; niederdeutsch und englisch: Schipp, ship \rightarrow Schiff niederdeutsch: scherp, englisch: sharp \rightarrow scharf	4/5	oberdeutsch und mitteldeutsch
	2	/*p/ $/$ /pf/	niederdeutsch: Peper, englisch: pepper \rightarrow Pfeffer; niederdeutsch: Plauch, englisch: plough \rightarrow Pflug: niederdeutsch: scherp, englisch: sharp, althochdeutsch: scarph, mittelhochdeutsch: scharpf	6/7	oberdeutsch
$\mathrm{G}: / * \mathrm{~d} / \rightarrow / * \mathrm{t} /$	1	$\mid * \mathbf{t} / \rightarrow / \mathrm{ss} / \rightarrow / \mathrm{s} /$	niederdeutsch: dat, wat, eten; englisch: that, what, eat \rightarrow das, was, essen	4/5	ober- und mitteldeutsch ${ }^{1}$
	2	/*t/ $/$ /ts/	niederdeutsch: Tiet, englisch: tide (Gezeiten), schwedisch: tid \rightarrow Zeit; niederdeutsch: ver-tellen, englisch: tell \rightarrow er-zählen; Timmermann \rightarrow Zimmermann	5/6	ober- und mitteldeutsch
$\mathrm{G}: / * \mathrm{~g} / \rightarrow / * \mathrm{k} l$	1	$/ * \mathbf{k} / \rightarrow / \mathbf{x x} / \rightarrow / \mathbf{x} /$	niederdeutsch: ik, altenglisch: ic \rightarrow ich; niederdeutsch und englisch: maken, make \rightarrow machen; niederdeutsch: auk \rightarrow auch	4/5	ober- und mitteldeutsch ${ }^{2}$
	2	$/ * \mathbf{k} / \rightarrow / \mathbf{k x} /$	Kind \rightarrow bairisch: Kchind	7/8	südbairisch, hoch- und höchstalemannisch
$\begin{aligned} & \mathrm{G}: /^{*} \mathrm{~b} \mathrm{~b} / \rightarrow /^{*} \mathrm{~b} / \\ & \mathrm{V}: /^{*} \mathrm{p} / \rightarrow / \mathrm{k} / \mathrm{b} / \end{aligned}$	3	/* $\mathbf{b} / \rightarrow / \mathbf{p} /$	Berg, bist \rightarrow bairisch: perg, pist	8/9	teilweise bairisch und alemannisch
$\begin{aligned} & \mathrm{G}: / * \mathrm{~d} / \rightarrow / * \mathrm{~d} / \rightarrow / /^{*} \mathrm{~d} / \\ & \mathrm{V}: / * \mathrm{~d} / \rightarrow / /^{*} \mathrm{~d} / \rightarrow / /^{*} \mathrm{~d} / \end{aligned}$	3	/*d/ $\rightarrow / \mathbf{t} /$	niederdeutsch: Dag oder Dach, englisch: day \rightarrow Tag; niederfränkisch: vader \rightarrow Vater	8/9	oberdeutsch
$\begin{aligned} & \mathrm{G}: / * \mathrm{~g}^{\mathrm{h}} / \rightarrow / * \mathrm{~g} / \\ & \mathrm{V}: / / \mathrm{k} / \rightarrow / * \mathrm{~g} / \end{aligned}$	3	/* $\mathbf{g} / \rightarrow / \mathbf{k} /$	Gott \rightarrow bairisch: Kott	8/9	teilweise bairisch und alemannisch
$\mathrm{G}: / * \mathrm{t} / \rightarrow / \mathrm{p} /[\mathrm{l}]$	4	$\begin{aligned} & / \mathrm{b} / \rightarrow / \mathrm{d} / \\ & / \mathrm{d} / \rightarrow / \mathrm{d} / \end{aligned}$	englisch: thorn, thistle, through, brother \rightarrow Dorn, Distel, durch, Bruder	9/10	gesamtes deutsches Dialektkontinuum

Sound laws

- sound laws are specific for a particular period in language change
- they hold nearly universally for all occurrences of the sound in question in the language in question
- ideally we have written records of both stages (Latin/Romance languages, Old High German, Middle High German)
- in most cases, sound laws must be reconstructed via systematic comparison of related languages
- applying sound laws backwards leads to reconstructed vocabulary of common mother language

Language trees

- comparative method gives rise to
pyhlogenetic trees of historic development

Limits of the comparative method

- Similarities between languages may be due to horizontal transfer (loans)
- limited time depth ($\leq 10,000$ years)

Hock \& Joseph (1996):
Let us pursue this issue a little further by taking a closer look at the relationship between Modern Hindi and English - pretending that we do not yet know that they are related, and trying to establish their relationship by vocabulary comparison. This is actually more difficult than it appears. It is all too easy to be influenced by one's knowledge of the historical relationship between the two languages and therefore to notice the genuine cognates, or even to underestimate the effects of linguistic change on the recognizability of genuine cognates.

Limits of the comparative method

- Similarities between languages may be due to horizontal transfer (loans)
- limited time depth ($\leq 10,000$ years)

Hock \& Joseph (1996):
Clearly, one correspondence is not enough; nor are twenty. And just as clearly, a thousand correspondences with systematic recurrences of phonetic similarities and differences would be fairly persuasive. Are 500 enough, then? And if not, are 501 sufficient? Nobody can give a satisfactory answer to these questions. And this is no doubt the reason that linguists may disagree over whether a particular proposed genetic relationship is sufficiently supported or not.

Deep genetic relationships

- Plethora of proposals beyond well-established families:
- Nostratic:
- proposed by Pedersen (1903)
- original proposal: Indo-European, Finno-Ugric, Samoyed, Turkish, Mongolian, Manchu, Yukaghir, Eskimo, Semitic, and Hamitic
- revived by "Moscow school" in 1960
- traditional comparative method, including reconstruction of proto forms

Deep genetic relationships

- Plethora of proposals beyond well-established families:
- Eurasiatic
- proposed by Greenberg (2000)
- comprises Indo-European, UralicYukaghir, Altaic, Chukotko-Kamchatkan, EskimoAleut, Korean-Japanese-Ainu, Gilyak, Etruscan
- multitude of arguments, mostly from morphology and phonology

Deep genetic relationships

- Plethora of proposals beyond well-established families:
- Dene-Caucasian
- based on work by Sapir, Starostin, Swadesh and others
- comprises Ne-Dene, Caucasian, Sino-Tibetan, Yeniseian, Burushaski, perhaps Basque and other languages
- also multitude of arguments, mostly from morphology and phonology

Deep genetic relationships

- Plethora of proposals beyond well-established families:
- Amerind
- proposed by Greenberg (1987)
- comprises all American languages except Na -Dene and Eskimo-Aleut
- arguments based on mass lexical comparison

Deep genetic relationships

- Merritt Ruhlen, a student of Greenberg, even claims to have reconstructed a few words of "Proto-World" (for instance the word aqua for water, which miraculously didn't change from the dawn of time till Cicero)
- such deep connection are mostly based on suggestive salient features of the languages involved, like pronoun forms
- Nostratic pronouns
- Amerind pronouns
- generally, these approaches neither quantify the probability of chance resemblances nor do they take negative evidence into account

Computational methods

- this project:
- starting from raw word lists (phonetic strings)
- automatically assess string similarity
- automatically control for chance resemblances
- quantify (dis)similarity between word lists
- evaluate results by
- comparison to expert language classification
- correlation with phenotypical distances between populations

The Automated Similarity Judgment Program

- Project at MPI EVA in Leipzig around Søren Wichmann
- covers more than 6,000 languages and dialects
- basic vocabulary of 40 words for each language, in uniform phonetic transcription
- freely available
used concepts: I, you, we, one, two, person, fish, dog, louse, tree, leaf, skin, blood, bone, horn, ear, eye, nose, tooth, tongue, knee, hand, breast, liver, drink, see, hear, die, come, sun, star, water, stone, fire, path, mountain, night, full, new, name

Automated Similarity Judgment Project

concept	Latin	English	concept	Latin	English
I	ego	Ei	nose	nasus	nos
you	tu	yu	tooth	dens	tu8
we	nos	wi	tongue	liNgw~E	t3N
one	unus	w3n	knee	genu	ni
two	duo	tu	hand	manus	hEnd
person	persona, homo	pers3n	breast	pektus, mama	brest
fish	piskis	fiS	liver	yekur	liv3r
dog	kanis	dag	drink	bibere	drink
louse	pedikulus	laus	see	widere	si
tree	arbor	tri	hear	audire	hir
leaf	foly $\sim u^{*}$	lif	die	mori	dEi
skin	kutis	skin	come	wenire	k3m
blood	saNgw \sim is	bl3d	sun	sol	s3n
bone	os	bon	star	stela	star
horn	kornu	horn	water	akw \sim a	wat3r
ear	auris	ir	stone	lapis	ston
eye	okulus	Ei	fire	iNnis	fEir

Determining distances between word lists

- two steps:
- compute similarity/distance between individual word forms
- aggregate word distances to doculect distances

Word distances

- based on string alignment
- baseline: Levenshtein alignment \Rightarrow count matches and mis-matches

- too crude as it totally ignores sound correspondences

Capturing sound correspondences

- weighted alignment using Pointwise Mutual Information (PMI, a.k.a. log-odds):

$$
s(a, b)=\log \frac{p(a, b)}{q(a) q(b)}
$$

- $p(a, b)$: probability of sound a being etymologically related to sound b in a pair of cognates
- $q(a)$: relative frequency of sound a
- Needleman-Wunsch algorithm: given a matrix of pairwise PMI scores between individual symbols and two strings, it returns the alignment that maximizes the aggregate PMI score
- but first we need to estimate $p(a, b)$ and $q(a), q(b)$ for all soundclasses a and b
- $q(a)$: relative frequency of occurence of segment a in all words in ASJP
- $p(a, b)$: that's a bit more complicated...

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5				
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	.			
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	.			
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13			
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	j		
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	A		
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53		
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1				
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53			
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65		
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7				
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03			
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05		
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3				
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47			
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75		
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9				

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97			

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15		

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	9.2	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

Computing the weighted alignment score

- Dynamic Programming

	-	m	E	n	S
-	0	-2.5	-4.1	-5.7	-7.3
m	-2.5	4.13	1.53	0.03	-1.47
e	-4.1	1.53	5.65	3.05	1.55
n	-5.7	0.03	3.05	$9.2 \uparrow$	6.6
E	-7.3	-1.47	4.75	6.6	7.62
s	-8.9	-2.97	2.15	5.1	8.84

- memorizing in each step which of the three cells to the left and above gave rise to the current entry lets us recover the corresponing optimal alignment

$$
\begin{array}{lllll}
m & E & n & - & S \\
m & e & n & E & s
\end{array}
$$

Capturing sound correspondences

- First step: automatically compile a list of language pairs that are (fairly) certain to be related
- start with a measure for language dissimilarity based on Levenshtein alignment

- all language pairs with dissimilarity ≤ 0.7 (ca. 1% of all pairs) qualify as probably related

Capturing sound correspondences

- doculects probably related (in this sense) to English:

AFRIKAANS, ALSATIAN, BERNESE_GERMAN, BRABANTIC, CIMBRIAN, DANISH, DUTCH, EASTERN_FRISIAN, FAROESE, FRANS_VLAAMS, FRISIAN_WESTERN, GJESTAL_NORWEGIAN, ICELANDIC, JAMTLANDIC, LIMBURGISH, LUXEMBOURGISH, NORTH_FRISIAN_AMRUM, NORTHERN_LOW_SAXON, NORWEGIAN_BOKMAAL, NORWEGIAN_NYNORSK_TOTEN, NORWEGIAN_RIKSMAL, PLAUTDIETSCH, SANDNES_NORWEGIAN, SAXON_UPPER, SCOTS, STANDARD_GERMAN, STELLINGWERFS, SWABIAN, SWEDISH, WESTVLAAMS, YIDDISH_EASTERN, YIDDISH_WESTERN, ZEEUWS

- these are all and only the Germanic languages
- 99.9% of all probably related pairs belong to the same family, and 60% to the same genus

Capturing sound correspondences

- Second step:
- let L_{1} and L_{2} be probably related
- every pair of words w_{1} / w_{2} from L_{1} / L_{2} sharing the same meaning are considered potentially cognate
- all potential cognate pairs are (Levenshtein-)aligned
- relative frequency of a being aligned with b is used as estimate of $s(a, b)$
- all potential cognate pairs are Needleman-Wunsch aligned using PMI scores obtained in the previous step
- all potential cognate pairs with an aggregate PMI score ≥ 5.0 are considered probable cognates
- $s(a, b)$ is re-estimated using only probable cognate pairs
- this is repeated ten times

Capturing sound correspondences

- only probabe cognate between English and Latin: pers3n/persona
- probable cognates English/German:

fiS	fiS
laus	laus
bl3d	blut
horn	horn
brest	brust
liv3r	leb3r
star	StErn
wat3r	vas3r
ful	fol

Capturing sound correspondences

- procedures results in pairwise PMI scores for each pair from the 41 ASJP sound classes
- positive PMI-score between a and b : evidence for etymological relatedness
- negative PMI-score between a and b : evidence against etymological relatedness

| | \mathbf{a} | \mathbf{e} | \mathbf{i} | \mathbf{o} | \mathbf{u} | \mathbf{p} | \mathbf{b} | \mathbf{d} | \mathbf{t} | $\mathbf{8}$ | \mathbf{s} | \mathbf{h} |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \mathbf{a} | $\mathbf{1 . 8 8}$ | -1.35 | -2.35 | -1.66 | -2.54 | -8.49 | -8.82 | -7.07 | -7.03 | -4.64 | -8.78 | -8.40 |
| \mathbf{e} | -1.35 | $\mathbf{2 . 4 0}$ | -0.48 | -1.52 | -2.88 | -7.47 | -7.80 | -7.66 | -6.01 | -5.01 | -7.76 | -7.38 |
| \mathbf{i} | -2.35 | -0.48 | $\mathbf{2 . 3 7}$ | -2.81 | -1.32 | -6.75 | -8.46 | -8.33 | -8.98 | -3.48 | -7.04 | -6.66 |
| \mathbf{o} | -1.66 | -1.52 | -2.81 | $\mathbf{2 . 4 8}$ | -0.27 | -7.08 | -8.10 | -7.96 | -8.61 | -5.31 | -8.06 | -7.68 |
| \mathbf{u} | -2.54 | -2.88 | -1.32 | -0.27 | $\mathbf{2 . 7 6}$ | -6.62 | -8.05 | -7.91 | -8.56 | -5.26 | -8.01 | -7.63 |
| \mathbf{p} | -8.49 | -7.47 | -6.75 | -7.08 | -6.62 | $\mathbf{3 . 6 9}$ | $\mathbf{0 . 3 6}$ | -6.59 | -4.30 | -3.94 | -2.70 | -0.49 |
| \mathbf{b} | -8.82 | -7.80 | -8.46 | -8.10 | -8.05 | $\mathbf{0 . 3 6}$ | $\mathbf{3 . 6 2}$ | -4.84 | -5.09 | -3.58 | -5.63 | -3.24 |
| \mathbf{d} | -7.07 | -7.66 | -8.33 | -7.96 | -7.91 | -6.59 | -4.84 | $\mathbf{3 . 4 1}$ | -0.10 | $\mathbf{2 . 5 2}$ | -2.29 | -2.81 |
| \mathbf{t} | -7.03 | -6.01 | -8.98 | -8.61 | -8.56 | -4.30 | -5.09 | -0.10 | $\mathbf{3 . 1 5}$ | $\mathbf{2 . 1 1}$ | -1.67 | -1.76 |
| $\mathbf{8}$ | -4.64 | -5.01 | -3.48 | -5.31 | -5.26 | -3.94 | -3.58 | $\mathbf{2 . 5 2}$ | $\mathbf{2 . 1 1}$ | $\mathbf{5 . 4 9}$ | $\mathbf{1 . 9 2}$ | -0.85 |
| \mathbf{s} | -8.78 | -7.76 | -7.04 | -8.06 | -8.01 | -2.70 | -5.63 | -2.29 | -1.67 | $\mathbf{1 . 9 2}$ | $\mathbf{3 . 5 0}$ | $\mathbf{0 . 2 6}$ |
| \mathbf{h} | -8.40 | -7.38 | -6.66 | -7.68 | -7.63 | -0.49 | -3.24 | -2.81 | -1.76 | -0.85 | $\mathbf{0 . 2 6}$ | $\mathbf{3 . 5 0}$ |

Capturing sound correspondences

- hierarchical clustering of sound classes according to PMI scores:

Capturing sound correspondences

- multidimensional scaling of vowel classes according to PMI scores:

Weighted alignment

$$
\Sigma=4.80
$$

$$
\Sigma=-11.85
$$

$$
\begin{aligned}
& \text { h a n t } \\
& \text { h a n t }
\end{aligned}
$$

$$
\begin{aligned}
& \text { h E n d }
\end{aligned}
$$

$$
\begin{aligned}
& \text { m a n o }
\end{aligned}
$$

Weighted alignment

- alignments German/Latin:
iX-
ego
du
tu
vir--
$--n o s$
ain-s
-unus
cvai
d-uo
$--m E n S$
homo--
fiS---
piskis
hun-t
kanis
$---l a-u--s ~$
pedikulus

--baum arb-or	$\begin{aligned} & \text { cuN-3 } \\ & \text { liNgE } \end{aligned}$	$\begin{aligned} & \text { kom3n--- } \\ & \text { w--enire } \end{aligned}$	f---ol plenus
b-lat	k-ni	zon3	no-i-
folu-	genu	sol-	
$\begin{aligned} & \text { haut-- } \\ & \text { k-utis } \end{aligned}$	han-t manus	$\begin{aligned} & \text { StErn- } \\ & \text { ste-la } \end{aligned}$	nam3nomen
--blut	b--rust	vas3r	
saNgis	pektus-	-aka-	
knoX3n	leb3r	Sta-in	
--os--	yekur	-lapis	
-or--	triNk3n-	foi--a-	
auris	b-i-bere	--iNnis	
a-ug3-	--ze-3n	p--at	
okulus	widere-	viya-	
naz3-	--her3n	bErk	
nasus	audire-	mons	
can-	Sterb3n	naxt	
dens	-mor-i-	noks	

Weighted alignment

- alignments German/Cimbrian:
iX
ix
du
dE
vir
bar
cvai-
sb-en
mEn-S
menEs
hunt
hunt
laus
laus
baum
p-om
blat
-lop

blut		
plut	leb3r-	St-ain
knoX3n	lEbara	stoa-n
-po-an	triNk3n	foia-
horn	trink--	bo-ar
horn	ze3n	vek---
o-r	ze-g	bEgale
oar	her3n	bErk
aug3	hor--	perg
-ogE	sterb3n	naxt
--n--az3	kom3n	naxt
kanipa--	kEm--	--fol--
cuN3-----	zon3	gabasEt
-- gaprext	zuna	noi
hant	StE-rn	stEarn

Aggregating word similarites

- Needleman-Wunsch alignment returns a similarity score for each word pair
- not too reliable to identify cognates:
- often low scores for genuine cognate pairs ('false negatives'):
- lat. genu/eng. knee: -3.39
- lat. unus/eng. one: -5.00
- occasionally high scores for non-cognates ('chance similarities' /'false positives'):
- grm. Blatt ('leaf')/Tilquiapan bldag ('leaf'): 0.22
- lat. oculus ('eye)/Lachixio ikulu ('eye'): 6.72
- approach pursued here:
- for each language pair, estimate amount of chance similarities
- quantify to what degree the observed similarities exceed expected chance similarities

Aggregating word distances

English / Swedish

	Ei	yu	wi	w3n	tu	fiS	\ldots
yog	$-\mathbf{7 . 7 7}$	0.75	-7.68	-7.90	-8.57	-10.50	
du	-7.62	$\mathbf{0 . 3 3}$	-5.71	-7.41	2.66	-8.57	
vi	-2.72	-2.83	$\mathbf{4 . 0 4}$	-1.34	-6.45	0.70	
et	-5.47	-7.87	-5.47	$-\mathbf{6 . 4 3}$	-1.83	-4.70	
tvo	-7.91	-4.27	-3.64	-4.57	$\mathbf{0 . 3 9}$	-6.98	
fisk	-7.45	-11.2	-3.07	-9.97	-8.66	$\mathbf{7 . 5 8}$	

- values along diagonal give similarity between candidates for cognacy (possibility of meaning change is disregarded)
- values off diagonal provide sample of similarity distribution between non-cognates

Aggregating word distances

- distance between two word lists is a measure for how much the distribution along the diagonal differs from the distribution off the diagonal

Aggregating word distances

- some examples

A	B	$d(A, B)$
English	Scots	0.2139
Danish	Swedish	0.2773
English	Swedish	0.3981
English	Frisian	0.4215
English	Dutch	0.4040
Hindi	Farsi	0.6231
English	French	0.7720
English	Hindi	0.7735
Amharic	Vietnamese	0.8566
Swahili	Warlpiri	0.8573
Navajo	Dyirbal	0.8436
Japanese	Haida	0.8504
English	Swahili	0.8901

Phylogenetic inference

- pairwise distances for all (extant) languages present in ASJP are computed
- resulting distance matrix is fed into distance-based phylogenetic algorithm (Neighbor Joining + Ordinary Least Square Nearest Neighbor Interchange Optimization)
- outcome recognizes language families and their internal structure remarkably well

Phylogenetic inference

Phylogenetic inference

Phylogenetic inference

Phylogenetic inference

Languages of Eurasia

Phylogenetic inference

Languages of Eurasia

Phylogenetic inference

Distant relationships

(joint work with Cecil Brown, Eric Holman, Johann-Mattis List and Søren Wichmann)

- compute aggregate distances between language families
- find threshold with false discovery rate of 5% : all families pairs with a distance below this threshold are genuinely related (due to common descent or contact) with a confidence or 95%

Distant relationships

Distant relationships

Distant relationships

Distant relationships

(1) $\begin{aligned} & \text { Nyulnyulan } \\ & \text { 2) } \\ & \text { Bunaban } \\ & \text { 4) } \\ & \text { Jarrakran } \\ & \text { (5) } \\ & \text { Southern Daly } \\ & \text { Western Daly } \\ & \text { (8) }\end{aligned}$ Northern Daly

Words and bones

(joint work with Katerina Harvati and Hugo Reyes-Centeno)

- Since Cavalli-Sforza's work: lot of interest in correlations between genetic and linguistic features of human populations
- our work: correlations between phenotypical (cranial) and linguistic (vocabulary-based) features
- motivation:
- different parts of the cranium respond to different selective pressures
- ASJP provides data for computing linguistic distances on an unprecedented scale; this study provides (additional) evidence for the reliability of ASJP-based distances across language family boundaries
- part of the general endeavor to disentangle human bio-historical co-evolution

Cranial Phenotype Data

- Whole Cranium: 30 variables
- Face: 15 variables
- Neurocranium: 15 variables

Does language track population history?

- Hypothesis 1: Language reflects genetic population history if there is a significant relationship with neurocranial morphology and geography
- Hypothesis 2: Language reflects other factors if there is a significant relationship with facial morphology

Mapping bones to languages

- cranial data from 135 populations

Assigning languages to populations

- in some cases, assignment is straightforward:
- WestAleut \rightarrow Aleut
- South West Alaska \rightarrow Central Yupik
- Serbia \rightarrow Serbo-Croatian
- Gyzeh \rightarrow Late Egyptian
- sometimes, several candidate languages from the same language family or genus
- North East Asia \rightarrow Inupiaq, 3 dialects of Yupik (all Eskimo languages)
- Germany \rightarrow Standard German +6 German dialects
- Recent Italy \rightarrow Corsican, Friulian, Italian, Sardinian

Assigning languages to populations

- in many cases, assignment is pure guesswork (based on geography)
- PNG, Australia, sub-Saharan Africa, America, India
- criteria:
- geographic location (according to ASJP) $\leq 300 \mathrm{~km}$ from coordinates of cranial data
- for islands (New Caledonia, Hebrides, Torres Strait, ...): Ethnologue information
- if cranial data contain ethnic information, these override geography
- Han North is mapped to Mandarin, even though several Turkic languages are closer
- only Khoisan languages are considered for South Africa
- number of candidate languages assigned to single populations range from 1 to 535 (for Madang/PNG)
- average: 37 languages per population

Assigning languages to populations

Assigning languages to populations

Assigning languages to populations

- in most cases, candidate languages belong to the same language families
- maximum number of candidate families: 46 (for East Sepik, PNG)
- mean number of candidate families per population: 3 (median: 1)

Assigning languages to populations

- in the sequel, the linguistic distance between two populations is computed as the average distance between the corresponding candidate languages

Land-based distances

- following Atkinson 2011:
- Africa/Asia: Cairo
- Asia/Europ: Istanbul
- Asia/Oceania: Phnom Phen
- Asia/North America: Bering Strait
- North America/South America: Panama

Correlations

- correlations between land-based geographic distances phenotypical/linguistic distances

Correlations

- correlations between land-based geographic distances phenotypical/linguistic distances
- determined via Mantel test

	(Spearman) correlation
Whole	$0.399\left(10^{-4}\right)$
Face	$0.250\left(10^{-4}\right)$
Neurocranium	$0.457\left(10^{-4}\right)$
Language	$0.246\left(10^{-4}\right)$

Correlations

- Correlation of linguistic distances to various cranial distances

Correlations

- Correlation of linguistic distances to various cranial distances

	unconditional	conditioned on geography
Whole	$0.296\left(10^{-4}\right)$	$0.222\left(10^{-4}\right)$
Face	$0.321\left(10^{-4}\right)$	$0.276\left(10^{-4}\right)$
Neurocranium	$0.246\left(10^{-4}\right)$	$0.155\left(10^{-4}\right)$

Correlations within language families

- intra-family correlation of language with
- Whole: 0.290
- Face: 0.200
- Neurocranium: 0.272

Correlations across language families

- inter-family correlation of language with
- Whole: 0.139
- Face: 0.177
- Neurocranium: 0.120

Separating language families

- correlation of degree on non-overlap of the candidate language families of a population with
- Whole: 0.365
- Face: 0.351
- Neurocranium: 0.299

same (0) vs. different(1) family

same (0) vs. different(1) family

Aggregating language families

- a population "belongs" to a given language family f if all candidate languages for that population belong to f
- the phenetic (Whole, Face, Neurocranium)/geographical distance between the families f_{1} and f_{2} is defined as the average distance between the populations belonging to f_{1} / f_{2} respectively
- the linguistic distance between f_{1} and f_{2} is the average distance between all languages assigned to populations that belong to f_{1} / f_{2} respectively

Aggregating language families

- aggregated correlations of language with
- Whole: $0.198(p=0.013)$
- Face: 0.256 ($p<0.001$)
- Neurocranium: 0.178 ($p=0.028$)
- partial correlations, conditioned on land-based distance
- Whole: $0.141(p=0.089)$
- Face: 0.219 ($p=0.003$)
- Neurocranium: $0.116(p=0.155)$

Gerhard Jäger

ingusisic ditance

Considerations and hypotheses

- Evolutionary rate of change
- Genes and neurocranium evolve slowly
- Language and face evolve faster?
- Depth of population history
- Genes and neurocranium track deep history
- Language and face track recent history?
- Modes of transmission
- Genes and neurocranium are vertically transmitted
- Language and face are horizontally transmitted?
- Selection on face and language?

