Language Change & Cultural Evolution – Game-Theoretic Approaches

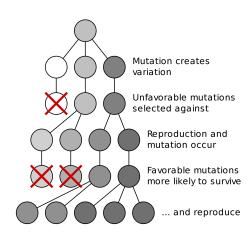
Current Trends in Linguistics

Roland Mühlenbernd

Overview

000000000

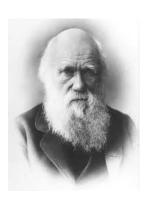
Language change & cultural evolution


- 1. Language change & cultural evolution
- 2. Evolutionary game theory in linguistics
- 3. A case study: the progressive cycle

The Tree of Life

Natural Selection

- Replication: entities can produce copies
- Mutation: copies are not faithful
- Variation: plenty of variants exists (due to replication & mutation)
- ▶ Differential Fitness: number of offspring depends on contextual factors → selection



Evolution Theory & Language

Language change & cultural evolution

000000000

The formation of different languages and of distinct species, and the proofs that both have been developed through a gradual process, are curiously parallel. ...Max Müller has well remarked: 'A struggle for life is constantly going on amongst the words and grammatical forms in each language. The better, the shorter, the easier forms are constantly gaining the upper hand, and they owe their success to their inherent virtue.' ... The survival or preservation of certain favoured words in the struggle for existence is natural selection.

Charles Darwin, 1871¹

¹The Descent of Man, and Selection in Relation to Sex, C2: Mental Powers

Evolution Theory & Language

Language change & cultural evolution

000000000

Cultural transmission is analogous to genetic transmission in that, although basically conservative, it can give rise to a form of evolution. [...] Language seems to evolve by non-genetic means, and at a rate which is orders of magnitude faster than genetic evolution.

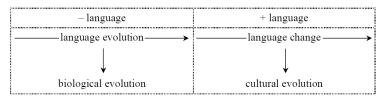
Richard Dawkins, 1976²


²The Selfish Gene, Chapter 11: Memes: the new replicators

Mechanisms of Universal Darwinisms

- 1. Variation: continuing (abundance) of different elements
- 2. Replication: elements have the capacity to create copies or replicas of themselves
- 3. Differential "Fitness": the number of copies of an element that are created in a given time varied, depending on interactions between
 - features of that element
 - features of the environment in which it persists
 - \Rightarrow Selection

0000000000



7/39

³Darwin's Dangerous Ideas, Chapter 12: The Cranes of Culture

Rosenbach's Differentiation

- ► We have to distinguish i) the evolution of language faculty of Homo Sapiens from ii) the change of human language
- language change is part of cultural evolution

Quelle: Language change as cultural evolution (Rosenbach 2008)

Linguistic Replication

1. What are linguistic replicators in the first place?

Thus, the paradigm replicator in language is the lingueme, parallel to the gene as the basic replicator in biology; an utterance is made up of linguemes and linguemes possess structure.

William Croft (2000): Explaining Language Change

Linguistic Replication

2. What are the units of linguistic replication?

Well-known building blocks of linguistic structure:

 phonemes, morphemes, phrases, constructions, corresponding meaning (Croft 2000, Ritt 2004, Rosenbach 2008)

Linguistic Replication

3. What is the replication mechanism?

- first language acquisition (vertical transfer)
- repeated communication (horizontal transfer)
 - ▶ imitation (Ritt 2004)
 - accommodation (Croft 2000: important selection mechanism)
 - ▶ priming (Rosenbach & Jäger 2008, Eckardt 2008)

Language change as cultural evolution

- 1. Replication: production/adoption through repeated communication, first language acquisition
- 2. Variation: number of variants to express something
- 3. Selection: learnability, speaker/hearer economy (communicative functionality), social factors (register, prestige, accommodation)

Overview

000000000

Language change & cultural evolution

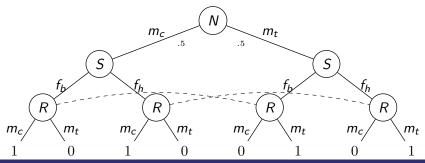
- 1. Language change & cultural evolution
- 2. Evolutionary game theory in linguistics
- 3. A case study: the progressive cycle

Explanatory Potential of EGT in Linguistics

Results and methods from game theory are apt to formalize the intuitive notion of 'linguistic universals' as emergent properties of communication. [...] Evolutionary game theory [...] provides a formal framework that models questions of language evolution that allows us to integrate the two approaches, innateness and social function of language.

Gerhard Jäger, 2014⁴

⁴What is a universal? On the explanatory potential of evolutionary game theory in linguistics


Coordination & Signaling Games

	m _c	m_t
m_c	1	0
m_t	0	1

$$U(m_i, m_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{else} \end{cases}$$

signaling game: $\langle \{S, H\}, M, F, P, U \rangle$

- ► speaker *S*, hearer *H*
- meanings $M = \{m_c, m_t\}$
- forms $F = \{f_h, f_b\}$
- ▶ $P \in \Delta(M)$, $P(m_c) = P(m_t) = .5$

Signaling Strategies

Language change & cultural evolution

Speaker strategy s: speaker behavior formalized as a function $s: M \to F$

$$S_1: \underset{m_t \longrightarrow f_h}{\stackrel{m_c \longrightarrow f_b}{\longrightarrow}} S_2: \underset{m_t}{\stackrel{m_c \longrightarrow f_b}{\nearrow}} S_3: \underset{m_t}{\stackrel{m_c \longrightarrow f_b}{\longrightarrow}} S_4: \underset{m_t}{\stackrel{m_c \longrightarrow f_b}{\longrightarrow}} S_4:$$

Hearer strategy h: hearer behavior formalized as a function $h \cdot F \rightarrow M$

Signaling Systems...

are combinations of pure strategies.

The coffeehouse game has two: $L_1 = \langle s_1, h_1 \rangle$ and $L_2 = \langle s_2, h_2 \rangle$

$$L_1: \underset{m_t \longrightarrow f_h \longrightarrow m_t}{\longleftarrow} m_c \qquad \underset{m_t}{\stackrel{m_c}{\longrightarrow}} f_b \underset{m_t}{\stackrel{m_c}{\longrightarrow}} m_c$$

- are one-to-one mappings between form and meaning
- ▶ are strict *Nash equilibria* of the *EU-table*:

	h_1	h_2	h_3	h_4
s ₁	1	0	.5	.5
s_2	0	1	.5	.5
s ₃	.5	.5	.5	.5
s ₄	.5	.5	.5	.5

- whereby $EU(s,h) = \sum_{m \in M} P(m) \times U(m,h(s(m)))$
- ▶ and are therefore evolutionary stable under evolutionary dynamics

Signaling Games and Cultural Evolution

- ► Replicators: form-meaning mappings in terms of strategy pairs
- ▶ Variation: is given for any signaling game with |M| > 1 and/or |F| > 1
- ► Replication and Selection: defined as 'update mechanism/rule' for 'repeated plays'

Overview: Update Mechanisms

	replicator dynamics	imitation	learning
perspective	population-based	agent-based	agent-based
memory size	0	1	(whole) history
game type	static	static	static/dynamic
strategy	pure	pure	pure/probabilistic

- replicator dynamics is standard model in EGT
- ▶ imitation is the basic mechanism for cultural evolution
- "it can be shown that exactly the same strategies are evolutionary stable under the replicator dynamics and under the imitation dynamics" (Jäger 2007)
- learning rules i) can be combined with actual 'communicative acts' and ii) add the aspect of language acquisition/ontogeny

Applications of Signaling Games I

Functional explanations for typological universals:

- morphology: evolutionary stability of case marking systems for semantic core roles via (i) replicator dynamics, and (ii) stability analysis (Jäger 2007)
- phonology: stability of vowel systems (separating acoustic space) via (i) exemplar learning, and (ii) simulation experiments (Jäger 2008)
- ► pragmatics: evolutionary stability of the 'Horn strategy' via (i) reinforcement learning, fictitious play, and (ii) simulation experiments (Mühlenbernd 2011)

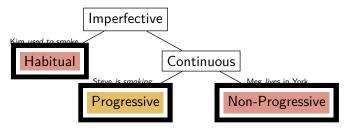
Applications of Signaling Games II

Functional explanations for 'diachronic' universals:

- negation: evolutionary trajectories of the 'Jespersen cycle' via

 (i) replicator dynamics, and (ii) stability/trajectory analysis
 (Ahern & Clark 2014, Ahern 2016)
- morphosemantics: evolutionary trajectories of the 'progressive cycle' via (i) replicator dynamics, and (ii) stability/trajectory analysis (Deo 2015, Yanovich 2016)
- morphosemantics: evolutionary trajectories of the 'progressive cycle' via (i) reinforcement learning, and (ii) simulation experiments (Enke, Mühlenbernd, Yanovich 2016)

Overview


000000000

Language change & cultural evolution

- 1. Language change & cultural evolution
- 2. Evolutionary game theory in linguistics
- 3. A case study: the progressive cycle

The Imperfective Domain

- ▶ the imperfective form makes explicit reference to the internal temporal structure of a situation
- ▶ the imperfective range (Comrie, 1976):

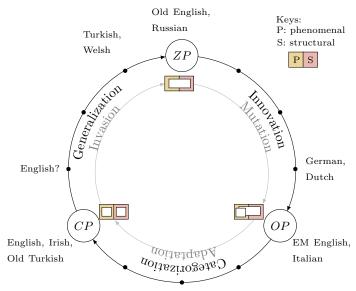
- ▶ fundamental classification of the types of knowledge we posses (Goldsmith & Woisetschlaeger, 1982):
- structural: stable facts, generalizations that characterize the world
- phenomenal: facts that pertain to specific times and the events that occupy such times

	system	strategy	sample language
ZΡ	zero progressive	X_{imp}	Russian, Old English

- (1) Olga **pisa-la** pis'ma kogda Olga.NOM.SG write.IMPF-PST.F letter.ACC.PL when pojavilsja Vadim appear.PERF.PST.M Vadim.NOM.SG 'Olga was writing letters when Vadim appeared.'
- (2) Olga pisa-la pis'mo materi
 Olga.NOM.SG write.IMPF-PST.F letter.ACC.SG mother.DAT.SG
 po voskresenjam
 on Sunday.DAT.PL
 'Olga used to write a letter to her mother on Sundays.'

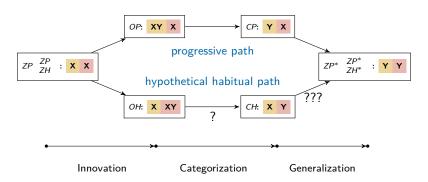
	system	strategy	sample language
ΖP	zero progressive	X_{imp}	Russian, Old English
OP	optional progressive	$X_{imp}, (Y_{prog})$	Italian, Early Modern English

- (3) Che fai? Ridi?
 what do.PRS.1SG laugh.PRS.1SG
 'What are you doing? Are you laughing?'
- (4) Che stai facendo? Stai ridendo? what stay.PRS.1SG doing stay.PRS.1SG laughing 'What are you doing? Are you laughing?'

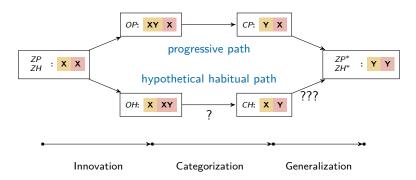

	system	strategy	sample language
ZΡ	zero progressive	X_{imp}	Russian, Old English
OP	optional progressive	$X_{imp}, (Y_{prog})$	Italian, Early Modern English
CP	categorical progressive	X_{imp}, Y_{prog}	PM Turkish, English, Irish

- (5) Genekkikle iki saat çaliş-ir-di-m Usually for two hours work-IMPF-PST.COP-1.SG 'I usually work for two hours.'
- (6) Saat ikide çaliş-**iyor**-du-m At two o'clock work-PROG-PST.COP-1.S 'A two o'clock I *was working*.'

	system	strategy	sample language		
ZΡ	zero progressive	X_{imp}	Russian, Old English		
OP	optional progressive	$X_{imp}, (Y_{prog})$	Italian, Early Modern English		
CP	categorical progressive	X_{imp}, Y_{prog}	PM Turkish, English, Irish		
ZP*	zero progressive	Y_{imp}	Turkish, Welsh		


- (7) Sen Ömer'i benden daha iyi tan-**iyor**-du-n you Ömer me better than know-PROG-PST.COP.2.SG 'You *knew (were knowing)* Ömer better than me.'
- (8) O zamanlarda Mehmet çok sigara
 At the time Mehmet lot cigarette
 iç-iyor-du
 smoke-IMPF-PST.COP.3.SG
 'At that time, Mehmet used to smoke a lot.'

The Functional Progressive Cycle


The Formal Progressive Path

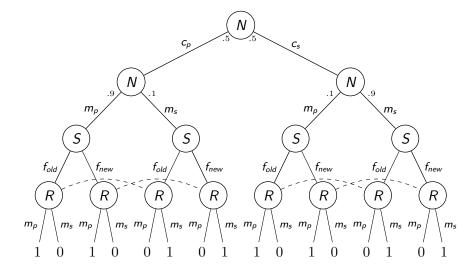
	system	strategy	sample language
ZP	zero progressive	X_{imp}	Russian, Old English
OP	optional progressive	$X_{imp}, (Y_{prog})$	Italian, Early Modern English
CP	categorical progressive	X_{imp}, Y_{prog}	PM Turkish, English, Irish
ZP*	zero progressive	Y_{imp}	Turkish, Welsh

Research Questions

- What kind of conjectures can explain the existence of the following crosslinguistically attested 'universal' patterns inside the imperfective domain?
 - ▶ the cyclic pattern of the progressive's functional evolution
 - ▶ the non-cyclic (dead-end) trajectory of the habitual's functional evolution

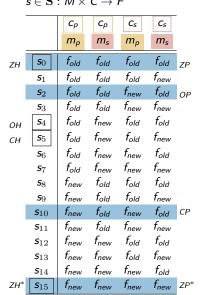
Research Project

Given: typologically supported theory of HOW a diachronic process (of morphosemantic change) happens


Wanted: potential conjectures responsible for WHY there is no alternative development (diachronic universal)

Approach: game theoretic model \rightarrow evolutionary population model \rightarrow synthetic analysis: simulation experiments for different conjectures

Signaling game


- game theoretic model that represents a communicative situation between a speaker S and a hearer H
- ▶ Imperfective game: $IG = \langle (S, H, C, M, F, P, U) \rangle$
- forms: $F = \{f_{old}, f_{new}\}$
- ightharpoonup meanings: $M = \{ m_s, m_p \}$
- ightharpoonup contexts: $C = \{ c_s, c_p \}$
- probabilities: $P(m_s|c_s) = P(m_p|c_p) = .9$
- ▶ utility function: $U(m, s, h) = \begin{cases} 1 & \text{if } h(s(m)) = m \\ 0 & \text{else} \end{cases}$

Extensive Form of the Imperfective Game

Speaker strategies $s \in \mathbf{S} : M \times C \to F$

000000000

Hearer strategies $h \in \mathbf{H} : F \times C \to M$

					_
	Cp	C_p	Cs	C_S	
	f_{new}	f_{old}	f_{new}	f_{old}	_
h_0	m_p	m_p	m_p	m_p	-
h_1	m_p	m_p	m_p	ms	OP
h_2	m_p	m_p	m_s	m_p	
h ₃	m_p	m_p	m _s	m_s	ZP(*
h_4	m_p	ms	m_p	m_p	
h_5	m_p	m _s	m_p	ms	CP
h_6	m_p	m_s	m_s	m_p	
h_7	m_p	m_s	m_s	m_s	
h_8	m _s	m_p	m_p	m_p	
h 9	ms	m_p	m_p	m_s	
h ₁₀	m_s	m_p	m_s	m_p	
h_{11}	m_s	m_p	m_s	m_s	
h_{12}	ms	m_s	m_p	m_p	
h_{13}	ms	m_s	m_p	m_s	
h_{14}	m _s	m_s	m_s	m_p	
h_{15}	m_s	m_s	m_s	m_s	

Evolutionary Population Model

- population size: of 200 agents
- ► simulation: agents play the imperfective game pairwise and repeatedly (→ horizontal transfer)
- learning: agents 'learn' communication strategies by learning rule reinforcement learning (Roth & Erev 1995, Skyrms 2010)
- replacement: agents get older and old agents (here: 5000 interactions) get replaced by 'newbies' (→ vertical transfer)
- ▶ initial setting: at the beginning agents can only use form f_{old} , after a while (here: 1000 simulation steps) new form f_{new} will be introduced

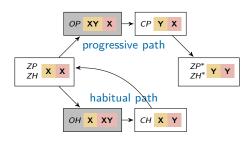
Exp. 1: basic model

Language change & cultural evolution

Result: 'odd' context strategy $\langle s_6, h_9 \rangle$ $(f_{new} \text{ marks 'context-unusual'})$

Exp. 2: reduced context cues (-10%)

Result: both categorical systems emerge with same probability; optional


systems are short intermezzos

Exp. 3: increasing costs factor α

Result: both zero systems emerge with same probability via both paths

Exp. 4: asymmetry for input of newbies

Result: reconstruction of expected paths

$$IR(m_s|n) = \begin{cases} \frac{0.5n}{n_{child}} & \text{if } n \leq n_{child} \\ 0.5 & \text{else} \end{cases}$$

$$IR(m_p|n) = 1.0 - IR(m_s|n)$$

х

Summary

Language change & cultural evolution

- given typological data, the progressive cycle can be seen as a diachronic language universal
- the cycle can be divided in 3 different stages
- the presented model can reproduce these stages in their assumed diachronic order, under the following assumptions:
 - reduced access to context information
 - increasing costs for complex systems (in favor of speaker economy)
 - asymmetry for young agents' input in favor of phenomenal situations

Language Change is Cultural Evolution

Vielen Dank!

Referenzen

Language change & cultural evolution

Ahern, Christopher & Robin Clark. 2014. Diachronic processes in language as signaling under conflicting interests. In: Cartmill E.A., Roberts S., Lyn H. and Cornish H. (eds.) Proceedings of the Tenth International Conference on the Evolution of Language. 25-32.

Comrie, Bernard. 1676. Aspect: An Introduction to the Study of Verbal Aspect and Related Problems. Cambridge University Press. Croft, William 2000. Explaining Language Change. London/New York: Longman.

Darwin, Charles, 1871. The Descent of Man, and Selection in Relation to Sex. John Murray, London,

Dawkins, Richard. 1976. The Selfish Gene. Oxford University Press.

Dennett, Daniel C. 1995. Darwin's Dangerous Ideas. Evolution and the Meaning of Life. Simon & Schuster.

Deo, Ashwini. 2015. The semantic and pragmatic underpinnings of grammaticalization paths: The progressive to imperfective shift. Semantics and Pragmatics, 1-52.

Eckardt, Regine. 2008. Concept priming in language change. Theoretical Linguistics 34-2, 123-133.

Goldsmith, J. & E. Woisetschlaeger, 1982. The logic of the English progressive. Linguistic Inquiry 13(1), 79-89.

Jäger, Gerhard. 2006. Convex meanings and evolutionary stability. In: Angelo Cangelosi, Andrew D. M. Smith and Kenny Smith (eds.). The Evolution of Language, Proceedings of the 6th International Conference, Rome, 139-144.

Jäger, Gerhard. 2007. Evolutionary Game Theory and Typology. A Case Study. Language 83(1), 74-109.

Jäger, Gerhard. 2008. Applications of game theory in linguistics. Language and Linguistics Compass 2/3, 408-421.

Jäger, Gerhard, 2014, What is a universal? On the explanatory potential of evolutionary game theory in linguistics. In: E. McCready,

K. Yabushita & K. Yoshimoto (eds.). Formal Approaches to Semantics and Pragmatics. Springer: 85-103. Lewis, David. 1969. Convention. Cambridge: Harvard University Press.

Mühlenbernd, Roland, 2011, Learning with neighbours, Synthese 183(S1), 87-109,

Mühlenbernd, Roland. 2014. Structure and variation of signaling conventions in scale-free networks. In: A. Herzig & E. Lorini (eds.). Proceedings of the European Conference on Social Intelligence. CEUR Workshop Proceedings 1283, 347-358.

Ritt, Nikolaus. 2004. Selfish Sounds and Linguistic Evolution. Cambridge University Press.

Rosenbach, Anette. 2008. Language change as cultural evolution: Evolutionary approaches to language change. In: R. Eckardt, G. Jäger, and T. Veenstra (eds), Variation, Selection, Development, Probing the Evolutionary Model of Language Change, Mouton de Gruvter, 103-142,

Rosenbach, Anette & Gerhard Jäger. 2008. Priming and unidirectional language change, Theoretical Linguistics 34(2), 85-113.

Roth, A. & I. Erev. 1995. Learning in extensive-form games: experimental data and simple dynamic models in the intermediate term. Games and Economic Behaviour 8, 164-212.

Skyrms, Brian. 2010. Signals: Evolution, learning & information. Oxford: Oxford University Press.

van Rooy, Robert. 2004. Signaling games select Horn strategies. Linguistics and Philosophy 27(4), 493-527. Yanovich, Igor, 2016, Analyzing imperfective games (the companion paper), Unpublished manuscript,