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1 Classical game theory

In a very general sense we can say that we play a game together with other

people whenever we have to decide between several actions such that the

decision depends on the choice of actions by others and on our preferences

over the ultimate results. Obvious examples are card games, chess, or soc-

cer. If I am to play a card to a trick, then it depends on the cards played

by my playing partners whether or not I win the trick. Whether my move

in chess leads to a win usually depends on the subsequent moves of my

opponent. Whether I should pass the ball to this or that team member de-

pends not in the least on my expectations about whether or not he will pass

it on to a player in an even more favourable position. Whether or not my

utterance is successful depends on how it is taken up by its addressee and

the overall purpose of the current conversation. This provides the basis for

applications of game theory in pragmatics.

Game theory has a prescriptive and a descriptive aspect. It can tell us how

we should behave in a game in order to produce optimal results, or it can

be seen as a theory that describes how agents actually behave in a game. In

this book, the latter interpretation of game theory is of interest. The authors

of this volume will explore game theory as a framework for describing the

use of language.

1.1 Decisions

At the heart of every game theoretic problem there lies a decision problem:

one or more players have to choose between several actions. Their choice

is governed by their preferences over expected outcomes. If someone is of-

fered a cherry and a strawberry but can only take one of them, then if he

prefers the strawberry over the cherry, he will take the strawberry. This is

not a prescription. It is an explication of the semantics of the word prefer-

ence. If I can choose between actions a1 and a2, and prefer the outcome s1

of a1 over s2 of a2, then it is the very meaning of the word preference that I
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choose action a1. In general, one can distinguish between decision making

under certainty, risk and uncertainty. A decision is made under certainty if the

decision maker knows for each action which, outcome it will lead to. The

cherry and strawberry example is such a case. A decision is made under

risk if each action leads to a set of possible outcomes, where each outcome

occurs with a certain probability. The decision maker knows these probabil-

ities, or behaves as if he knew them. A decision is made under uncertainty

if no probabilities for the outcomes are known to the decision maker, and

where not even reasonable assumptions can be made about such probabili-

ties. We consider here only decision making under certainty or risk, as does

the majority of literature on decision theory.

Decision under risk

Before we enter into game theory proper we want to say more about de-

cision under risk. Decision theory found interesting applications in prag-

matics, and its ideas and concepts are fundamental for game theory. The

decision maker may be uncertain about the outcomes of his actions because

he has only limited information about the true state of the world. If Adam

has to decide in the morning whether or not to take an umbrella with him,

this depends on whether or not he believes that it will rain that day. He

will not know this but will have some expectations about it. These expecta-

tions can be represented by probabilities, and Adam’s information state by

a probability space.

We identify a proposition A with sets of possible worlds. In probability

theory they are called events; but we will stick here to the more familiar ter-

minology from possible worlds semantics. If a person is convinced that A is

true, then we assign probability 1 to it, and 0 if he thinks that it can not be

true. If there are two propositions A and B that cannot be true at the same

time, e.g. that the sky is sunny and that the sky is cloudy, then the proba-

bility of A or B is just the sum of the probability of A and the probability of

B. The latter property is generalised in the following definition to arbitrary

countable sequences of pairwise incompatible propositions.

Let Ω be a countable set that collects all possible states of the world. P is

a probability distribution over Ω if P maps all subsets of Ω to the interval [0, 1]

such that:

1 P (Ω) = 1;

2 P (
P

j∈J Aj) =
P

j∈J P (Aj) for each family (Aj)j∈J of countably many

pairwise disjoint sets. The sum
P

j∈J Aj here denotes the (disjoint) union

of the sets Aj .
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We call (Ω, P ) a (countable) probability space. The restriction to countable Ω’s

simplifies the mathematics a lot. It follows e.g. that there is a subset S ⊆ Ω

such that P ({v}) > 0 for each v ∈ S and P (A) =
P

v∈A∩S P ({v}) for all

A ⊆ Ω, i.e it follows that P is a count measure. For P ({v}) we write simply

P (v).

If (Ω, P ) describes the information state of a decision maker, what does

his new information state look like if he learns a fact E? Adam may look out

of the window and see that the sky is cloudy, or he may consult a barometer

and see that it is rising. E would collect all worlds where the sky is cloudy,

or, in the second scenario, where the barometer rises. If neither fact con-

tradicts what Adam previously believed, then his probabilities for both sets

must be greater than zero. Whatever proposition E represents, how does

learning E affect (Ω, P )? In probability theory this is modelled by conditional

probabilities. In learning theory, these are known as Bayesian updates. Let H

be any proposition, e.g. the proposition that it will rain, i.e. H collects all

possible worlds in Ω where it rains at some time of the day. The probability

of H given E, written P (H|E), is defined by:

P (H|E) := P (H ∩ E)/P (E) for P (E) 6= 0. (1.1)

In particular, it is P (v|A) = P (v)/P (A) for v ∈ A 6= ∅. E.g. before Adam

looked out of the window he may have assigned to the proposition (E ∩H)

that it is cloudy and that it rains a probability of 1
3

and to the proposition (E)

that it is cloudy a probability of 1
2

. Then (1.1) tells us that, after observing

that the sky is cloudy, Adam assigns probability 1
3

: 1
2

= 2
3

to the proposition

that it will rain. Bayesian updates are widely used as a model for learning.

P is often said to represent the prior beliefs, and P+ defined by P+(A) =

P (A|E) the posterior beliefs.

As an illustration we want to show how this learning model can be ap-

plied in Gricean pragmatics for explicating the notion of relevance. We dis-

cuss two approaches. The first one measures relevance in terms of the

amount of information carried by an utterance and is due to Arthur Merin

(Merin 1999b). The second approach introduces a measure that is based on

expected utilities and is used by Prashant Parikh (Parikh 1992, Parikh 2001),

Rohit Parikh (Parikh 1994) and Robert van Rooij (van Rooij 2003b).

The fact that the barometer is rising (E) provides evidence that the wea-

ther is becoming sunny. We can see the situation as a competition between

two hypotheses: (H) The weather will be sunny, and (H) The weather will be

rainy. For simplicity we may assume that H and H are mutually exclusive

and cover all possibilities. E, the rising of the barometer, does not neces-

sarily imply that H , but our expectations that the weather will be sunny

are much higher after learning E than before. Let P represent the given
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expectations before learning E, i.e. P is a probability distribution over pos-

sible states of the world. Let P+ represent the expectations obtained from

epistemic context (Ω, P ) when E, and nothing but E, is learned. Model-

ing learning by conditional probabilities as above, we find that P+(H) =

P (H|E), where we have to assume that P (E) 6= 0, i.e. we can only learn

something that doesn’t contradict our previous beliefs.

Our next goal is to introduce a measure for the relevance of E for answer-

ing the question whether H or H is true. Measures of relevance have been

extensively studied in statistical decision theory (Pratt et al. 1995). There

exist many different explications of the notion of relevance which are not

equivalent with each other. We choose here Good’s notion of relevance

(Good 1950). It was first used by Arthur Merin (Merin 1999b), one of the

pioneers of game theoretic pragmatics, in order to get a precise formulation

of Grice’s Maxim of Relevance.1

If we know P (H|E), then we can calculate the reverse, the probability of

E given H , P (E|H), by Bayes’ rule:

P (E|H) = P (H|E) × P (E)/P (H). (1.2)

With this rule we get:

P+(H) = P (H|E) = P (H) × (P (E|H)/P (E)). (1.3)

H denotes the complement of H . Learning E influences our beliefs about

H in the same way as it influences our beliefs about H : P+(H) = P (H|E).

This leads us to:

P+(H)

P+(H)
=

P (H|E)

P (H|E)
=

P (H)

P (H)
×

P (E|H)

P (E|H)
. (1.4)

Probabilities are non-negative by definition. In addition we assume that all

probabilities in this equation are positive, i.e., strictly greater than 0. This

allows us to apply a mathematical trick and build the log of both sides of

this equation. As the logarithm is strictly monotone it follows that (1.4) is

true exactly iff

log(P+(H)/P+(H)) = log(P (H)/P (H)) + log(P (E|H)/P (E|H)). (1.5)

We used here the fact that log(x× y) = log x+log y. Furthermore we know

that log x = 0 iff x = 1. This means that we can use the term rH(E) :=

log(P (E|H)/P (E|H)) as a measure for the ability of E to make us believe

H . If it is positive, E favors H , if it is negative, then E favors H . In a

competitive situation where a speaker wants to convince his addressee of
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some proposition H it is reasonable to call a fact E more relevant the more

evidence it provides for H . Merin calls rH(E) also the argumentative force of

E.2

Whether or not this is a good measure of relevance in general depends

on the overall character of communication. Merin sees the aim to convince

our communication partner of something as the primary purpose of con-

versation. If Adam has an interview for a job he wants to get, then his

goal is to convince the interviewer that he is the right person for it (H).

Whatever he says is more relevant the more it favors H and disfavors the

opposite proposition. We could see this situation as a battle between two

agents, H and H , where assertions E are the possible moves, and where

log(P (E|H)/P (E|H)) measures the win for H and the loss for H . Using

the terminology that we will introduce in subsubection 1.2.1, we can say

that this is a zero-sum game between H and H .

We want to elaborate a little more on this example. The basis for Merin’s

proposal lies in the assumption that the main purpose of communication is

to provide evidence that helps one decide whether a proposition H or its

opposite is true. Hence, it works fine as long as we concentrate on yes-no

questions or situations where one person tries to convince an addressee of

the truth of some hypothesis. In general decision problems, the decision

maker has to decide between different actions. Hence, the preferences over

outcomes of these actions become important. It is not surprising that we

find examples where a measure of relevance based on pure information be-

comes inadequate. Imagine that Ω consists of four worlds {v1, . . . , v4} of

equal probability and that the decision maker has to decide between two

actions a1 and a2. Suppose that she prefers a1 in v1 and v2 and a2 in v3 and

v4 but that the value she assigns to a1 in v1 is very large compared to the

other cases. If the decision maker learns E = {v2, v3}, then, using Merin’s

measure, this turns out to be irrelevant for deciding whether it is true that it

is better to perform a1 (i.e. H = {v1, v2}), or a2 (i.e. H = {v3, v4}) because

log(P (E|H)/P (E|H)) = 0. But, intuitively, it is relevant for the decision

maker if she learns that the most favoured situation v1 cannot be the case.

Let us return to the job interview example, and turn from Adam the in-

terviewee to the interviewer. Let’s call her Eve. From Eve’s perspective

the situation can be seen as a decision problem. She has to decide between

two actions, employ Adam (a1) or not employ Adam (a2). Depending on the

abilities of Adam these actions will be differently successful. The abilities

are part of the various possible worlds in Ω. We can represent the success

of the actions as seen by Eve by her preferences over their outcomes. We

assume here that we can represent these preferences by a (von Neumann-

Morgenstern) utility measure, or payoff function U that maps pairs of worlds
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and actions to real numbers. How does U have to be interpreted? If v is a

world in Ω, then an equation like U(v, a1) < U(v, a2) says that the decision

maker prefers the outcome of action a2 in v over the outcome of a1 in v.

U(v, a1) and U(v, a2) are real numbers, hence their difference and sum are

defined. In utility theory, it is generally assumed that utility measures are

unique up to linear rescaling, i.e. if U(v, a) = r × U ′(v, a) + t for some real

numbers r > 0 and t and all v, a, then U and U ′ represent the same pref-

erences. If Eve values employing an experienced specialist twice as much

as employing a trained and able novice, and she values employing an able

novice as positively as she values employing an inexperienced university

graduate negatively, then this can be modeled by assigning value 2 in the

first case, value 1 in the second and value −1 in the third. But it could

equally well be modeled by assigning 5 in the first, 3 in the second and −1

in the third case. Putting these parts together we find that we can represent

Eve’s decision problem by a structure ((Ω, P ),A, U) where:

1 (Ω, P ) is a probability space representing Eve’s information about the

world;

2 A is a set of actions;

3 U : Ω ×A −→ R is a utility measure.

In decision theory it is further assumed that decision makers optimize ex-

pected utilities. Let a ∈ A be an action. The expected utility of a is defined

by:

EU(a) =
X

v∈Ω

P (v) × U(v, a) (1.6)

Optimizing expected utilities means that a decision maker will choose an

action a only if EU(a) = maxb∈A EU(b). Let’s assume that Eve assigns

a probability of p = 3
4

to the proposition that Adam is an inexperienced

novice, but gives a probability of 1 − p = 1
4

to the proposition that he has

some training. We further assume that she assigns value 1 to employing him

in the first case, and value −1 to employing him in the second case. Further-

more, we assume that she values the state where she employs no candidate

with 0. Then her expected utilities for employing and not employing him

are EU(a1) = 3
4
× (−1) + 1

4
× 1 = − 1

2
and EU(a2) = 0 respectively. Hence

she should not employ Adam.

This may represent the situation before the interview starts. Now Adam

tells Eve that he did an internship in a company X specialized in a similar

field. This will change Eve’s expectations about Adam’s experience, and

thereby her expected utilities for employing or not employing him. Using
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the ideas presented before, we can calculate the expected utility of an action

a after learning A by:

EU(a|A) =
X

v∈Ω

P (v|A) × U(v, a); (1.7)

where P (v|A) denotes again the conditional probability of v given A. If

Eve thinks that the probability that Adam is experienced increases to 3
4

if he

did an internship (A), then the expected utility of employing him now rises

to EU(a1|A) = 1
2

. Hence, Adam was convincing and will be employed.

A number of people (P. Parikh, R. Parikh, R. van Rooij) proposed measur-

ing the relevance of a proposition A in terms of how it influences a decision

problem that underlies the current communication. Several possible ways

to measure this influence have been proposed. One heuristic is to say that

information A is relevant if and only if it makes a decision maker choose a

different action from before, and it is more relevant the more it increases the

expected utility. This is captured by the following measure of utility value of

A:

UV (A) = max
a∈A

EU(a|A) − EU(a∗|A). (1.8)

a∗ denotes here the action the decision maker had chosen before learning

A — in our example this would have been a2, not employing Adam. The

expected utility value can only be positive in this case. If Eve had already a

preference to employ Adam, then this measure would tell us that there is no

relevant information that Adam could bring forward. So, another heuristic

says that information is more relevant the more it increases expectations.

This is captured by the following measure:

UV ′(A) = max
a∈A

EU(a|A) − max
a∈A

EU(a). (1.9)

If we put the right side in absolutes, then it means that information is the

more relevant the more it changes expectations. This would capture cases

where Adam could only say things that diminish Eve’s hopes.

UV ′′(A) = |max
a∈A

EU(a|A) − max
a∈A

EU(a)|. (1.10)

Obviously, Adam should convince Eve that he is experienced. Following

Merin we could say that arguments are more relevant for Adam if they

favor this hypothesis and disfavor the opposite. If Adam uses the utility-

based measure of relevance, then he should choose arguments that make

Eve believe that the expected utility after employing him is higher than that

after not employing him. Given our scenario, this is equivalent with choos-

ing arguments that favor the thesis that he is experienced. Hence, we see

that for special cases both measures of relevance may coincide.
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We want to conclude this section about decision theory with a classical ex-

ample of Grice’s. In this example there is no obvious hypothesis for which

the provider of information could argue. Nevertheless, we can explain the

relevance of his statement by a criterion based on the maximization of ex-

pected utilities.

A and B are planning their summer holidays in France. A has an open

map in front of him. They would like to visit C, an old friend of B. So A

asks B: Where does C live? B answers: Somewhere in the south of France. We

are not concerned here with the question of how the implicature ‘B does not

know where C lives’ arises but with the question why B’s answer is relevant.

In Merin’s model, there must be an hypothesis H that B argues for. But it is

not immediately clear what this hypothesis H should be. We can model the

situation as a decision problem where Ω contains a world for each sentence

C lives in x, where x ranges over cities in France and where each of these

worlds is equally possible. A contains all actions ax of going to x, and U

measures the respective utilities with U(v, a) = 1 if a leads to success in v

and U(v, a) = 0 if not. Let E be the set of all worlds where C lives in the

south of France. Calculating the expected utilities EU(ax|E) and EU(ax)

for an arbitrary city x in the south of France would show that E increases the

expected payoff of performing ax. Hence, if B has no more specific informa-

tion about where C lives, then a criterion that measures relevance according

to whether or not it increases expected utilities would predict that E is the

most relevant answer that B could give.

1.2 Games

What distinguishes game theory from decision theory proper is the fact that

decisions have to be made with respect to the decisions of other players.

We start this section with some fundamental classifications of games and

introduce the normal form. We look then at one example in more detail, the

prisoners’ dilemma. In section 1.2.3 we present the most fundamental solu-

tion concepts of game theory, especially the concept of a Nash equilibrium.

Finally, we introduce the extensive form. The latter is more suitable for se-

quential games, a type of game in terms of which communication is studied

a lot.

1.2.1 Strategic Games and the Normal Form

There exist several important different classifications of games which are

widely referred to in game theoretic literature. We provide here a short

overview.

A first elementary distinction concerns that between static and dynamic

games. In a static game, every player performs only one action, and all
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actions are performed simultaneously. In a dynamic game there is at least

one possibility of performing several actions in sequence.

Furthermore, one distinguishes between cooperative and non-cooperative

games. In a cooperative game, players are free to make binding agreements

in preplay communications. Especially, this means that players can form

coalitions. In non-cooperative games no binding agreements are possible and

each player plays for himself. In our discussion of the prisoners’ dilemma

we will see how the ability to make binding agreements can dramatically

change the character and solutions of a game. But, except for this one illus-

trative example, we will be concerned with non-cooperative games only.

There are two standard representations for games: the normal form and

the extensive form. Our introduction will follow this distinction. The ma-

jor part concentrates on static games in normal form, which we will intro-

duce in this section. We introduce the extensive form together with dynamic

games in section 1.2.4.

Games are played by players. Hence, in a description of a game we must

find a set of players, i.e. the people who choose actions and have preferences

over outcomes. This implies that actions and preferences must be represented

too in our game models. Let N = {1, . . . , n} denote the set of players. Then

we assume that for each player there is a set Ai that collects all actions,

or moves, that can be chosen by him. We call Ai player i’s action set. An

action combination, or action profile, is a n–tuple (a1, . . . , an) of actions where

each ai ∈ Ai. The assumption is that they are performed simultaneously.

In general, we distinguish strategies from actions. This becomes important

when we consider dynamic or sequential games. Strategies tell players what

to do in each situation in a game given their background knowledge and

are modeled by functions from sequences of previous events (histories) into

action sets. In a static game, i.e. a game where every player makes only one

move, these two notions coincide. We will use the expressions strategy sets

and strategy combinations, or strategy profiles, in this context too, although

strategies are only actions.

Players and action sets define what is feasible in static games. The pref-

erences of players are defined over action or strategy profiles. We can rep-

resent them either by a binary relation �i, i = 1, . . . , n, between profiles, or

by payoff functions ui mapping profiles to real numbers. If (s′1, . . . , s
′
n) ≺i

(s1, . . . , sn) or ui(s
′
1, . . . , s

′
n) < ui(s1, . . . , sn), then player i prefers strat-

egy profile (s1, . . . , sn) being played over strategy profile (s′1, . . . , s
′
n) be-

ing played. We can collect the individual ui’s together in payoff profiles

(u1, . . . , un) and define the payoff function U of a game as a function that

maps all action or strategy profiles to payoff profiles. A static game can be

represented by a payoff-matrix. In the case of two-player games with two
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possible actions for each player it has the form given in Table 1.1.

Table 1.1: Payoff-matrix of a two-player game

b1 b2

a1 (u1(a1, b1) ; u2(a1, b1)) (u1(a1, b2) ; u2(a1, b2))

a2 (u1(a2, b1) ; u2(a2, b1)) (u1(a2, b2) ; u2(a2, b2))

One player is called row player, he chooses between actions a1 and a2;

the other player is called column player, he chooses between actions b1 and

b2. We identify the row player with player 1, and the column player with

player 2. The action set A1 of player 1 is then {a1, a2}, and that for player

2 is A2 = {b1, b2}. ui(ak, bl) is the payoff for player i for action profile

(ak, bl). It is assumed that two payoff functions U and U ′ are equivalent, i.e.

represent the same preferences, if there is an r > 0 and a t such that for all

i = 1, . . . , n and a ∈ A: rui(a) + t = u′
i(a).

Hence, in the class of games we introduced here the players’ payoffs de-

pend only on the actions chosen, and not on the state of the environment. In

the next section we discuss an example. Putting things together, we define

a strategic game as a structure (N, (Ai)i∈N , U) such that:

1 N = {1, . . . , n} the (finite) set of players 1, . . . , n;

2 Ai is a non-empty set of actions for each player i ∈ N ; A = A1×· · ·×An

is the set of all action profiles.

3 U : A −→ Rn is a payoff function which maps each action profile

(a1, . . . , an) ∈ A to an n–tuple of real numbers (u1, . . . , un), i.e. (u1, . . . ,

un) is the the payoff profile of players 1, . . . , n for action profile (a1, . . . ,

an).

The following notation is very common in connection with profiles: if s =

(s1, . . . , sn) is a given strategy profile, action profile, or payoff profile etc.,

then s−i denotes the profile (s1, . . . , si−1, si+1, . . . , sn), 1 ≤ i ≤ n; i.e. s−i

is the profile of length n − 1 that we get if we eliminate player i’s strategy,

action, payoff etc. (s′i, s−i) then denotes the profile where we have replaced

si in the original profile s by s′i.

We can classify strategic games according to how much the payoff func-

tions of the players resemble each other. One extreme are zero-sum games,
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or strictly competitive games; the other extreme are games of pure coordina-

tion. In a zero-sum game the payoffs of the players sum up to zero for each

strategy profile. This means, that if one player wins a certain amount, then

the other players lose it. These games are strictly competitive and if they

are played by two persons we could justly call them opponents. A game

of pure coordination is exactly the opposite extreme where the payoffs of

all players are identical for each action profile. If one player wins some-

thing then the other player wins the same amount, and if one player loses

then the other one loses too. We really could call them partners. Zero-sum

games and games of pure coordination are two ends on a scale ranging from

pure conflict to its opposite. In between are cases where interests partially

overlap and partially conflict.

In the last section we saw an example of a zero-sum game. In Merin’s

approach to pragmatics, the aim to convince one’s conversational partner

of some hypothesis H is the basic dialogue situation. This was modeled by

a zero-sum game where the players are the hypotheses H and H , the com-

plement of H , the moves are propositions E, and the payoffs are defined by

the relevance of E for the respective hypotheses. If E favors H , then it dis-

favors H the same amount, and vice versa. Games of pure coordination are

fundamental if we look, following David Lewis, at language as a convention.

1.2.2 The Prisoners’ Dilemma and Strict Domination

That a decision is not made under certainty does not necessarily imply that

we have to calculate expectations expressed in terms of probabilities. Often

we can do without them. Suppose there are two supermarkets, both sell

exactly the same goods, and it takes the same effort to go shopping at one

as to the other. I like to buy vanilla ice cream, but if there is no vanilla ice

cream, I want strawberry ice cream, or ice cream with orange flavor. And I

want to buy it as cheaply as possible. I know that one supermarket A sells

everything at a lower price than the other supermarket B. Hence, whatever

the state of the world, whatever sorts of ice cream they sell, I can never

be better off if I go to supermarket B. To be better off means here to have a

preference for the outcome resulting from one action, shopping at A, over

the outcome resulting from the other action, shopping at B. Now, assume

that I know in addition that at least one of my favorite sorts of ice cream is

in store. So what to do? If I have to decide between actions a1 and a2, and

whatever the state of the world, I strictly prefer the outcome of a1 over that

of a2, then I will choose action a1. We say that an action a1 strictly dominates

an action a2 if in all possible courses of events the results from performing

a1 are strictly preferred over that of a2. It then amounts to a tautology to say

that an agent will never choose the strictly dominated action. This criterion
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may tell us what a decision maker will do although he does not know the

results of his actions with certainty, and although his expectations about

these results are unknown.

This example is an example of a pure decision problem, i.e. a problem

where the outcome of the choice of action solely depends on the state of the

world and not on the decisions of other players. It is straightforward to gen-

eralize the last principle of strict domination to proper game situations: if I

have to decide between actions a1 and a2, and, whatever actions the other

players choose, the outcomes resulting from a1 are always strictly preferred

over the outcomes of a2, then I will choose action a1. Again, this is meant

as a tautology. As a consequence, if we study a decision problem in a game

and ask which action will be chosen by the players, then we can eliminate all

strictly dominated actions without losing any of the reasonable candidates.

The prisoners’ dilemma is one of the most discussed problems in game the-

ory. It is a standard example illustrating the principle of elimination of

strictly dominated actions. One version of the story runs as follows: the

police arrest two gangsters for a crime they committed together, but lack

sufficient evidence. Only if they confess can the police convict them for this

crime. Hence, the police separate them, so that they can’t communicate,

and offer each of them a bargain: if he confesses, and the other one doesn’t,

then he will be released but his companion will be sentenced to the maxi-

mum penalty. If both confess, then they still will be imprisoned but only for

a considerably reduced time. If neither of them confesses, then the police

can convict them only for a minor tax fraud. This will be done for sure and

they both will receive a minor penalty. The exact numbers are irrelevant but

they help to make examples more intuitive. So, let’s say that the maximal

penalty is 10 years, the reduced penalty, in the case where both confess, is 8

years, the tax fraud is punished with 2 years, and if they are released they

are imprisoned for 0 years. The police inform both criminals that they offer

this bargain to each of them, and that they are both informed about this.

Graphically we can represent the decision situation of the two prisoners as

in Table 1.2.

Table 1.2: The prisoners’ dilemma

c d

c (−2 ; −2) (−10 ; 0)

d (0 ; −10) (−8 ; −8)
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Each of the two players has to choose between cooperating and non-

cooperating with his companion. We denote these actions by c (cooperate)

and d (defect). If a prisoner defects, then he confesses; if he cooperates, then

he keeps silent. One prisoner chooses between columns, i.e. he is the column

player, the other between rows, i.e. he is the row player. This payoff-matrix

tells us e.g. that column player will be sentenced to 0 years if he defects, and

if at the same time row player cooperates, the row player will be sentenced

to 10 years.

It is easy to see that for both players action d strictly dominates action c.

Whatever the other player chooses, he will always prefer the outcome where

he himself had performed d. Hence, after elimination of strictly dominated

actions, only the pair (d, d) remains as a possible choice, and hence both will

confess and be sentenced to 8 years.

The prisoners’ dilemma is an instructive example not the least because it

easily gives rise to confusion. It seems to lead into a paradox: if both players

strictly follow their preferences, then they are led to perform actions with re-

sults that are much disliked by both. But to say that somebody follows his

preferences is no more than a tautology, so the players cannot do anything

else but strictly follow them. The question may arise whether the principle

of eliminating strictly dominated actions isn’t too simple minded. It is nec-

essary to make clear what the game theoretic model describes and what it

doesn’t describe.

As mentioned, the model has to be understood as a descriptive model,

not as a prescriptive one. Hence, it does not advise us to follow only our

narrowly defined short-term advantages and disregard all needs and feel-

ings of our companions. It just says if the preferences are such as stated in

the model, then a rational player will act in this and that way.

It makes a crucial difference whether the prisoners’ dilemma is played

only once or whether it is played again and again. In the repeated prison-

ers’ dilemma there is a chance that we meet the same person several times,

and non-cooperative behavior can be punished in future encounters. And,

indeed, it can be shown that there are many more strategies that rational

players can choose when we considered the infinitely repeated prisoners’

dilemma.

The model assumes that the preferences of the players are just as stated

by the payoff matrix. This means that the only thing the prisoners are in-

terested in is how long they will be imprisoned. They are not interested in

the fates of each other. Again this is not a prescription but a description of a

certain type of situation. If we consider a scenario where the prisoners feel

affection for each other, then this has to be represented in the payoff matrix.

In an extreme case where one criminal cares as much for the other one as for
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himself, his payoffs may be just the negative sum of both sentences. In this

case the model would predict that the compassionate prisoner cooperates,

and this behavior is as rational as the defecting behavior in the first scenario.

The corresponding payoff-matrix is given in Table 1.3.

Table 1.3: The prisoners’ dilemma with a compassionate row player

c d

c (−4 ; −2) (−10 ; 0)

d (−10 ; −10) (−16 ; −8)

But still, there may remain a gnawing doubt. Let’s assume that we play

the prisoners’ dilemma only once, and let’s assume that the preferences are

exactly the same as those stated in its payoff matrix, isn’t it simply better

to cooperate? Even if we were convinced that the only rational choice is to

defect, doesn’t this example show that it is sometimes better to be irrational?

– and thereby challenge a central game theoretic assumption about rational

behavior?

First, it has to be noted that the prisoners’ dilemma does not show that

it is better to deviate from defection unilaterally. As the example with the

compassionate row player shows, this will simply mean to go to jail for 10

years. But, of course, it would be better for both to cooperate simultaneously.

This simply follows from the payoff matrix; but this does not imply that the

principle of elimination of dominated actions is irrational. The source for

the doubt lies in the observation that if they were bound by an agreement

or by moral obligations, then they would be better off following it even if

this course of action contradicts their own preferences. The point is that in

the setting we considered for the one-shot prisoners’ dilemma there is no

room for agreements or moral obligations. If we add them, then we get

a different game, and for this game we can indeed find that it is rational

to make binding contracts because they lead to better payoffs, even if the

payoffs are defined exactly as in the original situation.

Let’s assume that the two criminals have a possibility to agree never to

betray each other if they get imprisoned. Here is a straightforward model

for this situation: we add two actions, a and −a. In the beginning both play-

ers have to decide whether they play a or −a. If both play a, then they make

an agreement that they both play c, cooperate, in the prisoners’ dilemma. If

one of them doesn’t play a, then no agreement is formed and hence noth-

ing changes and both can cooperate or defect afterwards. An agreement is



An Introduction to Game Theory for Linguists 15

binding; i.e. it is impossible to do anything that is not in accordance with

it. Hence, it has the effect of reducing the set of possible actions open to the

players. Call the two players A and B. We depict this game as in Figure 1.1.
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In this representation we depict the players’ moves one after the other.

First A chooses between actions a and −a in situation s0, which leads to

s1 or s2 respectively. Then B makes his choice from a and −a. The oval

around s1 and s2 means that B cannot distinguish between the two situa-

tions, i.e. he does not know whether A played a or −a. Hence, although the

actions of A and B are ordered sequentially, the graph covers also the case

where both decide simultaneously. We will introduce this form of represen-

tation, the extensive form, in section 1.2.4. After their initial choice, both

have to play the prisoners’ dilemma. As in s11, s20 and s21 no agreement

is reached, both play the ordinary prisoners’ dilemma as considered before.

We depicted the associated game tree only once after s20. It is identical for

all three situations. In situation s10 they reached an agreement. So their pos-

sibilities in the prisoner’s situation are limited to cooperation. This means

that they have only one choice to act. In the end we find the payoffs for each

course of events. The first value is the payoff for player A and the second

for player B.

Which actions will rational players choose? As the situations in s11, s20

and s21 are those of the prisoners’ dilemma, it follows that both will play

defect. Hence, their payoffs for all these situations will be (−8,−8). If they

are in s10 their payoff will be (−2,−2). For their choice between a and −a

in the initial situation this means that the game tree can be simplified as

depicted in Figure 1.2.



16 Game Theory and Pragmatics

u

u������:

XXXXXXz

�
�

�
�

��3

Q
Q

Q
Q

QQs u������:

XXXXXXz

u

u

u

u

(−2,−2)

(−8,−8)

(−8,−8)

(−8,−8)

s0

s1

s2

s10

s11

s20

s21

a

−a

a

a

−a

−a

�

�

�

�

Figure 1.2

If A has played a, then B has a preference to play a too; if A played −a,

then B has no preferences for one over the other. The situation for A is

symmetrical. We can represent this game by a payoff matrix in Table 1.4.

Table 1.4

a −a

a (−2 ; −2) (−8 ; −8)

−a (−8 ; −8) (−8 ; −8)

The principle of elimination of strictly dominated actions does not help us

here because a is not preferred by the players for every choice that the other

player can make. This example motivates a more general principle, that of

the elimination of weakly dominated actions: if a player has a choice be-

tween actions a1, . . . , an such that (1) there is a possibility where a1 leads

to a preferred outcome, and (2) there is no possibility where its outcome is

dispreferred, then the player will choose a1. This principle is already more

than a pure explication of the meaning of prefer. It presupposes some delib-

eration on the side of the player. If we apply this principle in the situation

represented by the last payoff matrix, we see that (a, a) is the only possible

choice for the two agents.

What does this example show us? We saw that it would be better for

both of the prisoners if they could manage to cooperate in the prisoners’

dilemma, and this threw some doubt on the principle of elimination of

strongly dominated actions. As we see now, if there is a device that forces
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them to cooperate, then it is rational for them to use it. But to restrict one’s

own freedom and force oneself to make a certain choice is something differ-

ent from behaving irrationally. To choose cooperate in the original prisoners’

dilemma means to make an irrational choice; which is in that case tanta-

mount to preferring the dispreferred. The making of binding agreements

is part of the actions the players can perform. If we want to study its ef-

fects on finding optimal behavior, then it has to be represented in the game

structure. Doubts about the principle of elimination of strongly preferred

actions arise when we put the possibility of deliberately restricting our free-

dom into the criterion of rationality. This shows that we have to be careful

about what we model by what in a game.

We can distinguish three aspects of a decision problem that have to be

represented in a model. An agent has to consider: (1) what is feasible; (2)

what is desirable; (3) what he knows. Hence, we have to represent in each

decision situation what a player can do, what his preferences are and what

he knows. In our game tree we can read off this information as follows: in

situation s20 there are two possible actions player B can choose, and they

lead to situations s200 and s201 respectively. This defines the feasible. His

preferences are defined over final outcomes of courses of events. They are

given by his payoffs in the final situations. He knows that he is in situation

s20. If he couldn’t distinguish between this situation and another, then this

could be indicated by an oval containing both situations. This is called his

information set. But this represents only his special knowledge about the

specific game situation. In addition to this, it is usual to assume that players

know the overall game structure, i.e. they know which moves are possible

in which situations by each player, know their consequences, know each

other’s preferences, and each other’s knowledge about each other’s moves.

More precisely, the latter properties have to be common or mutual knowledge .

A proposition ϕ is mutually known if every player knows ϕ, if every player

knows that every player knows that ϕ, if every player knows that every

player knows that every player knows that ϕ, etc. Hence, this imposes a

very strong assumption about the players’ ability to reason about each other.

This is a characteristic of classical Game Theory . In a later section we will

see an interpretation of Game Theory that imposes much weaker constraints

on the rationality of players: evolutionary game theory .

The components introduced so far, the possible moves, the desires, and

the players’ knowledge provide a description of a game but they still do not

provide an answer to the question what an agent will or should do. What

is needed is a criterion for selecting an action. In the prisoners’ dilemma we

saw one such criterion, the principle of elimination of strongly dominated

strategies. If an agent is rational, we said, then he cannot choose an action
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that will always lead to a dispreferred state of affairs. We introduced it as

an explication of the meaning of prefer. But in general, this principle will not

suffice to give us an answer for every game where we expect an answer. We

saw already an example where we needed a weaker version of the principle.

In the game theoretic literature we find a large number of criteria for what

is rational to choose. These criteria may depend on the type of game played,

the information available to the players, on assumptions on their ability to

reason about each other, on the amount of common knowledge. Very often,

these criteria are formulated in terms of equilibrium concepts.

1.2.3 Strategic games and the Nash equilibrium

Strategic Games without Uncertainty What strategy will a rational player

choose in a given strategic game ? We saw one way to answer this question:

a player may just eliminate all strictly dominated actions, and hope to find

thereby a single possible move that remains, and hence will be chosen by

him. We formulate strict domination for strategies:

Definition 1 (Strict Domination) A strategy si of player i strictly dominates a

strategy s′i, iff for all profiles s it holds that (s′i, s−i) ≺i (si, s−i).

For weak domination we have to replace ≺i by �i and to assume that there is

at least one strategy combination by the opponents such that si does better

than s′i.

Definition 2 (Weak Domination) A strategy si of player i weakly dominates a

strategy s′i, iff (1) for all profiles s it holds that (s′i, s−i) �i (si, s−i), and (2) there

is a profile s such that (s′i, s−i) ≺i (si, s−i).

Whereas we can see the principle of strict domination as a mere explication

of the meaning of prefer, the principle of weak domination involves some

reasoning on the side of the player. Only if there is a chance that the other

players choose the strategies s−i, where si is preferred over s′i, there is a

reason to play si. In the previous examples we applied the principles of

elimination of dominated strategies only once for each player. But in many

games we have to apply them several times to arrive at a unique solution.

For instance, consider the game in Table 1.5 on the facing page. Intuitively,

the combination (r1, c1) should turn out as the solution. This is a game with

two players. We call them again row player and column player. Each player

has the choice between three actions; row player between {r1, r2, r3} and

column player between {c1, c2, c3}. Neither c1, c2 nor c3 are dominated,

hence our criterion does not tell us what column player will choose. For

the row player neither r1 nor r2 are dominated; r1 is better if column player

chooses c1 and c2, and r2 is better if he chooses c3. But we can see that r2
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Table 1.5

c1 c2 c3

r1 (5 ; 5) (4 ; 4) (0 ; 0)

r2 (1 ; 1) (3 ; 3) (2 ; 2)

r3 (0 ; 0) (0 ; 0) (1 ; 1)

strictly dominates r3. This means that row player will never choose this

action. Now, if we assume that the game structure is common knowledge,

i.e. the payoffs are mutually known, and if column player knows about row

player that he eliminates strictly dominated action, then column player can

infer too that only r1 and r2 are possible moves by row player. If we assume

that this reasoning is mutually known, then we can eliminate the third row

of the payoff matrix. In the reduced matrix c3 is strictly dominated by c2,

and for the same reasons we can eliminate it from the payoff matrix. In the

remaining 2 × 2 matrix, r1 strictly dominates r2. Hence there remains only

one choice for row player. This means that the problem of what to choose

is solved for him. But if only r1 is a possible move for row player, then c1

strictly dominates c2, and therefore the problem is solved for column player

too. It turns out that (r1, c1) is their unique choice.

Apart from the fact that we have to apply the principle of elimination

of dominated strategies iteratively, there is another important point that is

confirmed by this example: that row player and column player arrive at

(r1, c1) presupposes that they know about each other that they apply this

principle and that they are able to work out quite intricate inferences about

each other’s behavior. Such assumptions about the agents’ ability to reason

about each other play a major role in the justification of all criteria of rational

behavior.

Unfortunately, iterated elimination of dominated strategies can’t solve

the question how rational players will act for all types of static games. The

example in Table 1.6 is known as the Battle of the Sexes. There are several

Table 1.6: Battle of the sexes

b c

b (4 ; 2) (1 ; 1)

c (0 ; 0) (2 ; 4)
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stories told for this game. One of them runs as follows: row player, let’s call

him Adam, wants to go to a boxing event this evening, and column player,

let’s call her Eve, to a concert. Both want to go to their events together.

Eve would rather go to the boxing event with Adam than going to her con-

cert alone although she doesn’t like boxing very much. The same holds for

Adam if we reverse the roles of boxing and the concert.

We see that for Adam neither going to the boxing event b dominates going

to the concert c, nor the other way round. The same holds for Eve. Hence,

the principle of elimination of dominated strategies does not lead to a so-

lution to the question what Adam and Eve will do. Intuitively, Adam and

Eve should agree on (b, b) and (c, c) if they want to maximize their payoffs.

They should avoid (b, c) and (c, b). What could a justification look like? One

way of reasoning proceeds as follows: if Eve thinks that Adam will go to the

boxing event, then she has a preference to be there too. However, if Adam

knows that Eve goes to the boxing event, then Adam wants to be there too.

The same holds for the pair (c, c). If we look at (b, c), then we find that in

this case Adam would prefer to play c, as this increases his payoff; or, if Eve

knows that Adam plays b, then she would prefer to switch to b. A strategy

profile s = (s1, . . . , sn) is called a Nash equilibrium if none of the players i

has an interest in playing a strategy different from si given that the others

play s−i.

Definition 3 (Nash Equilibrium) A strategy profile s is a (weak) Nash equi-

librium iff for none of the players i there exists a strategy s′i such that s ≺i

(s′i, s−i), or, equivalently, if for all of i’s strategies s′i it holds that (s′i, s−i) �i s.

A Nash equilibrium is strict if we can replace the �i by ≺i for s′i 6= si in the

second characterization. In this case every player has a preference to play si

if the others play s−i.

There is another characterization, in terms of best responses. A move si

of player i is a best response to a strategy profile s−i. We write si ∈ BRi(s−i),

iff

ui(si, s−i) = max
s′

i
∈Si

ui(s
′
i, s−i). (1.11)

A strategy profile s is a Nash equilibrium, iff for all i = 1, . . . , n si is a best

response to s−i, i.e. iff si ∈ BRi(s−i). It is strict if in addition BRi(s−i) is a

singleton set for all i.

Mixed Nash Equilibria We saw that the Battle of the Sexes has two Nash

equilibria, (b, b) and (c, c). Once they managed to coordinate on one of them,

they have no reason to play something else. But if it is the first time they play

this game, or if they have to decide what to play every time anew, then the
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existence of two equilibria does not give them an answer to their question

what to do. Eve may reason as follows: if I go to the boxing event, then the

best thing I can get out is 2 pleasure points, but if things go wrong then I get

nothing. But if I go to the concert, then the worst thing that can happen is

that I get only 1 pleasure point, and if I am lucky I get 4 points. So, if I play

safe, then I should avoid the action that carries with it the potentially worst

outcome. Hence, I should go to the concert. If Adam reasons in the same

way, then he will go to the boxing event, and hence Adam and Eve will al-

ways be at their preferred event but never meet and get limited to payoff

1. The strategy that Adam and Eve play here is known as the minimax strat-

egy. When von Neumann and Morgenstern wrote their seminal work On the

Theory of Games and Economic Behavior (1944) they didn’t use Nash equilib-

ria as their basic solution concept but the minimax strategy. Obviously, this

strategy is reasonable. But we will see that Adam and Eve can do better.

What happens if Adam and Eve mix their strategies, i.e. they don’t choose

a pure strategy like always playing c or b but play each strategy with a cer-

tain probability? Let us assume that in the situation of Table 1.1. Adam goes

to the concert with probability 1
2

and to the boxing event with probability
1
2

, and Eve does the same. Then the probability of each of the four possi-

ble combination of actions is 1
2
× 1

2
. The situation is symmetrical for both

players, hence they can both calculate their expected payoffs as follows:

1

2
×

1

2
× 2 +

1

2
×

1

2
× 1 +

1

2
×

1

2
× 0 +

1

2
×

1

2
× 4 = 1

3

4

So we see that a simple strategy like flipping a coin before deciding where

to go can improve the overall outcome significantly.

What is a Nash equilibrium for games with mixed strategies? If Eve be-

lieves that chances are equally high for Adam going to the concert as for

Adam going to the boxing match, then she can calculate her expected pay-

off, or expected utility, of playing c as follows:

EU(c) =
1

2
× 1 +

1

2
× 4 = 2

1

2

Whereas her expected utility after playing b is

EU(b) =
1

2
× 2 +

1

2
× 1 = 1

1

2

In general she will find that always playing c is the most advantageous

choice for her. A Nash equilibrium is a sequence of choices by each player

such that none of the players has an interest to play something different

given the choices of the others. Hence, playing b and c both with probabili-

ties 1
2

can’t be a Nash equilibrium. But we will see that there exists one, and,
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moreover, that there exists one for every finite (two-person) game. Before

we introduce this result, let us first state what a strategic game with mixed

strategies is.

Let ∆(Ai) be the set of probability distributions over Ai, i.e. the set of

functions P that assign a probability P (a) to each action a ∈ Ai such that
P

a∈Ai
P (a) = 1 and 0 ≤ P (a) ≤ 1. Each P in ∆(Ai) corresponds to a mixed

strategy of agent i. A mixed strategy profile then is a sequence (P1, . . . , Pn) for

the set of players N = {1, . . . , n}. A pure strategy corresponds to a mixed

strategy Pi where Pi(a) = 1 for one action a ∈ Ai and Pi(b) = 0 for all

other actions. In our example of the Battle of the Sexes the players’ action

sets are {b, c}, i.e. the actions of going to a boxing event and going to a

concert. If Adam is player 1 and Eve 2, then their strategy of playing b and

c with equal probability corresponds to the strategy profile (P1, P2) where

Pi(b) = Pi(c) = 1
2

, i ∈ {1, 2}.

We can calculate the expected utility of player i given a mixed strategy

profile P = (P1, . . . , Pn) and payoff profile (u1, . . . , un) by:

EUi(P ) =
X

a∈A1×...×An

P1(a1) × . . . × Pn(an) × ui(a). (1.12)

It is assumed that rational players try to maximize their expected utilities,

i.e. a player i strictly prefers action a over action b exactly if the expected

utility of a is higher than the expected utility of b.

For mixed strategy profiles P = (P1, . . . , Pn), we use the same notation

P−i as for (pure) strategy profiles to denote the profile (P1, . . . , Pi−1, Pi+1,

. . . , Pn) where we leave out the strategy Pi. (P ′
i , P−i) denotes again the

profile where we replaced Pi by P ′
i .

Definition 4 (Mixed Nash Equilibrium) A (weak) mixed Nash equilibrium

is a mixed strategy profile (P1, . . . , Pn) such that for all i = 1, . . . , n and P ′
i ∈

∆(Ai) it holds that EUi(P
′
i , P−i) ≤ EUi(P ). A mixed Nash equilibrium is strict

if we can replace ≤ by < in the last condition.

A standard result states that every finite strategic two-person game has a

mixed Nash equilibrium. In the case of our example of the Battle of the

Sexes we find that the pair (P1, P2) with P1(b) = 4
5

and P1(c) = 1
5

for Adam

and P2(b) = 1
5

and P2(c) = 4
5

is a mixed Nash equilibrium. If Adam plays

P1, then Eve can play whatever she wants, she never can get a higher payoff

than that for playing P2. In fact, it is the same for all her possible strategies.

The analogue holds for Adam if it is known that Eve plays P2.

That we find a mixed Nash equilibrium for every finite strategic game is

of some theoretical interest because there are many games that don’t have a

pure Nash equilibrium.
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Table 1.7

a b

a (1 ; −1) (−1 ; 1)

b (−1 ; 1) (1 ; −1)

Consider the game from Table 1.7. This game cannot have a pure Nash

equilibrium because whatever one player chooses, because it maximizes his

payoff given a choice by the other player, will induce the other player to

make a different choice. But it has a unique mixed Nash equilibrium where

each player plays each move with probability 1
2

.

There are many refinements of the notion of Nash equilibrium. We intro-

duce here Pareto optimality. We saw that every finite strategic game has a

mixed Nash equilibrium . But besides this it may have many more equilib-

ria, hence the criterion to be a Nash equilibrium does normally not suffice

for selecting a unique solution for a game. Although this is true, in many

cases we can argue that some of these equilibria are better or more reason-

able equilibria than others. In the example from Table 1.8 we find two Nash

equilibria, (a, a) and (b, b). This means that both are possible solutions to

this game but both players have an interest to agree on (a, a).

Table 1.8

a b

a (3 ; 2) (0 ; 1)

b (1 ; 0) (1 ; 1)

A Nash equilibrium like (a, a) is called strongly Pareto optimal, or strongly

Pareto efficient . More precisely, a Nash equilibrium s = (s1, . . . , sn) is strongly

Pareto optimal, iff there is no other Nash equilibrium s′ = (s′1, . . . , s
′
n) such

that for all i = 1, . . . , n ui(s) < ui(s
′). I.e. a Nash equilibrium is strongly

Pareto optimal, iff there is no other equilibrium where every player is better

off. For example, if players can negotiate in advance, then it is reasonable to

assume that they will agree on a strongly Pareto optimal Nash equilibrium.

There is also a weaker notion of Pareto optimality: a Nash equilibrium is

just Pareto optimal iff there is no other Nash equilibrium s′ = (s′1, . . . , s
′
n)

such that for all i = 1, . . . , n ui(s) ≤ ui(s
′) and for one i ui(s) < ui(s

′).
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1.2.4 Games in extensive form

We already saw graphical representations for games in extensive form in

Figures 1.1 and 1.2. This form is useful for the representation of dynamic

games, i.e. games where there may occur whole sequences of moves by dif-

ferent players e.g. as in chess. The normal form goes together with the ma-

trix representation, and the extensive form with the representation by a game

tree.

What is a tree? A tree consists of several nodes, also called vertices, and

edges. In a game tree an edge is identified with a move of some of the players,

and the nodes are game situations where one of the players has to choose a

move. A tree starts with a distinguished root node, the start situation. If two

nodes n1, n2 are connected by an edge n1 → n2, then n1 is a predecessor of

n2, and n2 a successor of n1. Every node has exactly one predecessor, except

the root node, which has no predecessor. Every node may have several

successors. We call a sequence of nodes n1 → n2 → . . . → nk a path from

n1 to nk. If nk has no successor, then we call this sequence a branch and nk

an end node. In general, a tree may contain also infinite braches, i.e. there

may exist an infinite sequence n1 → n2 → n3 → . . . with no end node.

For the following definition of extensive form game we assume that there are

no infinite branches. In a tree, every node, except the root node itself, is

connected to the root by a path, and none of the nodes is connected to itself

by a path (no circles). A tree for an extensive game may look as in Figure 1.3.

The numbers i = 1, 2 attached to the nodes mean that it is player i’s turn to
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choose a move.

In a game like chess all players have perfect information, i.e. they know

the start situation, each move that either they or their opponents have made,

and each others preferences over outcomes.

In Figure 1.1 we saw an example where in some situations players do
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not know in which situation they are. For every player i we can add to

every node n in the tree the set of situations that are indistinguishable for

i. This set is called i’s information set. A typical example where information

sets have more than one element is a game where one player starts with

a secret move. The second player knows the start situation, which moves

player 1 may have chosen, and the possible outcomes. If the move is really

secret, then player 2 cannot know in which node of the tree he is when he

chooses. Think of player 1 and 2 playing a game where 1 hides a Euro in

one hand and 2 has to guess whether it is in 1’s left or right hand. If 2 makes

the right guess he wins the Euro, otherwise 1 gets it. Figure 1.4 shows a

tree for this game. The fact that player 2 cannot distinguish between the

situations n, where 1 holds the Euro in his left hand, and n′, where he holds

it in his right hand, is indicated by the oval around n and n′. What is in
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Figure 1.4

general a game in extensive form? Let a tree be given in the sense defined

above. There must be a set of players N = {1, . . . , n} and a set of moves

A = {a1, . . . , am}. Sometimes it is assumed that nature is an additional

player; then it is denoted by 0. In order to represent a game we need the

following information about the tree:

1 To each node of the tree we have to assign exactly one player from the set

N ∪ {0}. If player i is assigned to a node, then this means that it is player

i’s turn to make a move in that situation.

2 Each edge has to be labelled by a move from A. If an edge n1 → n2 is

labelled with action a and node n1 is assigned to player i, then this means

that playing a by i in situation n1 leads to n2.

3 If a node n is assigned to player i, then we have to assign to this node in

addition an information set. This is a subset of the nodes that are assigned
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to i and always includes n itself. It represents the information available

to i in situation n. If n′ is an element of the information set assigned to

n, then the same information set has to be assigned to n′. The idea is: if

n and n′ are elements of the same information set, then player i cannot

distinguish between the two situations, i.e. he does not know whether he

is in n1 or in n2.

4 There is a set of outcomes. To each end node we have to assign exactly one

outcome. It is the final state resulting from playing the branch starting

from the root node and leading to the end node.

5 For each player i in N there exists a payoff function ui that assigns a real

value to each of the outcomes.

In addition it is assumed that nature, player 0, chooses its moves with cer-

tain probabilities:

6 For each node assigned to 0 there is a probability distribution P over its

possible moves at this node.

Figure 1.5 shows an example of a game in extensive form with nature as

a player. Assume that 1 and 2 want to meet at 5 pm. 1 calls 2 and leaves a
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message (ϕ) for her: “I have an appointment with the doctor. You can pick me up

there.” Now assume that 1 has regularly appointments with two different

doctors. Where should 2 pick him up? Of course, if 2 knows that the proba-

bility ρ for 1 being at s1 is higher than the probability ρ′ for being at s2, then

she should better go to s1 (g1) than to s2 (g2).

In this introduction we concentrated on classical Game Theory . It rests on

very strong assumptions about the players’ rationality and computational
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abilities. A Nash equilibrium, to be a really clear cut solution for a game,

presupposes that each other’s strategies are commonly known. In general,

it’s not only each other’s strategies but also each other’s reasoning that must

be commonly known. Hence, there have been efforts to develop criteria for

players with bounded rationality. An extreme reinterpretation is provided by

evolutionary game theory, where in fact no reasoning is assumed on the side

of the players but a form of (evolutionary) learning. This will be the topic

of the third section of this introduction. But before we come to that, we will

first describe how the tools of standard decision and game theory can be

used to study some pragmatic aspects of communication.

2 Communication in games

2.1 Cheap talk games

2.1.1 A sequential formulation

In his classic work on conventions, Lewis (1969) proposed to study commu-

nication by means of so-called signaling games, games that are of immedi-

ate relevance for linguistics. Meanwhile, extensions of Lewisean signaling

games have become very important in economics and (theoretical) biology.

In this section we will only consider the simple kind of signaling games that

Lewis introduced, games that are now known as cheap talk games. Cheap

talk games are signaling games where the messages are not directly payoff

relevant. A signaling game with payoff irrelevant messages is a sequen-

tial game with two players involved, player 1, the speaker, and player 2,

the hearer. Both players are in a particular state, an element of some set

T . Player 1 can observe the true state, but player 2 can not. The latter has,

however, beliefs about what the true state is, and it is common knowledge

between the players that this belief is represented by probability function

PH over T . Then, player 1 observes the true state t and chooses a message

m from some set M . After player 2 observes m (but not t), he chooses some

action a from a set A, which ends the game. In this sequential game, the

hearer has to choose a (pure) strategy that says what she should do as a

response to each message, thus a function from M to A, i.e., an element in

[M → A]. Although strictly speaking not necessary, we can represent also

the speaker’s strategy already as a function, one in [T → M ]. In simple

communication games, we call these functions the hearer and speaker strat-

egy, respectively, i.e., H and S. The utilities of both players are given by

uS(t, a) and uH(t, a).

In cheap talk games, the messages are not directly payoff relevant: the

utility functions do not mention the messages being used. Thus, the only
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effect that a message can have in these games is through its information

content: by changing the hearer’s belief about the situation the speaker (and

hearer) is in. If a message can change the hearer’s beliefs about the actual

situation, it might also change her optimal action, and thus indirectly affect

both players’ payoffs.

Let us look at a very simple situation where T = {t1, t2}, M = {m1, m2},

and where f is a function that assigns to each state the unique action in A

that is the desired action for both agents. Let us assume the following utility

functions (corresponding closely with Lewis’s intentions): uS(ti, Hk(mj))=

1 = uH(ti, Hk(mj)), if Hk(mj) = f(ti), 0 otherwise. Let us assume that

f(t1) = a1 and f(t2) = a2, which means that a1 is the best action to perform

in t1, and a2 in t2. The speaker and hearer strategies will be defined as

follows:

S1 = {〈t1, m1〉, 〈t2, m2〉} S2 = {〈t1, m2〉, 〈t2, m1〉}

S3 = {〈t1, m1〉, 〈t2, m1〉} S4 = {〈t1, m2〉, 〈t2, m2〉}

H1 = {〈m1, a1〉, 〈m2, a2〉} H2 = {〈m1, a2〉, 〈m2, a1〉}

H3 = {〈m1, a1〉, 〈m2, a1〉} H4 = {〈m1, a2〉, 〈m2, a2〉}

In the following description, we represent not the actual payoffs in the

payoff table, but rather what the agents who are in a particular situation

expect they will receive. Thus we will give a table for each situation with the

payoffs for each agent e ∈ {S, H} determined by

U∗
e (t, Si, Hj) =

X

t′∈T

µe(t
′|(Si(t))) × Ue(t

′, Hj(Si(t
′)))

where µe(t
′|Si(t)) is defined by means of conditionalization in terms of

strategy Si and the agent’s prior probability function Pe as follows:

µe(t
′|Si(t)) = Pe(t

′|S−1
i (Si(t)))

and where S−1
i (m) is the set of states in which a speaker who uses strategy

Si uses m. Because the speaker knows in which situation he is, for him

it is the same as the actual payoff: U∗
S(t, Si, Hj) = uS(t, Hj(Si(t))). For

the hearer, however, it is not the same, because if the speaker uses strategy

S3 or S4 she still doesn’t know what the actual state is. Let us assume for

concreteness that PH(t1) = 1
3

, and thus that PH(t2) = 2
3

. This then gives

rise to the tables in 1.9 on the next page:

We have boxed the equilibria of the games played in the different situ-

ations. We say that strategy combination 〈S, H〉 is a Nash equilibrium of

the whole game iff 〈S, H〉 is a Nash equilibrium in both situations (see Def-

inition 3). Thus, we see that we have four equilibria: 〈S1, H1〉, 〈S2, H2〉,
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Table 1.9: Cheap talk game: asymmetric information

t1 H1 H2 H3 H4

S1 (1 ; 1) (0 ; 0) (1 ; 1) (0 ; 0)

S2 (0 ; 0) (1 ; 1) (1 ; 1) (0 ; 0)

S3 (1 ; 1
3
) (0 ; 2

3
) (1 ; 1

3
) (0 ; 2

3
)

S4 (0 ; 2
3
) (1 ; 1

3
) (1 ; 1

3
) (0 ; 2

3
)

t2 H1 H2 H3 H4

S1 (1 ; 1) (0 ; 0) (0 ; 0) (1 ; 1)

S2 (0 ; 0) (1 ; 1) (0 ; 0) (1 ; 1)

S3 (0 ; 1
3
) (1 ; 2

3
) (0 ; 1

3
) (1 ; 2

3
)

S4 (1 ; 2
3
) (0 ; 1

3
) (0 ; 1

3
) (1 ; 2

3
)

〈S3, H4〉 and 〈S4, H4〉. These equilibria can be pictured as in Figure 1.6 on

the following page.

2.1.2 A strategic reformulation and a warning

Above we have analyzed the game as a sequential one where the hearer

didn’t know in which situation she was. Technically, we have analyzed

the game as a sequential game with asymmetric information: the speaker

knows more than the hearer. However, it is also possible to analyze it as a

standard strategic game in which this asymmetry of information no longer

plays a role.3 If we analyze the game in this way, however, we have to

change two things: (i) we don’t give separate payoff tables anymore for the

different situations; and, as a consequence, (ii) we don’t look at (expected)

utilities anymore of strategy combinations in a particular state, but have to

look at expectations with respect to a common prior probability function ρ.

Before we do this for signaling games, let us first show how a more simple
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Equilibrium 1 Equilibrium 2

Situation Message Action

t1 - m1 - a1

t2 - m2 - a2

Situation Message Action

t1
XXXXXXz

m1

������:
a1

t2 ������:

m2

XXXXXXz a2

Equilibrium 3 Equilibrium 4

Situation Message Action

t1 -
m1

-

a1

t2 ������:

m2

XXXXXXz a2

Situation Message Action

t1
XXXXXXz

m1

-

a1

t2 - m2

XXXXXXz a2

Figure 1.6

game of asymmetric information can be turned into a strategic one with

symmetric information.

Suppose that row player knows which situation he is in, but Column-

player does not. The reason might be that Column doesn’t know what the

preferences of Row are. Column thinks that the preferences are as in t1 or

as in t2. Notice that in both situations the preferences of Column are the

same, which represents the fact that Row knows what the preferences are of

Column.

Table 1.10: Simple game of asymmetric information

t1 c1 c2

r1 (2 ; 1) (3 ; 0)

r2 (0 ; −1) (2 ; 0)

t2 c1 c2

r1 (2 ; 1) (3 ; 0)

r2 (3 ; −1) (5 ; 0)

Notice that in t1, r1 is the dominant action to perform for Row, while in

t2 it is r2. Column has to make her choice depending on what she thinks is

best. She knows that Row will play r1 in t1, and r2 in t2 (assuming that Row

is rational), but she doesn’t know what is the actual situation. However,

she has some beliefs about this. Let us assume that PCol(t1) is the probabil-

ity with which Column thinks that t1 is the actual situation (and thus that

PCol(t2) = 1 − PCol(t1)). Then Column will try to maximize her expected
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utility. Thus, she will choose c1 in case EUCol(c1) > EUCol(c2), and c2

otherwise (in case EUCol(c1) = EUCol(c2) she doesn’t care.) Notice that

EUCol(c1) > EUCol(c2) if an only if [(PCol(t1) × 1) + (PCol(t2) × (−1))] >

[(PCol(t1) × 0) + (PCol(t2) × 0)] if and only if PCol(t1) > PCol(t2). Thus,

we predict by using the Nash equilibrium solution concept that Row will

play r1 in situation t1, and r2 in situation t2, and Column will play c1 if

PCol(t1) ≥ 1
2

and c2 if PCol(t1) ≤ 1
2

. We can characterize the Nash equilib-

ria of the game also as follows: 〈(r1, r2), c1〉 iff PCol(t1) ≥
1
2

and 〈(r1, r2), c2〉

iff PCol(t1) ≤
1
2

, where 〈(r1, r2), c1〉, for instance, means that Row will play

r1 in situation t1 and r2 in situation t2.

This game of asymmetric information can also be studied as a standard

strategic game of symmetric, or complete, information, if we assume that

the participants of the game can represent their beliefs in terms of a com-

mon prior probability function, ρ, and that Row has obtained his complete

information via updating this prior probability function with some extra

information by means of standard conditionalization (Harsanyi 1967-1968).

In our case we have to assume that the common prior probability function

ρ is just the same as Column’s probability function P , and that Row has

received some information X (in state t1, for instance) such that after condi-

tionalization ρ with this information, the new probability function assigns

the value 1 to t1, i.e. ρ(t1/X) = 1.

If we analyze our example with respect to a common prior probability

function, the Row-player also has to pick his strategy before he finds out in

which situation the game is being played, and we also have to define his

payoff function with respect to the prior probability function ρ = PCol. But

this means that the actions, or strategies, of Row player are now functions

that tell him what to do in each situation. In the game described above Row

now has to choose between the following four strategies:

r11 = r1 in t1 and r1 in t2 r22 = r2 in t1 and r2 in t2
r12 = r1 in t1 and r2 in t2 r21 = r2 in t1 and r1 in t2

This gives rise to the strategic game from Table 1.11 on the next page with

respect to the common prior probability function ρ that assigns the value 2
3

to t1.

Now we see that 〈r12, c1〉 is the Nash equilibrium. In a game of asymmet-

ric information, this equilibrium corresponds to equilibrium 〈(r1, r2), c1〉,

which is exactly the one we found above if PCol(t1) = 2
3

. So, we have seen

that our game of asymmetric information gives rise to the same equilibrium

as its reformulation as a strategic game with symmetric information. This

property, in fact, is a general one, and not limited to this simple example,
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Table 1.11: Strategic reformulation of simple game

c1 c2

r11 (2 ; 1) (3 ; 0)

r22 (1 1
2

; −1) (3 1
2

; 0)

r12 (2 1
2

; 1
3
) (4 ; 0)

r21 (1 ; − 1
3
) (2 1

2
; 0)

but also extends to sequential games.

In section 2.1.1 we have introduced signaling games as (simple) sequen-

tial games where the speaker has some information that the hearer does not

have. Exactly as in the just described simple example, however, we can

turn this game into a strategic one with symmetric information if we as-

sume a common prior probability function ρ, such that ρ = PH . The payoffs

are now determined as follows: ∀a ∈ {S, H} : U∗
a (Si, Hj) =

P

t∈T ρ(t) ×

ua(t, Hj(Si(t))). As a result, the game analyzed as one of symmetric infor-

mation receives the following completely symmetric strategic payoff table:

Table 1.12: Signaling game: strategic reformulation

H1 H2 H3 H4

S1 (1 ; 1) (0 ; 0) ( 1
3

; 1
3
) ( 2

3
; 2

3
)

S2 (0 ; 0) (1 ; 1) ( 1
3

; 1
3
) ( 2

3
; 2

3
)

S3 ( 1
3

; 1
3
) ( 2

3
; 2

3
) ( 1

3
; 1

3
) ( 2

3
; 2

3
)

S4 ( 2
3

; 2
3
) ( 1

3
; 1

3
) ( 1

3
; 1

3
) ( 2

3
; 2

3
)

Strategy combination 〈S, H〉 is a Nash equilibrium (cf. Definition 3) in this

kind of game given probability function ρ if (i) ∀S′ : U∗
S(S, H) ≥ U∗

S(S′, H)

and (ii) ∀H ′ : U∗
H(S, H) ≥ U∗

H(S, H ′). We see that this game has four equi-

libria, 〈S1, H1〉, 〈S2, H2〉, 〈S3, H4〉, 〈S4, H4〉, which again exactly correspond

to the earlier equilibria in the game of asymmetric information.
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We mentioned already that Lewis (1969) introduced cheap talk games to

explain the use and stability of linguistic conventions. More recently, these,

or similar, type of games have been used by, among others, Prashant Parikh

(Parikh 1991, Parikh 2001), de Jaegher (de Jaegher 2003) and van Rooij (van

Rooij 2004) to study some more concrete pragmatic phenomena of language

use.4

Until now we have assumed that all Nash equilibria of a cheap talk game

are the kind of equilibria we are looking for. However, in doing so we

missed a lot of work in economics discussing refinements of equilibria. In

order to look at games from a more fine-grained point of view, we have to

look at the game as a sequential one again.

Remember that when we analyzed cheap talk games from a sequential

point of view, we said that 〈Si, Hj〉 is a Nash equilibrium with respect to

probability functions Pa if for each t, Sk and Hm:

U∗
S(t, Si, Hj) ≥ U∗

S(t, Sk, Hj)

and

U∗
H(t, Si, Hj) ≥ U∗

H(t, Si, Hm)

For both agents a, we defined U∗
a (t, Si, Hj) as follows:

P

t′∈T µa(t′|Si(t))×

Ua(t′, Hj(Si(t
′))), where µa(t′|(Si(t))) was defined in terms of the agents’

prior probability functions Pa and standard conditionalization as follows:

µa(t′|(Si(t))) = Pa(t′|S−1(S(t))). On this analysis, the equilibrium is the

same as the one used in the strategic game.

However, assuming a conditional probability function µ to be defined in

this way gives in many games rise to counterintuitive equilibria. In the con-

text of cheap talk games, all of them have to do with how the hearer would

react to a message that is not sent in the equilibrium play of the game, i.e.,

not sent when the speaker uses strategy Si that is part of the equilibrium.

Notice that if m is such a message, µH(t|m) can take any value in [0, 1] ac-

cording to the above definition of the equilibrium, because the conditional

probability function is not defined then.

To give a very simple (though, admittedly, a somewhat unnatural) illus-

tration of the kind of problems that might arise, suppose we have a signaling

game with T = {t1, t2}, and M = {m, ε} as in Table 1.13 on the following

page. Let us also assume that m is a message with a fully underspecified

meaning, but that, for some reason, the speaker could use ε only in situa-

tion t2, although the hearer still might react in any possible way. Then we

have the following strategies.

Now let us again assume for all a ∈ {S, H} that Ua(t, H(S(t))) = 1

if H(S(t)) = f(t), 0 otherwise, with f defined as in section 2.1.1. Now
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Table 1.13: Game where standard conditionalization is not good enough

t1 t2

S1 m ε

S2 m m

m ε

H1 a1 a1

H2 a1 a2

H3 a2 a1

H4 a2 a2

we see that if PH(t2) > 1
2

as before, we have the following equilibria:

〈S1, H2〉, 〈S2, H3〉, and 〈S2, H4〉. The first one is independent of the prob-

ability function, while the latter two hold if we assume that µH(t1|m) ≥ 1
2

and µH(t2|m) ≥ 1
2

, respectively. The equilibrium 〈S2, H4〉 seems natural,

because ε is interpreted by the receiver as it might be used by the sender.

Equilibrium 〈S2, H3〉, however, is completely unnatural, mainly because if

PH(t2) > 1
2

, it seems quite unnatural to assume that µH(t1|m) ≥ 1
2

is the

case. To account for much more complicated examples, Kreps and Wilson

(1982) propose that instead of defining µH(t|m) in terms of a speaker strat-

egy S and prior probability function PH , the conditionalization requirement

is only a condition on what µH(t|m) should be, in case m is used accord-

ing to the speaker’s strategy. This leaves room for an extra constraint on

what µH(t|m) should be in case m is not used by the speaker’s strategy.

The extra condition Kreps and Wilson propose is their consistency condition

for beliefs at information sets that are not reached in equilibrium. It says,

roughly speaking, that for each situation ti and message mi that is not sent

according to the speaker’s strategy, the posterior probability of ti at the in-

formation state that results after mi would be sent, i.e. µH(ti|mi), should

(in simple cases) be as close as possible to the prior probability of ti. In

our case this means that, although ε is not sent if the speaker uses strategy

S2, we should still give µH(t1|m) and µH(t2|m) particular values, namely

µH(t1|m) = PH(t1) < 1
2

and µH(t2|m) = PH(t2) > 1
2

. But if the beliefs

are like this, the Nash equilibrium 〈S2, H3〉 ceases to be an equilibrium any-

more when taking this consistency requirement into account, and we have

explained why it is unnatural.

In this introduction we won’t bother anymore with the above mentioned

refinements, so we might as well think of the game from a strategic point of

view.
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2.2 The quantity of information transmission

Notice that in the first two equilibria of the cheap talk game described in sec-

tion 2.1.1. there is a 1-1-1 correspondence between situations, messages and

actions, and it is natural to say that if speaker and hearer coordinate on the

first equilibrium, the speaker uses message mi to indicate that she is in situ-

ation ti and wants the hearer to perform action ai. As a natural special case

we can think of the actions as ones that interpret the messages. In these cases

we can identify the set of actions, A (of the hearer), with the set of states, T .5

In that case it is most natural to think of the set of states as the set of meanings

that the speaker wants to express, and that in the first two equilibria there

exists a 1-1 correspondence between meanings and messages. One of the

central insights of Lewis’ (1969) work on conventions was that the meaning

of a message can be defined in terms of the game theoretical notion of an

equilibrium in a signaling game: messages that don’t have a pre-existing

meaning acquire such a meaning through the equilibrium play of the game.

Lewis (1969) proposes (at least when ignoring context-dependence) that all

and only all equilibria where there exists such a 1-1 correspondence, which

he calls signaling systems, are appropriate candidates for being a conventional

solution for communicating information in a signaling game.

In contrast to the first two equilibria, no information transmission is go-

ing on in equilibria 3 and 4. Still, they count as equilibria: in both equilibria

the hearer is justified in ignoring the message being sent and always plays

the action which has the highest expected utility, i.e. action a2, if the speaker

sends the same message in every situation; and the speaker has no incen-

tive to send different messages in different states if the hearer ignores the

message and always performs the same action. Thus, we see that in dif-

ferent equilibria of a cheap talk communication game, different amounts of

information can be transmitted. But for cheap talk to allow for informative

communication at all, a speaker must have different preferences over the

hearer’s actions when he is in different states. Likewise, the hearer must

prefer different actions depending on what the actual situation is (talk is

useless if the hearer’s preferences over actions are independent of what the

actual situation is.) Finally, the hearer’s preferences over actions must not

be completely opposed to that of the speaker’s. These three conditions are

obviously guaranteed if we assume, as in the example above, that there is

perfect alignment of preferences between speaker and hearer, and for both

speaker and hearer there is a one-to-one relation between states and op-

timal actions (in those states). In general, however, we don’t want such

an idealistic assumption. This gives rise to the question how informative

cheap talk can be. That is, how fine-grained can and will the speaker reveal

the true situation if talk is cheap? We will address this issue in a moment,
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but first would like to say something about a refinement of the Nash equi-

librium concept in sequential games that sometimes helps us to eliminate

some counterintuitive equilibria.

As mentioned above, the main question asked in cheap talk games is how

much information can be transmitted, given the preferences of the different

agents. In an important article, Crawford and Sobel (1982) show that the

amount of credible communication in these games depends on how far the

preferences of the participants are aligned. To illustrate, assume that the

state, message and action spaces are continuous and between the interval of

zero and one. Thus, T = [0, 1]; the message space is the type space (M =

T ), i.e., M = [0, 1], and also the action space is in the interval [0, 1]. Now,

following Gibson (1992), we can construct as a special case of their model

the following quadratic utility functions for speaker and hearer such that

there is a single parameter, b > 0, that measures how closely the preferences

of the two players are aligned:

UH(t, a) = −(a − t)2

US(t, a) = −[a − (t + b)]2

Now, when the actual situation is t, the hearer’s optimal action is a = t,

but the speaker’s optimal action is a = t + b. Thus, in different situations

the speaker has different preferences over the hearer’s actions (in ‘higher’

situations speakers prefer higher actions), and the interests of the players

are more aligned in case b comes closer to 0. Crawford and Sobel (1982)

show that in such games all equilibria are partition equilibria ; i.e., the set of

situations T can be partitioned into a finite number of intervals such that

senders in a state belonging to the same interval send a common message

and receive the same action. Moreover, they show that the amount of infor-

mation revealed in equilibrium increases as the preferences of the speaker

and the hearer are more aligned. That is, if parameter b approaches 0, there

exists an equilibrium where the speaker will tell more precisely which sit-

uation he is in, and thus more communication is possible. However, when

parameter b has the value 1, it represents the fact that the preferences of

speaker and hearer are opposed. A speaker in situation t = 1, for instance

prefers most action a = 1, and mostly disprefers action a = 0. If b = 1,

however, a hearer will prefer most action a = 0 and most dislikes action

a = 1. As a result, no true information exchange will take place if b = 1, i.e.,

if the preferences are completely opposed.

To establish the fact proved by Crawford and Sobel, no mention was

made of any externally given meaning associated with the messages. What

happens if we assume that these messages in fact do have an externally

given meaning, taken to be sets of situations? Thus, what happens when
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we adopt an externally given interpretation function [·] that assigns to ev-

ery m ∈ M a subset of T ? The interesting question is now not whether

the game has equilibria in which we can associate meanings with the mes-

sages, but rather whether there exist equilibria where the messages are sent

in a credible way. That is, are there equilibria where a speaker sends a mes-

sage with meaning {ti} if and only if she is in state ti? As it turns out, the

old question concerning informative equilibria in signaling games without

pre-existing meaning and the new one concerning credible equilibria in sig-

naling games with messages with pre-existing meaning are closely related.

Consider a two-situation two-action game with the following utility table.

(“tH” and “tL” are mnemonic for “high type” and “low type”, which mirror

the preferences of the receiver.)

Table 1.14: Two-situation, two action

aH aL

tH (1 ; 1) (0 ; 0)

tL (1 ; 0) (0 ; 1)

In this game, the informed sender prefers, irrespective of the situation

he is in, column player to choose aH , while column player wants to play

aH if and only if the sender is in situation tH . Now assume that the ex-

pected utility for the hearer to perform aH is higher than that of aL (because

P (tH) > P (tL)). In that case, in both situations speakers have an incentive

to send the message that conventionally expresses {tH}. But this means

that in this game a speaker in tL has an incentive to lie, and thus that the

hearer cannot take the message to be a credible indication that the speaker

is in situation tH , even if the speaker was actually in that situation. Farrell

(1988, 1993) and Rabin (1990) discussed conditions under which messages

with a pre-existing meaning can be used to credibly transmit information.

They show that this is possible by requiring that the hearer believes what

the speaker says if it is in the latter’s interest to speak the truth. The paper

of Stalnaker in this volume explores the connection between this work on

credible information transmission and Gricean pragmatics.

We have indicated above that the assumption that messages have an ex-

ternally given pre-existing meaning doesn’t have much effect on the equi-

libria of cheap talk games, or on Crawford and Sobel’s (1982) result on the

amount of possible communication in such games. This holds at least if no

requirements are made on what should be believed by the hearer, and if
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no constraints are imposed on what kinds of meanings can be expressed in

particular situations, for instance if no requirements like ∀t ∈ T : t ∈ [S(t)],

saying that speakers have to tell the truth, are put upon speakers’ strategies

S.

2.3 Verifiable communication with a skeptic audience

What happens if we do put extra constraints upon what can and what can-

not be said? As it turns out, this opens up many new possibilities of credible

communication. In fact, Lipman and Seppi (1995) (summarized in Lipman

2003) have shown that with such extra constraints, interesting forms of reli-

able information transmission can be predicted in games where you expect

it the least: in debates between agents with opposing preferences.

Before we look at debates, however, let us first consider cheap talk games

when we assume that the signals used come with a pre-existing meaning

and, moreover, that speakers always tell the truth. This still doesn’t guaran-

tee that language cannot be used to mislead one’s audience. Consider again

the two-situation two-action game described above, but now assume in ad-

dition that we demand that the speaker speaks the truth: ti ∈ [S(ti)]. The

rational message for an individual in the ‘high’ situation to send is still one

that conventionally expresses {tH}, but an individual in the ‘low’ situation

now has an incentive to send a message with meaning {tH , tL}. If the hearer

is naive she will choose aH after hearing the signal that expresses {tH , tL},

because aH has the highest expected utility. A more sceptical hearer, how-

ever, will argue that a speaker that sends a message with meaning {tH , tL}

must be one that is in a ‘low’ situation, because otherwise the speaker could,

and thus should (in her own best interest) have sent a message with mean-

ing {tH}. Thus, this sceptical hearer will reason that the speaker was in

fact in a low-type situation and interprets the message as {tL}. Indeed,

this game has an equilibrium where the speaker and hearer act as described

above. In general, suppose that the speaker has the following preference

relation over a set of 10 situations: t1 < t2 < ... < t10 (meaning that t1 is the

worst situation) and sends a message m with pre-existing meaning [m]. A

sceptical hearer would then assign to m the following pragmatic interpreta-

tion S(m) based on the speaker’s preference relation ‘<’, on the assumption

that the speaker knows which situation he is in:

S(m) = {t ∈ [m]|¬∃t′ ∈ [m] : t′ < t}

This pragmatic interpretation rule is based on the assumption that the

speaker gives as much information as he can that is useful to him, and that

the hearer anticipates this speaker’s maxim (to be only unspecific with re-

spect to more desirable states) by being sceptical when the speaker gives a
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message with a relatively uninformative meaning.6

Now consider debates in which the preferences of the participants are

mutually opposed. Suppose that debaters 1 and 2 are two such players who

both know the true state. Now, however, there is also a third person, the

observer, who doesn’t. Both debaters present evidence to the observer, who

then chooses an action a ∈ A which affects the payoffs of all of them. We

assume that the observer’s optimal action depends on the state, but that the

preferences of the debaters do not. In fact, we assume that the preferences of

debaters 1 and 2 are strictly opposed: in particular, if debater 1 prefers state

ti above all others, ti is also the state that debater 2 dislikes most. By assum-

ing that the utility functions of all three participants are of type Uj(t, a), we

again assume that the message being used is not directly payoff relevant,

just as in cheap talk games.

We assume that each debater can send a message. Let us assume that S

denotes the strategy of debater 1, and R the strategy of debater 2. In con-

trast to the cheap talk games discussed above, we now crucially assume

that the messages have an externally given meaning given by interpretation

function [·]. Let us first assume that while debater 1 can make very precise

statements, i.e., that a particular state t holds, debater 2 can only make very

uninformative statements saying that a particular state is not the case. Let us

assume for concreteness that T = {t1, ..., t10}. Then the ‘meaning’ of S(ti),

[S(ti)] can consist of one state, {tj}, while the meaning of R(ti), [R(ti)],

always consists of 9 states. Thus, debater 1 can be much more informative

about the true state, and is thus in the advantage. But debater 2 has an ad-

vantage over debater 1 as well: in contrast to what is known about debater

1, it is commonly known of debater 2 that she is reliable and will only make

true statements. Thus, for all ti ∈ T : ti ∈ [R(ti)], while it might be that

ti 6∈ [S(ti)].

Suppose now that the observer may ask two statements of the players.

The question is, how much information can the observer acquire? One is

tempted to think that the messages cannot really give a lot of information:

debater 1 has no incentive to tell the truth, so acquiring two messages from

him is completely uninformative. Debater 2 will provide true information,

but the informative value of her messages is very low: after two messages

from her the observer still doesn’t know which of the remaining 8 states

is the true one. Surprisingly enough, however, Lipman and Seppi (1995)

show that the observer can organize the debate such that after two rounds

of communication, he knows for certain which state actually obtains.

The trick is the following: the observer first promises, or warns, debater

1 that in case he finds out that the latter will not give a truthful message,

he will punish debater 1 by choosing the action that is worst for him. This
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is possible because it is common knowledge what the agents prefer. For

concreteness, assume that debater 1 has the following preferences t10 >

t9 > ... > t1. Afterwards, the observer first asks debater 1 which state

holds, and then asks debater 2 to make a statement. Suppose that the first

debater makes a very informative statement of the form ‘State ti is the true

state’. Obviously, debater 2 will refute this claim if it is false. For in that case

the observer will as a result choose the state most unfavorable to debater 1,

and thus most favorable to debater 2, i.e. t1. Thus, if he is precise, debater

1 has an incentive to tell the true state, and the observer will thus learn

exactly which state is the true one. Suppose that the true state is the one

most undesirable for debater 1, t1. So, or so it seems, he has every reason

to be vague. Assume that debater 1 makes a vague statement with meaning

{ti, ..., tn}. But being vague now doesn’t help: if the true state is ruled out

by this vague meaning, debater 2 will claim that (even) the least preferred

state in it is not true, and if debater 2 doesn’t refute debater 1’s claim in

this way the observer will choose the most unfavorable state for debater 1

compatible with the true message with meaning {ti, ..., tn}. In general, if

debater 1’s message m has meaning [m], and if m is not refuted, then the

observer will ‘pragmatically’ interpret m as follows: {t ∈ [m]|¬∃t′ ∈ [m] :

t′ < t}, where ‘t′ < t’ means that debater 1 (strictly) prefers t to t′. Notice

that this is exactly the pragmatic interpretation rule S(m) described above.

From a signaling game perspective, this just means that the games has a

completely separating equilibrium: whatever the true state is, it is never in

the interest of debater 1 not to say that this is indeed the true state.

The example discussed above is but a simple, special case of circum-

stances characterized by Lipman and Seppi (1995) in which observers can

‘force’ debaters to provide precise and adequate information, even though

they have mutually conflicting preferences.

The discussion in this section shows that truthful information transmis-

sion is possible in situations in which the preferences of the conversational

participants are mutually opposed. This seems to be in direct conflict with

the conclusion reached in section 2.2, where it was stated that credible in-

formation transmission is impossible in such circumstances. However, this

conflict is not real: on the one hand, a central assumption in cheap talk

games is that talk is really cheap: one can say what one wants because the

messages are not verifiable. The possibility of credible information transmis-

sion in debates, on the other hand, crucially depends on the assumption

that claims of speakers are verifiable to at least some extent, in other words,

they are falsifiable (by the second debater), and that outside observers can

punish the making of misleading statements. In fact, by taking the possibil-

ity of falsification and punishment into account as well, we predict truthful
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communication also in debates, because the preferences of the agents which

seemed to be opposing are still very much aligned at a ‘deeper’ level.

This subsection also shows that if a hearer knows the preferences of the

speaker and takes him to be well-informed, there exists a natural ‘prag-

matic’ way to interpret the speaker’s message which has already a pre-

existing ‘semantic’ meaning, based on the assumption that speakers are ra-

tional and only unspecific, or vague, with respect to situations that are more

desirable for them.

2.4 Debates and Pragmatics

It is well established that a speaker in a typical conversational situation com-

municates more by the use of a sentence than just its conventional truth con-

ditional meaning. Truth conditional meaning is enriched with what is con-

versationally implicated by the use of a sentence. In pragmatics – the study

of language use – it is standard to assume that this way of enriching con-

ventional meaning is possible because we assume speakers to conform to

Grice’s (1967) cooperative principle, the principle that assumes speakers to be

rational cooperative language users. This view on language use suggests

that the paradigmatic discourse situation is one of cooperative information

exchange.

Merin (1999b) has recently argued that this view is false, and hypothe-

sized that discourse situations are paradigmatically ones of explicit or tacit

debate. He bases this hypothesis on the work of Ducrot (1973) and Anscom-

bre and Ducrot (1983) where it is strongly suggested that some phenom-

ena troublesome for Gricean pragmatics can be analyzed more successfully

when we assume language users to have an argumentative orientation. In

the sequel we will sketch some of Ducrot’s arguments for such an alterna-

tive view on communication, and we will describe Merin’s analysis of some

implicatures which are taken to be troublesome for a cooperative view on

language use.

Adversary connectives The connective but is standardly assumed to have

the same truth-conditional meaning as and. Obviously, however, they are

used differently. This difference is accounted for within pragmatics. It is

normally claimed that ‘A and B’ and ‘A but B’ give rise to different conven-

tional implicatures, or appropriateness conditions. On the basis of sentences

like (1) it is normally (e.g. Frege 1918) assumed that sentences of the form

‘A but B’ are appropriate, if B is unexpected given A.

(1) John is tall but no good at baseball.

This, however, cannot be enough: it cannot explain why the following sen-

tence is odd:



42 Game Theory and Pragmatics

(2) John walks but today I won the jackpot.

Neither can it explain why the following sentence is okay, because expen-

sive restaurants are normally good.

(3) This restaurant is expensive, but good.

Ducrot (1973), Anscombre and Ducrot (1983) and Merin (1999a,b) argue that

sentences of the form ‘A but B’ are always used argumentatively, where A

and B are arguments for complementary conclusions: they are contrastive

in a rhetorical sense. For instance, the first and second conjunct of (3) argue

in favor of not going and going to the restaurant, respectively.

Not only sentences with but, but also other constructions can be used to

express a relation of rhetorical contrast (cf. Horn 1991). These include com-

plex sentences with while, even if, or may in the first clause (i.e. concession),

and/or still, at least, or nonetheless either in place of or in addition to the but

of the second clause (i.e. affirmation):

(4) a. While she won by a {small, *large} margin, she did win.

b. Even if I have only three friends, at least I have three.

c. He may be a professor, he is still an idiot.

Anscombre and Ducrot (1983) argue that rhetorical contrast is not all to the

appropriateness of sentences like (3) or (4a)-(4c). It should also be the case

that the second conjunct should be an argument in favor of conclusion H

that the speaker wants to argue for. And, if possible, it should be a stronger

argument for H than the first conjunct is for H . In terms of Merin’s notion of

relevance discussed in section 1.1 this means that the conjunction ‘A but B’

is appropriate only if rH(A) < 0, rH(B) > 0 and rH(A∧B) > 0. In this way

it can also be explained why (3), for instance, can naturally be followed by

H = ‘You should go to that restaurant’, while this is not a good continuation

of

(5) This restaurant is good, but expensive.

which is most naturally followed by H = ‘You should not go to that restau-

rant’.

There is another problem for a standard Gricean approach to connectives

like but that can be solved by taking an argumentative perspective (cf. Horn

1991). It seems a natural rule of cooperative conversation not to use a con-

junctive sentence where the second conjunct is entailed by the first. Thus,

(6) is inappropriate:
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(6) *She won by a small margin, and win she did.

However, even though but is standardly assumed to have the same truth-

conditional meaning as and, if we substitute and in (6) by but, the sentence

becomes perfectly acceptable:

(7) She won by a small margin, but win she did.

If – as assumed by standard Gricean pragmatics – only truth-conditional

meaning is taken as input for pragmatic reasoning, it is not easy to see how

this contrast can be accounted for. By adopting Ducrot’s hypothesis that

in contrast to (6) the conjuncts in (7) have to be rhetorically opposed, the

distinction between the two examples can be explained easily: if a speaker

is engaged in a debate with somebody who argued that Mrs. X has a relative

lack of popular mandate, she can use (7), but not (6).

Merin’s (1999a) formalization allows him also to explain in a formal rig-

orous manner why (7) ‘She won by a small margin, but win she did’ can be

appropriate, although the second conjunct is entailed by the first. The pos-

sibility of explaining sentences like (7) depends on the fact that even if B is

entailed by A, A |= B, it is still very well possible that there are H and prob-

ability functions in terms of which r·(·) is defined such that rH(A) < rH(B).

Thus, the notion of relevance used by Merin does not increase with respect

to the entailment relation.

Thus, it appears that an argumentative view on language use can account

for certain linguistic facts for which a non-argumentative view seems prob-

lematic.

Scalar reasoning Anscombre and Ducrot (1983) and Merin (1999b) argue

that to account for so-called ‘scalar implicatures’ an argumentative view is

required as well. Scalar implicatures are normally claimed to be based on

Grice’s maxim of quantity: the requirement to give as much information as

is required for the current purposes of the exchange. On its standard im-

plementation, this gives rise to the principle that everything ‘higher’ on

a scale than what is said is false, where the ordering on the scales is de-

fined in terms of informativity. Standardly, scales are taken to be of the

form 〈P (k), ..., P (m)〉, where P is a simple predicate (e.g. Mary has x chil-

dren) and for each P (i) higher on the scale than P (j), the former must be

more informative than the latter. From the assertion that P (j) is true we

then conclude by scalar implicature that P (i) is false. For instance, if Mary

says that she has two children, we (by default) conclude that she doesn’t

have three children, because otherwise she could and should have said so

(if the number of children is under discussion). Other examples are scales
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like 〈A ∧ B, A ∨ B〉: from the claim that John or Mary will come, we are

normally allowed to conclude that they will not both come.

Unfortunately, as observed by Fauconnier (1975), Hirschberg (1985) and

others, we see inferences from what is not said to what is false very simi-

lar to the ones above, but where what is concluded to be false is not more

informative than, or does not entail, what is actually said. For instance, if

Mary answers at her job-interview the question whether she speaks French

by saying that her husband does, we conclude that she doesn’t speak French

herself, although this is not semantically entailed by Mary’s answer. Such

scalar inferences are, according to Anscombre and Ducrot (1983) best ac-

counted for in terms of an argumentative view on language: Mary wants to

have the job, and for that it would be more useful that she herself speaks

French than that her husband does. The ordering between propositions

should not be defined in terms of informativity, or entailment, but rather

in terms of argumentative force. Thus, from Mary’s claim that her husband

speaks French we conclude that the proposition which has a higher argu-

mentative value, i.e., that Mary speaks French herself, is false. It would be

obvious how to account for this in terms of the relevance function used by

Merin: assume that H is the proposition ‘Mary gets the job’.

Perhaps surprisingly, this natural reasoning schema is not adopted in

Merin (1999b). In fact, he doesn’t want to account for conversational im-

plicatures in terms of the standard principle that everything is false that

the speaker didn’t say, but could have said. Instead, he proposes to derive

scalar implicatures from the assumption that conversation is always a game

in which the preferences of the agents are diametrically opposed. From this

view on communication, it follows that assertions and concessions have an

‘at least’ and ‘at most’ interpretation, respectively:

if a proponent, Pro, makes a claim, Pro won’t object to the respondent,

Con, conceding more, i.e. a windfall to Pro, but will mind getting less.

Con, in turn, won’t mind giving away less than conceded, but will mind

giving away more. Put simply: claims are such as to engender intuitions

glossable ‘at least’; concessions, dually, ‘at most’. (Merin 1999b, p. 191).

This intuition is formalized in terms of Merin’s definition of relevance

cones defined with respect to contexts represented as 〈P, h〉 (I minimally

changed Merin’s (1999b) actual definition 8 on page 197.)

Definition 5 The upward (relevance) cone ≥Sφ of an element φ of a subset S ⊆

F of propositions in context 〈P, h〉 is the union of propositions in S that are

at least as relevant to H with respect to P as φ is. The downward (relevance)

cone ≤Sφ of φ in context 〈P, H〉 is, dually, the union of S-propositions at

most as relevant to H with respect to P as φ is.
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On the basis of his view of communication as a (bargaining) game with

opposing preferences, Merin hypothesizes that while the upward cone of a

proposition represents Pro’s claim, the downward cone represents Con’s de-

fault expected compatible counterclaim (i.e., concession). Net meaning, then

is proposed to be the intersection of Pro’s claim and Con’s counterclaim:
≥Sφ ∩ ≤Sφ, the intersection of what is asserted with what is conversation-

ally implicated.

Now consider the particularized scalar implicature due to Mary’s answer

at her job interview to the question whether she speaks French by saying

that her husband does. As suggested above, the goal proposition, H , now is

that Mary gets the job. Naturally, the proposition a = [Mary speaks French]

has a higher relevance than the proposition B = [Mary’s husband speaks

French]. The net meaning of Mary’s actual answer is claimed to be ≥SB ∩
≤SB. This gives rise to an appropriate result if we rule out that B ∈ S. This

could be done if we assume that S itself partitions the state space (in fact,

this is what Merin normally assumes). Presumably, this partition is induced

by a question like Who speaks French? On this assumption it indeed follows

that the elements of the partition compatible with A = [Mary speaks French]

are not compatible with the downward cone of B, and thus are ruled out

correctly.

As we already indicated above, Merin’s analysis of conversational impli-

catures – which assumes that conversation is a bargaining game – is not the

only one possible, and perhaps not the most natural one either. In section

2.2 we saw that it makes a lot of sense to assume that (truthful) speakers

say as much as they can about situations that are desirable for them. In case

the speaker is taken to be well-informed, we can conclude that what speak-

ers do not say about desirable situations is, in fact, not true (if the speaker

is taken to be knowledgeable about the relevant facts). We formulated a

‘pragmatic’ interpretation rule for sceptical hearers that have to ‘decode’

the message following this reasoning, to hypothesize what kind of situation

the speaker is in. Now consider the example again that seemed similar to

scalar reasoning but could not be treated in that way in standard Gricean

analyses: the case where Mary answers at her job-interview the question of

whether she speaks French by saying that her husband does. Intuitively,

this gives rise to the scalar implicature that the ‘better’ answer, that Mary

herself speaks French, is false. As already suggested above, this example

cannot be treated as a scalar implicature in the standard implementation of

Gricean reasoning because the proposition that Mary speaks French is not

more informative than, or does not entail, the proposition that her husband

does. But notice that if we assume the scale to be the preference order (be-

tween states) of the speaker, we can account for this example in terms of
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our earlier mentioned pragmatic interpretation rule. All we have to assume

for this analysis to work is that the state where speaker Mary speaks French

herself is more preferred to one where she does not. Thus, we can account

for the particularized conversational implicature that Mary doesn’t speak

French in terms of the pragmatic interpretation rule described in section 2.2.

The pragmatic interpretation rule that we used above is not only rele-

vant for cases where speaker and hearer have opposing preferences (to at

least some degree), but is also perfectly applicable in ideal Gricean circum-

stances where the preferences of the agents are well-aligned.7 Thus, even if

neither the Gricean cooperative view on language use, nor the alternative

argumentative view has universal applicability, this doesn’t mean that con-

versational implicatures cannot still be accounted for by means of a general

rule of interpretation.

3 Evolutionary game theory

3.1 The evolutionary interpretation of game theory

The classical interpretation of game theory makes very strong idealization

about the rationality of the players. First, it is assumed that every player is

logically omniscient. The players are assumed to know all logical theorems

and all logical consequences of their non-logical beliefs. Second, they are

assumed to always act in their enlightened self interest (in the sense of util-

ity maximization). Last but not least, for a concept like “Nash equilibrium”

to make sense in classical GT, it has to be common knowledge between the

players (a) what the utility matrix is like, and (b) that all players are per-

fectly rational. Each player has to rely on the rationality of the others with-

out doubt, he has to rely on the other players relying on his own rationality

etc. These assumptions are somewhat unrealistic, and variants of classical

Game Theory that try to model the behavior of real people in a less idealized

way are therefore of high relevance.

A substantial part of current game theoretical research is devoted to boun-

ded rationality: versions of GT where the above-mentioned rationality as-

sumptions are weakened. The most radical version of this program is evo-

lutionary game theory (EGT ). It builds on the fundamental intuition that in

games that are played very often (as for instance dialogues), strategies that

lead to a high payoff at a point in time are more likely to be played in sub-

sequent games than less successful strategies. No further assumptions are

made about the rationality of the agents. Perhaps surprisingly, the solution

concepts of classical GT are not invalidated by this interpretation but only

slightly refined and modified. Originally EGT was developed by theoreti-

cal biologists, especially John Maynard Smith (cf. Maynard Smith 1982) as a
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formalization of the neo-Darwinian concept of evolution via natural selec-

tion. It builds on the insight that many interactions between living beings

can be considered to be games in the sense of game theory (GT) – every

participant has something to win or to lose in the interaction, and the pay-

off of each participant can depend on the actions of all other participants.

In the context of evolutionary biology, the payoff is an increase in fitness,

where fitness is basically the expected number of offspring. According to

the neo-Darwinian view on evolution, the units of natural selection are not

primarily organisms but heritable traits of organisms. If the behavior of or-

ganisms, i.e., interactors, in a game-like situation is genetically determined,

the strategies can be identified with gene configurations.

The evolutionary interpretation of GT is not confined to the biological

context though. It is applicable to cultural evolution as well, were the trans-

mission of strategies is achieved via imitation and learning rather than via

DNA copying. Applied to language, EGT is thus a tool to model conven-

tionalization formally, and this is of immediate relevance to the interface be-

tween pragmatics and grammar in the narrow sense.

3.2 Stability and dynamics

3.2.1 Evolutionary stability

Evolution is frequently conceptualized as a gradual progress towards more

complexity and improved adaptation. Everybody has seen pictures display-

ing a linear ascent leading from algae over plants, fishes, dinosaurs, horses,

and apes to Neanderthals and finally humans. Evolutionary biologists do

not tire of pointing out that this picture is quite misleading. Darwinian evo-

lution means a trajectory towards increased adaptation to the environment,

proceeding in small steps. If a local maximum is reached, evolution is basi-

cally static. Change may occur if random variation (due to mutations) accu-

mulate so that a population leaves its local optimum and ascends to another

local optimum. Also, the fitness landscape itself may change as well – if the

environment changes, the former optima may cease to be optimal. Most of

the time biological evolution is macroscopically static though. Explaining

stability is thus as important a goal for evolutionary theory as explaining

change.

In the EGT setting, we are dealing with large populations of potential

players. Each player is programmed for a certain strategy, and the members

of the population play against each other very often under total random

pairings. The payoffs of each encounter are accumulated as fitness, and the

average number of offspring per individual is proportional to its accumu-

lated fitness, while the birth rate and death rate are constant. Parents pass

on their strategy to their offspring basically unchanged. Replication is to be
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thought of as asexual, i.e., each individual has exactly one parent. If a cer-

tain strategy yields on average a payoff that is higher than the population

average, its replication rate will be higher than average and its proportion

within the overall population increases, while strategies with a less-than-

average expected payoff decrease in frequency. A strategy mix is stable un-

der replication if the relative proportions of the different strategies within

the population do not change under replication.

Occasionally replication is unfaithful though, and an offspring is pro-

grammed for a different strategy than its parent. If the mutant has a higher

expected payoff (in games against members of the incumbent population)

than the average of the incumbent population itself, the mutation will even-

tually spread and possibly drive the incumbent strategies to extinction. For

this to happen, the initial number of mutants may be arbitrarily small.8 Con-

versely, if the mutant does worse than the average incumbent, it will be

wiped out and the incumbent strategy mix prevails.

A strategy mix is evolutionarily stable if it is resistant against the invasion

of small proportions of mutant strategies. In other words, an evolutionarily

stable strategy mix has an invasion barrier. If the number of mutant strate-

gies is lower than this barrier, the incumbent strategy mix prevails, while

invasions of higher numbers of mutants might still be successful.

In the metaphor used here, every player is programmed for a certain

strategy, but a population can be mixed and comprise several strategies.

Instead we may assume that all individuals are identically programmed,

but this program is non-deterministic and plays different strategies accord-

ing to some probability distribution (which corresponds to the relative fre-

quencies of the pure strategies in the first conceptualization). Following the

terminology from section 1, we call such non-deterministic strategies mixed

strategies. For the purposes of the evolutionary dynamics of populations, the

two models are equivalent. It is standard in EGT to talk of an evolutionarily

stable strategy, where a strategy can be mixed, instead of an evolutionarily

stable strategy mix. We will follow this terminology henceforth.

The notion of an evolutionarily stable strategy can be generalized to sets

of strategies. A set of strategies A is stationary if a population where all

individuals play a strategy from A will never leave A unless mutations oc-

cur. A set of strategies is evolutionarily stable if it is resistant against small

amounts of non-A mutants. Especially interesting are minimal evolution-

arily stable sets, i.e., evolutionarily stable sets which have no evolutionarily

stable proper subsets. If the level of mutation is sufficiently small, each pop-

ulation will approach such a minimal evolutionarily stable set.

Maynard Smith (1982) gives a static characterization of evolutionarily

stable strategies (ESS), abstracting away from the precise trajectories9 of a
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population. It turns out that the notion of an ESS is strongly related to the

rationalistic notions of a Nash equilibrium (NE) that was introduced earlier,

and its stronger version of a strict Nash equilibrium (SNE). At the present

point, we will focus on symmetric games where both players have the same

strategies at their disposal, and we only consider profiles where both play-

ers play the same strategy. (The distinction between symmetric and asym-

metric games will be discussed more thoroughly in the next subsection.)

With these adjustments, the definitions from section 1 can be rewritten as

• s is a Nash Equilibrium iff u(s, s) ≥ u(s, t) for all strategies t.

• s is a Strict Nash Equilibrium iff u(s, s) > u(s, t) for all strategies t with

s 6= t.

Are NEs always evolutionarily stable? Consider the well-known zero-sum

game Rock-Paper-Scissors (RPS). The two players each have to choose be-

tween the three strategies R (rock), P (paper), and S (scissors). The rules are

that R wins over S, S wins over P, and P wins over R. If both players play

the same strategy, the result is a tie. A corresponding utility matrix would

be as in Table 1.15. This game has exactly one NE. It is the mixed strategy

s∗ where one plays each pure strategy with a probability of 1/3. If my op-

ponent plays s∗, my expected utility is 0, no matter what kind of strategy I

play, because the probability of winning, losing, or a tie are equal. So every

strategy is a best response to s∗. On the other hand, if the probabilities of

the strategies of my opponent are unequal, then my best response is always

to play one of the pure strategies that win against the most probable of his

actions. No strategy wins against itself; thus no other strategy can be a best

response to itself. s∗ is the unique NE .

Table 1.15: Utility matrix for Rock-Paper-Scissors

R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

Is it evolutionarily stable? Suppose a population consists of equal parts

of R, P, and S players, and they play against each other in random pairings.

Then the players of each strategy have the same average utility, 0. If the

number of offspring of each individual is positively correlated with its ac-

cumulated utility, there will be equally many individuals of each strategy in

the next generation again, and the same in the second generation ad infini-

tum. s∗ is a steady state. However, Maynard Smith’s notion of evolutionary
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stability is stronger. An ESS should not only be stationary, but it should also

be robust against mutations. Now suppose in a population as described

above, some small proportion of the offspring of P-players are mutants and

become S-players. Then the proportion of P-players in the next generation

is slightly less than 1
3

, and the share of S-players exceeds 1
3

. So we have:

p(S) > p(R) > p(P )

This means that R-players will have an average utility that is slightly

higher than 0 (because they win more against S and lose less against P).

Likewise, S-players are at disadvantage because they win less than 1
3

of the

time (against P) but lose 1
3

of the time (against R). So one generation later,

the configuration is:

p(R) > p(P ) > p(S)

By an analogous argument, the next generation will have the configura-

tion:

p(P ) > p(S) > p(R)

etc. After the mutation, the population has entered a circular trajectory,

without ever approaching the stationary state s∗ again without further mu-

tations.

So not every NE is an ESS. The converse does hold though. Suppose a

strategy s were not a NE . Then there would be a strategy t with u(t, s) >

u(s, s). This means that a t-mutant in a homogeneous s-population would

achieve a higher average utility than the incumbents and thus spread. This

may lead to the eventual extinction of s, a mixed equilibrium or a circular

trajectory, but the pure s-population is never restored. Hence s is not an

ESS. By contraposition we conclude that each ESS is a NE .

Can we identify ESSs with strict Nash equilibria (SNEs)? Not quite. Imag-

ine a population of pigeons which come in two variants. A-pigeons have

a perfect sense of orientation and can always find their way. B-pigeons

have no sense of orientation at all. Suppose that pigeons always fly in pairs.

There is no big disadvantage of being a B if your partner is of type A be-

cause he can lead the way. Likewise, it is of no disadvantage to have a

B-partner if you are an A because you can lead the way yourself. (Let us

assume for simplicity that leading the way has neither costs nor benefits.)

However, a pair of B-individuals has a big disadvantage because it can-

not find its way. Sometimes these pairs get lost and starve before they can

reproduce. This corresponds to the utility matrix in Table 1.16 on the fac-

ing page. A is a NE, but not an SNE, because u(B, A) = u(A, A). Now
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Table 1.16: Utility matrix of the pigeon orientation game

A B

A 1 1

B 1 0

imagine that a homogeneous A-population is invaded by a small group of

B-mutants. In a predominantly A-population, these invaders fare as well

as the incumbents. However, there is a certain probability that a mutant

goes on a journey with another B-mutant. Then both are in danger. Hence,

sooner or later B-mutants will approach extinction because they cannot in-

teract very well with their peers. More formally, suppose the proportions of

A and B in the populations are 1 − ε and ε respectively. Then the average

utility of A is 1, while the average utility of B is only 1 − ε. Hence the A-

subpopulation will grow faster than the B-subpopulation, and the share of

B-individuals converges towards 0.

Another way to look at this scenario is this: B-invaders cannot spread

in a homogeneous A-population, but A-invaders can successfully invade

a B-population because u(A, B) > u(B, B). Hence A is immune against

B-mutants, even though A is only a non-strict Nash equilibrium.

If a strategy is immune against any kind of mutants in this sense, it is evo-

lutionarily stable. The necessary and sufficient condition for evolutionary

stability are (according to Maynard Smith 1982):

Definition 6 (Evolutionarily Stable Strategy) s is an Evolutionarily Stable

Strategy iff

1 u(s, s) ≥ u(t, s) for all t, and

2 if u(s, s) = u(t, s) for some t 6= s, then u(s, t) > u(t, t).

The first clause requires an ESS to be a NE. The second clause says that if

a t-mutation can survive in an s-population, s must be able to successfully

invade any t-population for s to be evolutionarily stable.

From the definition it follows immediately that each SNE is an ESS. So

we have the inclusion relation

Strict Nash Equilibria ⊂ Evolutionarily Stable Strategies ⊂ Nash Equilibria

Both inclusions are strict. The strategy A in the pigeon orientation game is

evolutionarily stable without being a strict Nash equilibrium, and in Rock-

Paper-Scissors, the mixed strategy to play each pure strategy with probabil-

ity 1
3

is a Nash equilibrium without being evolutionarily stable.
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3.2.2 The replicator dynamics

The considerations that lead to the notion of an ESS are fairly general. They

rest on three crucial assumptions:

1 Populations are (practically) infinite.

2 Each pair of individuals is equally likely to interact.

3 The expected number of offspring of an individual (i.e., its fitness in the

Darwinian sense) is monotonically related to its average utility.

The assumption of infinity is crucial for two reasons. First, individuals usu-

ally do not interact with themselves under most interpretations of EGT .

Thus, in a finite population, the probability to interact with a player using

the same strategy as oneself would be less than the share of this strategy in

the overall population. If the population is infinite, this discrepancy disap-

pears. Second, in a finite population the average utility of players of a given

strategy converges towards its expected value, but it need not be identical

to it. This introduces a stochastic component. While this kind of stochastic

EGT is a lively sub-branch of EGT (see below), the standard interpreta-

tion of EGT assumes deterministic evolution. In an infinite population, the

average utility coincides with the expected utility .

As mentioned before, the evolutionary interpretation of GT interprets

utilities as fitness. The notion of an ESS makes the weaker assumption that

there is just a positive correlation between utility and fitness – a higher util-

ity translates into more expected offspring, but this relation need not be lin-

ear. This is important for applications of EGT to cultural evolution, where

replication proceeds via learning and imitation, and utilities correspond to

social impact. There might be independent measures for utility that influ-

ence fitness without being identical to it.

Nevertheless it is often helpful to look at a particular population dynam-

ics to sharpen one’s intuition about the evolutionary behavior of a game.

Also, in games such as Rock-Paper-Scissors, a lot of interesting things can

be said about their evolution even though they have no stable states at all.

Therefore we will discuss one particular evolutionary game dynamics in

some detail.

The easiest way to relate utility and fitness in a monotonic way is of

course just to identify them. So let us assume that the average utility of

an individual equals its expected number of offspring. Let us say that there

are n strategies s1, . . . , sn. The amount of individuals playing strategy i is

written as Ni. The relative frequency of strategy si, i.e., Ni/N , is written as

xi for short. (Note that x is a probability distribution, i.e.
P

j xj = 1.) We
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abbreviate the expected utility of strategy si,
Pn

j=1 xju(i, j), as ũi, and the

population average of the expected utility,
Pn

i=1 xiũi, as ũ.

If the population size N goes towards infinity, the development of the rel-

ative abundance of the different strategies within the population converges

towards a deterministic dynamics that can be described by the following

differential equation:

dxi

dt
= xi(ũi − ũ)

This equation is called the replicator dynamics. It was first introduced in Tay-

lor and Jonker (1978). It is worth a closer examination. It says that the

reproductive success of strategy si depends on two factors. First, there is

the relative abundance of si itself, xi. The more individuals in the current

population are of type si, the more likely it is that there will be offspring of

this type. The interesting part is the second factor, the differential utility. If

ũi = ũ, this means that strategy si does exactly as well as the population

average. In this case the two terms cancel each other out, and dxi

dt
= 0. This

means that si’s share of the total population remains constant. If, however,

ũi > ũ, si does better than average, and it increases its share. Likewise, a

strategy si with a less-than-average performance, i.e., ũi < ũ, loses ground.

Intuitively, evolutionary stability means a state is (a) stationary and (b)

immune against the invasion of small numbers of mutations. This can di-

rectly be translated into dynamic notions. To require that a state is station-

ary amounts to saying that the relative frequencies of the different strategies

within the population do not change over time. In other words, the vector

x is stationary iff for all i:
dxi

dt
= 0

This is the case if either xi = 0 or ũi = ũ for all i.

Robustness against small amounts of mutation means that there is an en-

vironment of x such that all trajectories leading through this environment

actually converge towards x. In the jargon of dynamic systems, x is then

asymptotically stable or an attractor. It can be shown that a (possibly mixed)

strategy is an ESS if and only if it is asymptotically stable under the replica-

tor dynamics.

The replicator dynamics enables us to display the evolutionary behav-

ior of a game graphically. This has a considerable heuristic value. There

are basically two techniques for this. First, it is possible to depict time se-

ries in a Cartesian coordinate system. The time is mapped to the x-axis,

while the y-axis corresponds to the relative frequency of some strategy. For

some sample of initial conditions, the development of the relative frequen-

cies over time is plotted as a function of the time variable. In a two-strategy
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game like the pigeon orientation scenario discussed above, this is sufficient

to exhaustively display the dynamics of the system because the relative fre-

quencies of the two strategies always sum up to 1. The left hand graphic in

Figure 1.7 gives a few sample time series for the pigeon game. Here the y-

axis corresponds to the relative frequency of the A-population. It is plainly

obvious that the state where 100% of the population are of type A is in fact

an attractor.
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Figure 1.7: Replicator dynamics of the pigeon orientation game (left) and

the rock-paper-scissor game (right)

Another option to graphically display the replicator dynamics of some

game is to suppress the time dimension and instead plot possible orbits

of the system. Here both axes correspond to relative frequencies of some

strategies. So each state of the population corresponds to some point in the

coordinate system. If there are at most two independent variables to con-

sider – as in a symmetric three-strategy game like RPS – there is actually

a 1-1 map between points and states. Under the replicator dynamics, pop-

ulations evolve continuously. This corresponds to contiguous paths in the

graph. The right hand graphic in Figure 1.7 shows some orbits of RPS. We

plotted the frequencies of the “rock” strategy and the “scissors” strategy

against the y-axis and the x-axis respectively. The sum of their frequencies

never exceeds 1. This is why the whole action happens in the lower left cor-

ner of the square. The relative frequency of “paper” is uniquely determined

by the two other strategies and is thus no independent variable.

The circular nature of this dynamics that we informally uncovered above

is clearly discerned. One can also easily see “with the bare eye” that this

game has no attractor, i.e., no ESS.
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3.2.3 Asymmetric games

So far we considered symmetric games in this section. Formally, a game

is symmetric iff the two players have the same set of strategies to choose

from, and the utility does not depend on the position of the players. If u1 is

the utility matrix for the row player, and u2 of the column player, then the

game is symmetric iff both matrices are square (have the same number of

rows and columns), and

u1(i, j) = u2(j, i)

There are various scenarios where these assumptions are inappropriate.

In many types of interaction, the participants assume certain roles. In con-

tests over a territory, it makes a difference who is the incumbent and who the

intruder. In economic interaction, buyer and seller have different options at

their disposal. Likewise in linguistic interaction you are the speaker or the

hearer. The last example illustrates that it is possible for the same individual

to assume either role on different occasions. If this is not possible, we are

effectively dealing with two disjoint populations, like predators and prey or

females and males in biology, haves and have-nots in economics, and adults

and infants in language acquisition (in the latter case infants later become

adults, but these stages can be considered different games).

The dynamic behavior of asymmetric games differs markedly from sym-

metric ones. The ultimate reason for this is that in a symmetric game, an

individual can quasi play against itself (or against a clone of itself), while

this is impossible in asymmetric games. The well-studied game “Hawks

and Doves” may serve to illustrate this point. Imagine a population where

the members have frequent disputes over some essential resource (food, ter-

ritory, mates, whatever). There are two strategies to deal with a conflict. The

aggressive type (the “hawks”) will never give in. If two hawks come in con-

flict, they fight it out until one of them dies. The other one gets the resource.

The doves, on the contrary, embark upon a lengthy ritualized dispute un-

til one of them is tired of it and gives in. If a hawk and a dove meet, the

dove gives in right away and the hawk gets the resource without any effort.

There are no other strategies.

A possible utility matrix for this game is given in Table 1.17.

Table 1.17: Hawks and Doves

H D

H 1 7

D 2 3

Getting the disputed resource without effort has a survival value of 7.
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Only a hawk meeting a dove is as lucky. Not getting the resource at all with-

out a fight enables the loser to look out for a replacement. This is the fate

of a dove meeting a hawk. Let’s say this has a utility of 2. Dying in a fight

over the resource leads to an expected number of 0 offspring, and a serious

fight is also costly for the survivor. Let us say the average utility of a hawk

meeting a hawk is 1. A dove meeting another dove will get the contested

resource in one out of two occasions on average, but the lengthy ritualistic

contest comes with a modest cost too, so the utility of a dove meeting a dove

could be 3.

It is important to notice that the best response to a hawk is being a dove

and vice versa. So neither of the two pure strategies is an NE. However,

we also consider mixed strategies where either the population is mixed, or

each individual plays either strategy with a certain probability. Under these

circumstances, the game has an ESS. If the probability of behaving like a

hawk is 80% and of being a dove 20%, both strategies achieve an expected

utility of 2.2. As the reader may convince herself, this mixed strategy does

in fact fulfill the conditions for an ESS. The replicator dynamics is given in

Figure 1.8. Here the y-axis represents the proportion of hawks in a popu-

lation. If the proportion of hawks exceeds the critical 80%, doves have an

advantage and will spread, and vice versa. This changes dramatically if

 0

 0.2

 0.4

 0.6

 0.8

 1

t

Figure 1.8: Symmetric Hawk-and-Dove game

the same game is construed as an asymmetric game. Imagine the same situ-

ation as before, but now we are dealing with two closely related but differ-

ent species. The two species are reproductively isolated, but they compete

for the same ecological niche. Both species come in the hawkish and the

dovish variant. Contests only take place between individuals from different

species. Now suppose the first species, call it A, consists almost exclusively

of the hawkish type. Under symmetric conditions, this would mean that the

hawks mostly encounter another hawk, doves are better off on average, and
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therefore evolution works in favor of the doves. Things are different in the

asymmetric situation. If A consists mainly of hawks, this supports the doves

in the other species, B. So the proportion of doves in B will increase. This

in turn reinforces the dominance of hawks in A. Likewise, a dominantly

dovish A-population helps the hawks in B. The tendency always works in

favor of a purely hawkish population in the one species and a purely dovish

population in the other one.

Figure 1.9 graphically displays this situation. Here we use a third tech-

nique for visualizing a dynamics, a direction field. Each point in the plain

corresponds to one state of the system. Here the x-coordinate gives the

proportion of hawks in A, and the y-coordinate the proportion of hawks

in B. Each arrow indicates in which direction the system is moving if it

is in the state corresponding to the origin of the arrow. The length of the

arrow indicates the velocity of the change. If you always follow the direc-

tion of the arrows, you get an orbit. Direction fields are especially useful

to display systems with two independent variables, like the two-population

game considered here. The system has two attractor states, the upper left

Figure 1.9: Asymmetric Hawk-and-Dove game

and the lower right corner. They correspond to a purely hawkish popula-

tion in one species and 100% doves in the other. If both populations have

the critical 8:2 ratio of hawks:doves that was stable in the symmetric sce-

nario, the system is also stationary. But this is not an attractor state because

all points in the environment of this point are pulled away from it rather

than being attracted to it.

It is possible to capture the stability properties of asymmetric games in

a way that is similar to the symmetric case. Actually the situation is even

easier in the asymmetric case. Recall that the definition of a symmetric ESS
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was complicated by the consideration that mutants may encounter other

mutants. In a two-population game, this is impossible. In a one-population

role game, this might happen. However, minimal mutations only affect

strategies in one of the two roles. If somebody minimally changes his gram-

matical preferences as a speaker, say, his interpretive preferences need not

be affected by this.10 So while a mutant might interact with its clone, it will

never occur that a mutant strategy interacts with itself, because, by defini-

tion, the two strategy sets are distinct. So, the second clause of the definition

of ESS doesn’t matter.

To deal with asymmetric games, we have to use the more elaborate con-

ceptual framework from section 1 again. Since the strategy sets of the two

players (roles, populations) are distinct, the utility matrices are distinct as

well. In a game between m and n strategies, the utility function of the first

player is defined by an m × n matrix, call it uA, and an n × m matrix uB

for the second player. An asymmetric Nash equilibrium is now a profile – a

pair – of strategies, one for each population/role, such that each component

is the best response to the other component. Likewise, a SNE is a pair of

strategies where each one is the unique best response to the other.

Now if the second clause in the definition of a symmetric ESS plays no

role here, does this mean that only the first clause matters? In other words,

are all and only the NEs evolutionarily stable in the asymmetric case? Not

quite. Suppose a situation as before, but now species A consists of three

variants instead of two. The first two are both aggressive, and they both

get the same, hawkish utility. Also, individuals from B get the same utility

from interacting with either of the two types of hawks in A. The third A-

strategy are still the doves. Now suppose that A consists exclusively of

hawks of the first type, and B only of doves. Then the system is in a NE,

since both hawk strategies are the best response to the doves in B, and for

a B-player, being a dove is the best response to either hawk-strategy. If

this A-population is invaded by a mutant of the second hawkish type, the

mutants are exactly as fit as the incumbents. They will neither spread nor

be extinguished. (Biologists call this phenomenon drift – change that has no

impact for survival fitness and is driven by pure chance.) In this scenario,

the system is in a (non-strict) NE, but it is not evolutionarily stable.

A strict NE is always evolutionarily stable though, and it can be shown

(Selten 1980) that:

In asymmetric games, a configuration is an ESS iff it is a SNE .

It is a noteworthy fact about asymmetric games that ESSs are always pure

in the sense that both populations play one particular strategy with 100%

probability. This does not imply though that asymmetric games always



An Introduction to Game Theory for Linguists 59

settle in a pure state. Not every asymmetric game has an ESS. The asym-

metric version of rock-paper-scissors, for instance, shows the same kind of

cyclic dynamics as the symmetric variant.

As in the symmetric case, this characterization of evolutionary stability

is completely general and holds for all utility monotonic dynamics. Again,

the simplest instance of such a dynamic is the replicator dynamic. Here a

state is characterized by two probability vectors, x and y. They represent the

probabilities of the different strategies in the two populations or roles. The

differential equation describing the replicator dynamics applies to multi-

population games as well. The only difference is that the expected utility of

a player from one population is calculated by averaging over the strategies

for the other population.

3.3 EGT and language

Language is first and foremost a means for communication. As a side ef-

fect of communication, linguistic knowledge is transmitted between the

communicators. This is most obvious in language acquisition, but learn-

ing never stops, and adult speakers of the same language exert a certain

influence on each other’s linguistic habits as well. This makes natural lan-

guage an interactive and self-replicative system. Hence EGT is a promising

analytical tool for the study of linguistic phenomena. Let us start this sub-

section with a few general remarks.

To give an EGT formalization – or an evolutionary conceptualization in

general – of a particular empirical phenomenon, various issues have to be

addressed in advance. What is replication in the domain in question? What

are the units of replication? Is replication faithful, and if so, which features

are constant under replication? What factors influence reproductive success

(= fitness)? What kind of variation exists, and how does it interact with

replication?

There are various aspects of natural language that are subject to replica-

tion, variation and selection, on various timescales that range from minutes

(single discourse) to millennia (language related aspects of biological evo-

lution). We will focus on cultural (as opposed to biological) evolution on

short time scales, but we will briefly discuss the more general picture.

The most obvious mode of linguistic self-replication is first language ac-

quisition. Before this can take effect, the biological preconditions for lan-

guage acquisition and use have to be given, ranging from the physiology of

the ear and the vocal tract to the necessary cognitive abilities. The biological

language faculty is replicated in biological reproduction. It seems obvious

that the ability to communicate does increase survival chances and social

standing and thus promotes biological fitness, but only at a first glance.



60 Game Theory and Pragmatics

Sharing information usually benefits the receiver more than the sender be-

cause information arguably increases fitness. Sharing information with oth-

ers increases the fitness of the others and thus reduces the own differential

fitness. Standard EGT predicts this kind of altruistic behavior to be evolu-

tionarily unstable. Here is a crude formalization in terms of an asymmetric

game between sender and receiver. The sender has a choice between shar-

ing information (“T” for “talkative”) or keeping information for himself (“S”

for “silent”). The (potential) receiver has the options of paying attention and

trying to decode the messages of the sender (“A” for “attention”) or to ig-

nore (“I”) the sender. Let us say that sharing information does have a certain

benefit for the sender because it may serve to manipulate the receiver. On

the other hand, sending a signal comes with an effort and may draw the

attention of predators. For the sake of the argument, we assume that the

costs and benefits are roughly equally distributed given that the receiver pays

attention. If the receiver ignores the message, it is disadvantageous for the

sender to be talkative. For the receiver, it pays to pay attention if the sender

actually sends. Then the listener benefits most. If the sender is silent, it is of

disadvantage for the listener to pay attention because attention is a precious

resource that could have been spent in a more useful way otherwise. Sample

utilities that mirror these assumed preferences are given in Table 1.18.

Table 1.18: The utility of communication

A I

T (1 ; 2) (0 ; 1)

S (1 ; 0) (1 ; 1)

The game has exactly one ESS, namely the combination of “S” and “I”.

(As the careful reader probably already figured out for herself, a cell is an

ESS, i.e., a strict Nash equilibrium, if its first number is the unique maximum

in its column and the second one the unique maximum in its row.) This

result might seem surprising. The receiver would actually be better off if the

two parties would settle at (T,A). This would be of no disadvantage for the

sender. Since the sender does not compete with the receiver for resources

(we are talking about an asymmetric game), he could actually afford to be

generous and grant the receiver the possible gain. Here the predictions of

standard EGT seem to be at odds with the empirical observations.11 The

evolutionary basis for communication, and for cooperation in general, is an

active area of research in EGT , and there are various possible routes that

have been proposed.
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First, the formalization that we gave here may be just wrong, and commu-

nication is in fact beneficial for both parties. While this is certainly true for

humans living in human societies, this still raises the questions how these

societies could have evolved in the first place.

A more interesting approach goes under the name of the handicap princi-

ple. The name was coined by Zahavi (1975) to describe certain patterns of

seemingly self-destructive communication in the animal kingdom. A good

example is what he calls the “stotting” behavior of gazelles:

We start with a scene of a gazelle resting or grazing in the desert. It

is nearly invisible; the color of its coat bends well with the desert land-

scape. One would expect the gazelle to freeze or crouch and do its utmost

to avoid being seen. But no: it rises, barks, and thumps the ground with

its forefeet, all the while watching the wolf. [. . . ] Why does the gazelle

reveal itself to a predator that might not otherwise spot it? Why does it

waste time and energy jumping up and down (stotting) instead of run-

ning away as fast as it can? The gazelle is signaling to the predator that

it has seen it; by “wasting” time and jumping high in the air rather than

bounding away, it demonstrates in a reliable way that it is able to outrun

the wolf. The wolf, upon learning that it has lost its chance to surprise

its prey, and that this gazelle is in top-top physical shape, may decide to

move on to another area; or it may decide to look for more promising

prey. (from Zahavi and Zahavi 1997, xiii-xiv)

Actually, the best response of the predator is to call the bluff occasionally,

often enough to deter cheaters, but not too often. Under these conditions,

the self-inflicted handicap of the (fast) gazelle is in fact evolutionarily stable.

The crucial insight here is that truthful communication can be evolution-

arily stable if lying is more costly than communicating the truth. A slow

gazelle could try to use stotting as well to discourage a lion from hunting it,

but this would be risky if the lion occasionally calls the bluff. The expected

costs of such a strategy are thus higher than the costs of running away im-

mediately. In communication among humans, there are various ways in

which lying might be more costly than telling (or communicating) the truth.

To take an example from economics, driving a Rolls Royce communicates “I

am rich” because for a poor man, the costs of buying and maintaining such

an expensive car outweigh its benefits while a rich man can afford them.

Here producing the signal as such is costly. In linguistic communication,

lying comes with the social risk of being found out, so in many cases telling

the truth is more beneficial than lying.

The idea of the handicap principle as an evolutionary basis for commu-

nication has inspired a plethora of research in biology and economics. Van
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Rooij (2003) uses it to give a game theoretic explanation of politeness as a

pragmatic phenomenon.

A third hypothesis rejects the assumption of standard EGT that all indi-

viduals interact with equal probability. When I increase the fitness of my

kin, I thereby increase the chances for replication of my own gene pool,

even if it should be to my own disadvantage. Recall that utility in EGT

does not mean the reproductive success of an individual but of a strategy,

and strategies correspond to heritable traits in biology. A heritable trait for

altruism might thus have a high expected utility provided its carrier prefer-

ably interacts with other carriers of this trait. Biologists call this model kin

selection. There are various modifications of EGT that give up the assump-

tion of random pairing. Space does not permit us to go into any detail here.

However, refinements of EGT where a player is more likely to interact with

other individuals of its own type often predict cooperative or even altru-

istic behavior to be evolutionarily stable even if it not an ESS according to

Maynard Smith’s criteria.

Natural languages are not passed on via biological but via cultural trans-

mission. First language acquisition is thus a qualitatively different mode

of replication. Most applications of evolutionary thinking in linguistics fo-

cus on the ensuing acquisition driven dynamics. It is an important aspect

in understanding language change on a historical timescale of decades and

centuries.

It is important to notice that there is a qualitative difference between Dar-

winian evolution and the dynamics that results from iterated learning (in

the sense of iterated first language acquisition). In Darwinian evolution,

replication is almost always faithful. Variation is the result of occasional

unfaithful replication, a rare and essentially random event. Theories that

attempt to understand language change via iterated language acquisition

stress the fact though that here, replication can be unfaithful in a system-

atic way. The work of Martin Nowak and his co-workers (see for instance

Nowak et al. 2002) is a good representative of this approach. They as-

sume that an infant that grows up in a community of speakers of some

language L1 might acquire another language L2 with a certain probabil-

ity. This means that those languages will spread in a population that (a) are

likely targets of acquisition for children that are exposed to other languages,

and (b) are likely to be acquired faithfully themselves. This approach thus

conceptualizes language change as a Markov process12 rather than evolu-

tion through natural selection. Markov processes and natural selection of

course do not exclude each other. Nowak’s differential equation describ-

ing the language acquisition dynamics actually consists of a basically game

theoretical natural selection component (pertaining to the functionality of
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language) and a (learning oriented) Markov component.

Language is also replicated on a much shorter time scale, just via being

used. The difference between acquisition based and usage based replication

can be illustrated by looking at the development of the vocabulary of some

language. There are various ways how a new word can enter a language –

morphological compounding, borrowing from other languages, lexicaliza-

tion of names, coinage of acronyms, and what have you. Once a word is part

of a language, it is gradually adapted to this language, i.e., it acquires a reg-

ular morphological paradigm, its pronunciation is nativized etc. The pro-

cess of establishing a new word is predominantly driven by mature (adult

or adolescent) language users, not by infants. Somebody introduces the

new word, and people start imitating it. Whether the new coinage catches

on depends on whether there is a need for this word, whether it fills a so-

cial function (like distinguishing the own social group from other groups),

whether the persons who already use have a high social prestige etc.

Since the work of Labov (see for instance Labov 1972) functionally ori-

ented linguists have repeatedly pointed out that grammatical change actu-

ally follows a similar pattern. The main agents of language change, they

argue, are mature language users rather than children. Not just the vocabu-

lary is plastic and changes via language use but all kinds of linguistic vari-

ables like syntactic constructions, phones, morphological devices, interpre-

tational preferences etc. Imitation plays a crucial part here, and imitation is

of course a kind of replication. Unlike in biological replication, the usage

of a certain word or construction can usually not be traced back to a unique

model or pair of models that spawn the token in question. Rather, every pre-

vious usage of this linguistic item that the user took notice of shares a certain

fraction of “parenthood”. Recall though that the basic units of evolution in

EGT are not individuals but strategies, and evolution is about the relative

frequency of strategies. If there is a causal relation between the abundance

of a certain linguistic variant at a given point in time and its abundance at

a later point, we can consider this a kind of faithful replication. Also, repli-

cation is almost but not absolutely faithful. This leads to a certain degree of

variation. Competing variants of a linguistic item differ in their likelihood

to be imitated – this corresponds to fitness and thus to natural selection. The

usage based dynamics of language use has all aspects that are required for

a modeling in terms of EGT .

In the linguistic examples that we will discuss further on, we will assume

the latter notion of linguistic evolution.
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3.4 Pragmatics and EGT

In this subsection we will go through a couple of examples that demonstrate

how EGT can be used to explain high level linguistic notions like pragmatic

preferences or functional pressure. For more detailed accounts of linguistic

phenomena using EGT, the reader is referred to Jäger (2004) and van Rooij

(2004).

3.4.1 Partial blocking

If there are two comparable expressions in a language such that the first is

strictly more specific than the second, there is a tendency to reserve the more

general expression for situations where the more specific one is not appli-

cable. A standard example is the opposition between “many” and “all”. If

I say that many students came to the guest lecture, it is usually understood

that not all students came. There is a straightforward rationalistic explana-

tion for this in terms of conversational maxims: the speaker should be as

specific as possible. If the speaker uses “many”, the hearer can conclude

that the usage of “all” would have been inappropriate. This conclusion is

strictly speaking not valid though – it is also possible that the speaker just

does not know whether all students came or whether a few were missing.

A similar pattern can be found in conventionalized form in the organi-

zation of the lexicon. If a regular morphological derivation and a simplex

word compete, the complex word is usually reserved for cases where the

simplex is not applicable. For instance, the compositional meaning of the

English noun “cutter” is just someone or something that cuts. A knife is an

instrument for cutting, but still you cannot call a knife a “cutter”. The latter

word is reserved for non-prototypical cutting instruments.

Let us consider the latter example more closely. We assume that the literal

meaning of “cutter” is a concept CUTTER’ and the literal meaning of “knife”

a concept KNIFE’ such that every knife is a cutter but not vice versa, i.e.,

KNIFE’ ⊂ CUTTER’

There are two basic strategies to use these two words, the semantic (S) and

the pragmatic (P ) strategy. Both come in two versions, a hearer strategy and

a speaker strategy. A speaker using S will use “cutter” to refer to unspeci-

fied cutting instruments, and “knife” to refer to knives. To refer to a cutting

instrument that is not a knife, this strategy either uses the explicit “cutter

but not a knife”, or, short but imprecise, also “cutter”. A hearer using S

will interpret every expression literally, i.e., “knife” means KNIFE’, “cutter”

means CUTTER’, and “cutter but not a knife” means CUTTER’ − KNIFE’.

A speaker using P will reserve the word “cutter” for the concept CUTTER’

− KNIFE’. To express the general concept CUTTER’, this strategy has to resort
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to a more complex expression like “cutter or knife”. Conversely, a hearer

using P will interpret “cutter” as CUTTER’ − KNIFE’, “knife” as KNIFE’, and

“cutter or knife” as CUTTER’.

So we are dealing with an asymmetric 2 × 2 game. What is the utility

function? In EGT, utilities are interpreted as the expected number of off-

spring. In our linguistic interpretation this means that utilities express the

likelihood of a strategy to be imitated. It is a difficult question to tease apart

the factors that determine the utility of a linguistic item in this sense, and

ultimately it has to be answered by psycholinguistic and sociolinguistic re-

search. Since we have not undertaken this research so far, we will make up

a utility function, using plausibility arguments.

We start with the hearer perspective. The main objective of the hearer in

communication, let us assume, is to gain as much truthful information as

possible. The utility of a proposition for the hearer is thus inversely pro-

portional to its probability, provided the proposition is true. For the sake of

simplicity, we only consider contexts where the nouns in question occur

in upward entailing context. Therefore CUTTER’ has a lower information

value than KNIFE’ or CUTTER’−KNIFE’. It seems also fair to assume that

non-prototypical cutters are more rarely talked about than knives; thus the

information value of KNIFE’ is lower than the one of CUTTER’−KNIFE’.

For concreteness, we make up some numbers. If i is the function that

assigns a concept its information value, let us say that

i(KNIFE’) = 30

i(CUTTER’ − KNIFE’) = 40

i(CUTTER’) = 20

The speaker wants to communicate information. Assuming only honest in-

tentions, the information value that the hearer gains should also be part

of the speaker’s utility function. Furthermore, the speaker wants to mini-

mize his effort. So as a second component of the speaker’s utility function,

we assume some complexity measure over expressions. A morphologically

complex word like “cutter” is arguably more complex than a simple one like

“knife”, and syntactically complex phrases like “cutter or knife” or “cutter

but not knife” are even more complex. The following stipulated values for

the cost function take these considerations into account:

cost(“knife”) = 1

cost(“cutter”) = 2

cost(“cutter or knife”) = 40

cost(“cutter but not knife”) = 45
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These costs and benefits are to be weighted – everything depends on how

often each of the candidate concepts is actually used. The most prototyp-

ical concept of the three is certainly KNIFE’, while the unspecific CUTTER’

is arguably rare. Let us say that, conditioned to all utterance situations in

question, the probabilities that a speaker tries to communicate the respec-

tive concepts are

p(KNIFE’) = .7

p(CUTTER’ − KNIFE’) = .2

p(CUTTER’) = .1

The utility of the speaker is then the difference between the average infor-

mation value that he manages to communicate and the average costs that

he has to afford. The utility of the hearer is just the average value of the cor-

rect information that is received. The precise values of these utilities finally

depend on how often a speaker of the S-strategy actually uses the complex

“cutter but not knife”, and how often he uses the shorter “cutter”. Let us

assume for the sake of concreteness that he uses the short form in 60% of all

times.

After some elementary calculations, this leads us to the following utility

matrix. The speaker is assumed to be the row player and the hearer the col-

umn player. Both players receive the absolutely highest utility if both play

P . This means perfect communication with minimal effort. All other com-

binations involve some kind of communication failure because the hearer

occasionally interprets the speaker’s use of “cutter” either too strongly or

too weakly.

Table 1.19: Knife vs. cutter

S P

S (23.86 ; 28.60) (24.26 ; 29.00)

P (23.40 ; 29.00) (25.40 ; 31.00)

If both players start out with the semantic strategy, mutant hearers that

use the pragmatic strategy will spread because they get the more specific

interpretation CUTTER’−KNIFE’ right in all cases where the speaker prefers

minimizing effort over being explicit. The mutants will get all cases wrong

where the speaker meant CUTTER’ by using “cutter”, but the advantage is

greater. If the hearers employ the pragmatic strategy, speakers using their

pragmatic strategy will start to spread now because they will have a higher
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chance to get their message across. The combination P/P is the only strict

Nash equilibrium in the game and thus the only ESS.

Figure 1.10 gives the direction field of the corresponding replicator dy-

namics. The x-axis gives the proportion of the hearers that are P -players,

and the y-axis corresponds to the speaker dimension. The structural prop-

Figure 1.10: Partial blocking: replicator dynamics

erties of this game are very sensitive to the particular parameter values. For

instance, if the informational value of the concept CUTTER’ were 25 instead

of 20, the resulting utility matrix would come out as in Table 1.20. Here both

Table 1.20: Knife vs. cutter, different parameter values

S P

S (24.96 ; 29.70) (24.26 ; 29.00)

P (23.40 ; 30.00) (25.90 ; 31.50)

S/S and P/P come out as evolutionarily stable. This result is not entirely

unwelcome – there are plenty of examples where a specific term does not

block a general term. If I refer to a certain dog as “this dog”, I do not impli-

cate that it is of no discernible breed like “German shepherd” or “Airedale

terrier”. The more general concept of a dog is useful enough to prevent

blocking by more specific terms.
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3.4.2 Horn strategies

Real synonymy is rare in natural language – some people even doubt that

it exists. Even if two expressions should have identical meanings according

to the rules of compositional meaning interpretation, their actual interpre-

tation is usually subtly differentiated. Larry Horn (see for instance Horn

1993) calls this phenomenon the division of pragmatic labor. This differen-

tiation is not just random. Rather, the tendency is that the simpler of the

two competing expressions is assigned to the prototypical instances of the

common meaning, while the more complex expression is reserved for less

prototypical situations. The following examples (taken from op. cit.) serve

to illustrate this.

(8) a. John went to church/jail. (prototypical interpretation)

b. John went to the church/jail. (literal interpretation)

(9) a. I need a new driller/cooker.

b. I need a new drill/cook.

The example (8a) only has the non-literal meaning where John attended a

religious service or was convicted and send to a prison respectively. The

more complex (b) sentence literally means that he approaches the church

(jail) as a pedestrian.

De-verbal nouns formed by the suffix -er can either be agentive or refer to

instruments. So compositionally, a driller could be a person who drills or an

instrument for drilling, and likewise for cooker. However, drill is lexicalized

as a drilling instrument, and thus driller can only have the agentive mean-

ing. For cooker it is the other way round: a cook is a person who cooks, and

thus a cooker can only be an instrument. Arguably the concept of a person

who cooks is a more natural concept than an instrument for cooking in our

culture, and for drills and drillers it is the other way round. So in either

case, the simpler form is restricted to the more prototypical meaning.

One might ask what “prototypical” exactly means here. The meaning of

“going to church” for instance is actually more complex than the meaning

of “going to the church” because the former invokes a lot of cultural back-

ground knowledge. It seems to make sense to us though to simply identify

prototypicality with frequency. Those meanings that are most often commu-

nicated in ordinary conversations are most prototypical. We are not aware

whether anybody carried out any quantitative studies on this subject, but

simple Google searches show that for the mentioned examples, this seems to

be a good hypothesis. The phrase “went to church” got 88,000 hits, against
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13,500 for “went to the church”. “I will marry you” occurs 5,980 times; “I

am going to marry you” only 442 times. “A cook” has about 712,000 occur-

rences while “a cooker” has only about 25,000. (This crude method is not

applicable to “drill” vs. “driller” because the former also has an additional

meaning as in “military drill” which pops up very often.)

While queries at a search engine do not replace serious quantitative in-

vestigations, we take it to be a promising hypothesis that in case of a prag-

matic competition, the less complex form tends to be restricted to the more

frequent meaning and the more complex one to the less frequent interpre-

tation. It is straightforward to formalize this setting in a game. The players

are speaker and hearer. There are two meanings that can be communicated,

m0 and m1, and they have two forms at their disposal, f0 and f1.

Each total function from meanings to forms is a speaker strategy, while

hearer strategies are mappings from forms to meanings. There are four

strategies for each player, as shown in Table 1.21 on the following page.

It is decided by nature which meaning the speaker has to communicate.

The probability that nature chooses m0 is higher than the probability of m1.

Furthermore, form f0 is less complex than form f1.

So far this is not different from the signaling games from section 2. How-

ever, we assume here that talk is not cheap. (For simplicity’s sake, we iden-

tify both types and actions with meanings here.) The speaker has an interest

in minimizing the complexity of the expression involved. One might argue

that the hearer also has an interest in minimizing complexity. However, the

hearer is confronted with a given form and has to make sense of it. He or

she has no way to influence the complexity of that form or the associated

meaning. Therefore there is no real point in making complexity part of the

hearer’s utility function.

To keep things simple, let us make up some concrete numbers. Let us

say that the probability of m1 is 75% and the probability of m2 25%. The

costs of f1 and f2 are 0.1 and 0.2 respectively. The unit is the reward for

successful communication – so we assume that it is 10 times as important

for the speaker to get the message across than to avoid the difference in costs

between f2 and f1. We exclude strategies where the speaker does not say

anything at all, so the minimum cost of 0.1 unit is unavoidable.

The utility of the hearer for a given pair of a hearer strategy and a speaker

strategy is the average number of times that the meaning comes across cor-

rectly given the strategies and nature’s probability distribution. Formally

this means that

uh(H, S) =
X

m

pm × δm(S, H)
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Table 1.21: Strategies in the Horn game

Speaker Hearer

S1:
m0 7→ f0

m1 7→ f1

S2:
m0 7→ f1

m1 7→ f0

S3:
m0 7→ f0

m1 7→ f0

S4:
m0 7→ f1

m1 7→ f1

H1:
f0 7→ m0

f1 7→ m1

H2:
f0 7→ m1

f1 7→ m0

H3:
f0 7→ m0

f1 7→ m0

H4:
f0 7→ m1

f1 7→ m1

where the δ-function is defined as

δm(S, H) =

(

1 if H(S(m)) = m

0 else

The speaker shares the interest in communicating successfully, but he also

wants to avoid costs. So his utility function comes out as

us(S, H) =
X

m

pm × (δm(S, H) − cost(S(m)))

With the chosen numbers, this gives us the utility matrix in Table 1.22 on

the next page. The first question that might come to mind is what negative

utilities are supposed to mean in EGT. Utilities are the expected number of

offspring – what is negative offspring? Recall though that if applied to cul-

tural language evolution, the replicating individuals are utterances, and the
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Table 1.22: Utility matrix of the Horn game

H1 H2 H3 H4

S1 (.875 ; 1.0) (−.125 ; 0.0) (.625 ; .75) (.125 ; .25)

S2 (−.175 ; 0.0) (.825 ; 1.0) (.575 ; .75) (.25 ; .075)

S3 (.65 ; .75) (.15 ; .25) (.65 ; .75) (15 ; .25)

S4 (.05 ; .25) (.55 ; .75) (.55 ; .75) (.05 ; .25)

mode of replication is imitation. Here the utilities represent the difference

in the absolute abundance of a certain strategy at a given point in time and

at a later point. A negative utility thus simply means that the number of

utterances generated by a certain strategy is absolutely declining.

Also, neither the replicator dynamics nor the locations of ESSs or Nash

equilibria change if a constant amount is added to all utilities within a ma-

trix. It is thus always possible to transform any given matrix into an equiv-

alent one with only non-negative entries.

We are dealing with an asymmetric game. Here all and only the strict

Nash equilibria are evolutionarily stable. There are two such stable states in

the game at hand: (S1, H1) and (S2, H2). As the reader may verify, these are

the two strategy configurations where both players use a 1-1 function, the

hearer function is the inverse of the speaker function, and where thus com-

munication always succeeds. EGT thus predicts the emergence of signaling

conventions in the Lewisian sense.

It does not predict though that the “Horn strategy” (S1, H1) is in any

way superior to the “anti-Horn strategy” (S2, H2) where the complex form

is used for the frequent meaning. There are various reasons why the former

strategy is somehow “dominant”. First, it is Pareto optimal (recall the discus-

sion of Pareto optimality on page 23). This means that for both players, the

utility that they get if both play Horn is at least as high as in the other ESS

where they both play anti-Horn. For the speaker Horn is absolutely prefer-

able. Horn also risk-dominates anti-Horn. This means that if both players

play Horn, either one would have to lose a lot by deviating unilaterally to

anti-Horn, and this “risk” is at least as high as the inverse risk, i.e., the loss

in utility from unilaterally deviating from the anti-Horn equilibrium. For

the speaker, this domination is strict.

However, these considerations are based on a rationalistic conception of

GT , and they are not directly applicable to EGT . There are two arguments
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for the domination of the Horn strategy that follow directly from the repli-

cator dynamics.

• A population where all eight strategies are equally likely will converge

towards a Horn strategy. Figure 1.11 gives the time series for all eight

strategies if they all start at 25% probability. Note that the hearers first

pass a stage where strategy H3 is dominant. This is the strategy where

the hearer always “guesses” the more frequent meaning – a good strategy

as long as the speaker is unpredictable. Only after the speaker starts to

clearly differentiate between the two meanings does H1 begin to flourish.
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Figure 1.11: Time series of the Horn game

• While both Horn and anti-Horn are attractors under the replicator dy-

namics, the former has a much larger basin of attraction than the latter.

We are not aware of a simple way of analytically calculating the ratio of

the sizes of the two basins, but a numerical approximation revealed that

the basin of attraction of the Horn strategy is about 20 times as large as

the basin of attraction of the anti-Horn strategy.

The asymmetry between the two ESSs becomes even more apparent when

the idealization of the population being infinite population is lifted. In the

next section we will briefly explore the consequences of this.

3.5 All equilibria are stable, but some equilibria are more stable than

others: Stochastic EGT

Let us now have a closer look at the modeling of mutations in EGT. Evolu-

tionary stability means that a state is stationary and resistant against small

amounts of mutations. This means that the replicator dynamics is tacitly as-

sumed to be combined with a small stream of mutation from each strategy
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to each other strategy. The level of mutation is assumed to be constant. An

evolutionarily stable state is a state that is an attractor in the combined dy-

namics and remains an attractor as the level of mutation converges towards

zero.

The assumption that the level of mutation is constant and deterministic,

though, is actually an artifact of the assumption that populations are infi-

nite and time is continuous in standard EGT. Real populations are finite,

and both games and mutations are discrete events in time. So a more fine-

grained modeling should assume finite populations and discrete time. Now

suppose that for each individual in a population, the probability to mutate

towards the strategy s within one time unit is p, where p may be very small

but still positive. If the population consists of n individuals, the chance that

all individuals end up playing s at a given point in time is at least pn, which

may be extremely small but is still positive. By the same kind of reasoning,

it follows that there is a positive probability for a finite population to jump

from each state to each other state due to mutation (provided each strat-

egy can be the target of mutation of each other strategy). More generally,

in a finite population the stream of mutations is not constant but noisy and

non-deterministic. Hence there are strictly speaking no evolutionarily sta-

ble strategies because every invasion barrier will eventually be overcome,

no matter how low the average mutation probability or how high the bar-

rier.13

If an asymmetric game has exactly two SNEs, A and B, in a finite pop-

ulation with mutations there is a positive probability pAB that the system

moves from A to B due to noisy mutation, and a probability pBA for the

reverse direction. If pAB > pBA, the former change will on average occur

more often than the latter, and in the long run the population will spend

more time in state B than in state A. Put differently, if such a system is ob-

served at some arbitrary time, the probability that it is in state B is higher

than that it is in A. The exact value of this probability converges towards
pAB

pAB+pBA
as time grows to infinity.

If the level of mutation gets smaller, both pAB and pBA get smaller, but

at a different pace. pBA approaches 0 much faster than pAB , and thus
pAB

pAB+pBA
(and thus the probability of the system being in state B) converges

to 1 as the mutation rate converges to 0. So while there is always a positive

probability that the system is in state A, this probability can become arbi-

trarily small. A state is called stochastically stable if its probability converges

to a value > 0 as the mutation rate approaches 0. In the described scenario,

B would be the only stochastically stable state, while both A and B are

evolutionarily stable. The notion of stochastic stability is a strengthening of

the concept of evolutionary stability; every stochastically stable state is also



74 Game Theory and Pragmatics

evolutionarily stable,14 but not the other way round.

We can apply these considerations to the equilibrium selection problem

in the Horn game from the last subsection. Figure 1.12 shows the results of

a simulation, using a stochastic dynamics in the described way.15 The left

hand figure shows the proportion of the Horn strategy S1 and the figure

on the right the anti-Horn strategy S2. The other two speaker strategies re-

main close to zero. The development for the hearer strategies is pretty much

synchronized. During the simulation, the system spent 67% of the time in
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Figure 1.12: Simulation of the stochastic dynamics of the Horn game

a state with a predominant Horn strategy and only 26% with predominant

anti-Horn (the remaining time are the transitions). This seems to indicate

strongly that the Horn strategy is in fact the more probable one, which in

turn indicates that it is the only stochastically stable state.

The literature contains some general results about how to find the stochas-

tically stable states of a system analytically, but they are all confined to 2×2

games. This renders them practically useless for linguistic applications be-

cause here, even in very abstract models like the Horn game, we deal with

more than two strategies per player. For larger games, analytical solutions

can only be found by studying the properties in question on a case by case

basis. It would take us too far to discuss possible solution concepts here in

detail (see for instance Young 1998 or Ellison 2000). We will just sketch such

an analytical approach for the Horn game, which turns out to be compara-

tively well-behaved.

To check which of the two ESSs of the Horn game are stochastically sta-

ble, we have to compare the height of their invasion barriers. How many

speakers must deviate from the Horn strategy such that even the smallest

hearer mutation causes the system to leave the basin of attraction of this

strategy and to move towards the anti-Horn strategy? And how many

hearer-mutations would have this effect? The same questions have to be
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answered for the anti-Horn strategy, and the results to be compared.

Consider speaker deviations from the Horn strategy. It will only lead to

an incentive for the hearer to deviate as well if H1 is not the optimal re-

sponse to the speaker strategy anymore. This will happen if at least 50%

of all speakers deviate toward S2, 66.7% deviate towards S4, or some com-

bination of such deviations. It is easy to see that the minimal amount of

deviation having the effect in question is 50% deviating towards S2.16

As for hearer deviation, it would take more than 52.5% mutants towards

H2 to create an incentive for the speaker to deviate towards S2, and even

about 54% of deviation towards H4 to have the same effect. So the invasion

barrier along the hearer dimension is 52.5%.

Now suppose the system is in the anti-Horn equilibrium. As far as hearer

utilities are concerned, Horn and anti-Horn are completely symmetrical,

and thus the invasion barrier for speaker mutants is again 50%. However,

if more than 47.5% of all hearers deviate towards H1, the speaker has an

incentive to deviate towards S1.

In sum, the invasion barriers of the Horn and of the anti-Horn strategy

are 50% and 47.5% respectively. Therefore a “catastrophic” mutation from

the latter to the former, though unlikely, is more likely than the reverse tran-

sition. This makes the Horn strategy the only stochastically stable state.

In this particular example, only two strategies for each player played a

role in determining the stochastically stable state. The Horn game thus be-

haves effectively as a 2× 2 game. In such games stochastic stability actually

coincides with the rationalistic notion of “risk dominance” that was briefly

discussed above. In the general case, it is possible though that a larger game

has two ESSs, but there is a possible mutation from one equilibrium towards

a third state (for instance a non-strict Nash equilibrium) that lies within the

basin of attraction of the other ESS. The stochastic analysis of larger games

has to be done on a case-by-case basis to take such complex structures into

account.

In standard EGT, as well as in the version of stochastic EGT discussed

here, the utility of an individual at each point in time is assumed to be

exactly the average utility this individual would get if it played against a

perfectly representative sample of the population. Vega-Redondo (1996)

discusses another variant of stochastic EGT where this idealization is also

given up. In this model, each individual plays a finite number of tourna-

ments in each time step, and the gained utility – and thus the abundance of

offspring – becomes a stochastic notion as well. He shows that this model

sometimes leads to a different notion of stochastic stability than the one dis-

cussed here. A detailed discussion of this model would lead beyond the

scope of this introduction though.
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4 Overview

With this book we hope to attract the attention of researchers and students

of linguistics and of the philosophy of language that are interested in prag-

matics. We hope to convince those readers of the potential and the relevance

of game theory for linguistic pragmatics, and for the understanding of lan-

guage in general. Likewise, we hope to convince working game theorists

from other fields that natural language is an exciting area of application of

their theory.

Even though the roots of game theoretic pragmatics go back to the late

sixties, it is still an emerging discipline. This makes the field diverse, and

at the same time exciting and innovative. There is no agreement yet on a

set of established ideas, concepts, and research questions, and in a sense,

this is what makes the field so attractive for researchers from different back-

grounds. In this volume, we hope to give a snapshot of the current state of

this budding discipline.

Lewis (1969) introduced signaling games for the study of linguistic con-

ventions. His main aim was in line with Paul Grice’s project to base the

(elusive) notion of ‘meaning’ on beliefs, desires, and intentions of the agents

of a conversation. As suggested in section 2 of this Introduction, signaling

games have been studied extensively by economists to investigate, among

others, under which circumstances a message credibly conveys information

about the world. This research does not have a big impact yet on linguis-

tics. In the first contribution to this book, Robert Stalnaker seeks to close

that gap, by showing the analogy between Grice’s philosophical analysis of

meaning and the more recent game theoretical analysis of credible informa-

tion exchange.

In the second chapter, Prashant Parikh introduces his games of partial

information and argues that they extend signaling games. He shows how

some pragmatic phenomena can be accounted for within his framework,

and points out that game theory might be the appropriate tool to account for

probabilistic communication. In the latter part of his paper, Parikh argues

that the utterance situation s is not only important to contribute the game

model required to calculate the semantic meaning of an utterance, but also

to determine which solution concept is appropriate to use. He suggests that

this can be accounted for in terms of (a sequence of) higher order games.

The main aim of this book is to show that game theory might shed new

light on the study of language, mainly because it suggests that a very for-

mal analysis of language use is within reach that takes a broader conception

of language use than is standard in pragmatic analyses. However, by mak-

ing use of game theoretical analyses, one also takes over its assumptions.
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Nicholas Allott’s paper contains a critical discussion of game theoretical

analyses of communication. Because Prashant Parikh’s analysis is the old-

est and arguably best worked-out analysis of this sort, he naturally concen-

trates his discussion on this. Allott argues any analysis that makes use of

standard game theory is based on some unmotivatedly strong assumptions,

and suggests that some of these assumptions might be weakened by making

use of some principles of Sperber and Wilson’s (1986) Theory of Relevance.

Perhaps the main problem of game theoretical analysis of communication

is the fact that such analyses typically predict that communication games

have multiple equilibria, and that it is not a priori clear which one of those

the conversational partners should, or will, coordinate on. A natural sug-

gestion – also made by Prashant Parikh– is that of the various equilibria,

agents typically converge to the Pareto optimal one, the equilibrium that

gives to both participants the highest payoff. Natural as this proposal might

seem, Sally (2003) has pointed out that in many game theoretical situations

this is not the outcome we actually observe in case the preferences of the

agents are not fully aligned. In those cases, avoidance of risk plays an

important role as well. Following Sally’s observations, Robert van Rooij

and Merlijn Sevenster discuss the importance of risk for the use of expres-

sions with an intended non-literal interpretation, or with an underspecified

meaning.

The chapter by Nicholas Asher and Madison Williams investigates the

rational basis for the computation of pragmatic interpretation from seman-

tic content. They argue that an analysis of pragmatic inference in terms of

Lewisian coordination games is insufficient because that model lacks a prin-

cipled account of equilibrium selection. To overcome this problem, they

develop a dynamic version of Bacharach’s (1993) Variable Frame Theory,

which in turn builds on Schelling’s (1960) notion of focal points. The com-

positional interpretation of an utterance, together with the mutual world

knowledge, defines a starting point in a game dynamics, which in turn

converges on the pragmatic interpretation of the utterance. This approach

is motivated and illustrated with several default inference patterns from

Asher and Lascarides’ (2003) Segmented Discourse Representation Theory.

Anton Benz’s chapter explains the possibility of partial and mention-

some answers in the context of two-person games. Starting out with Gro-

nendijk and Stokhof’s(1984) semantic approach he argues that their occur-

rence can be explained if we assume that they are embedded into contex-

tually given decision problems. This builds on work by Merin (1999b) and

especially van Rooij (2003b). He shows that intuitive judgments about the

appropriateness of partial and mention–some answers are in accordance

with the assumption that interlocutors are Bayesian utility maximizers. In
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the second part of his paper, he proves that explanations that are based on

purely decision-theoretically defined measures of relevance cannot avoid

picking out misleading answers.

The chapter by Kris de Jaegher shows that the grounding strategies of

interlocutors can be characterized as evolutionarily stable equilibria in vari-

ants of the so-called electronic mail game (Rubinstein 1989). In conversa-

tion, it is not only necessary to achieve common knowledge about the mean-

ing of utterances but also about the fact that some information has been

communicated. The strategies employed by the interlocutors to achieve

this goal are called their grounding strategies. Kris de Jaegher shows that

separating equilibria in an electronic mail have a natural interpretation as

grounding strategies. He shows especially that Traum’s (1994) grounding

acts are among the evolutionarily stable equilibria.

The chapter by Jacob Glazer and Ariel Rubinstein studies the rules of

pragmatics in the context of a debate between two parties aiming to per-

suade a listener to adopt one of two opposing positions. The listener’s opti-

mal conclusion depends on the state of the world initially known only to the

two parties. The parties argue sequentially. Arguing entails providing some

hard evidence. A persuasion rule determines the conclusion that the listener

will draw from the arguments made. A state of the world and a persuasion

rule determine a zero-sum game played by the two debaters. The outcome

of the game is the conclusion drawn by the listener, which might be right or

wrong. The paper imposes a constraint on the amount of information that

the listener can absorb and characterizes the persuasion rules that minimize

the probability that the listener reaches the wrong conclusion. It is demon-

strated that this optimization problem is affected by the language in which

the persuasion rules are defined.

The last chapter in this volume, by Tom Lenaerts and Bart de Vylder, is

of a somewhat different nature than the others. It concentrates not so much

on the effects of our beliefs and preferences on what is communicated in an

actual conversation, but rather on how a conventional language can emerge

in which expressions have a meaning shared among a group of autonomous

agents. It is the only contribution in this volume that makes use of the tools

of evolutionary game theory. This paper discusses the effect of a particular

model of language learning on the evolution of a conventional communi-

cation system. We feel that this chapter is especially suited to this volume,

because – and this in contrast to almost all other analyses of the evolution

of language that give great weight to language learning – language learning

in this model is not supposed to be passive, and only used by children, but

rather active, where the learner’s language use also plays an important role.
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Notes

1. The standard statistical relevance of a proposition E for a hypothesis H is de-
fined by R(H, E) = P (H/E) − P (H). The standard statistical relevance and
Good’s relevance are identical with respect to all properties that we use in this
introduction, especially, it is R(H, E) = −R(H, E).

2. We can look at log(P+(H)/P+(H)) as a (possibly negative) measure for our
inclination to favor H over H ; hence rH(E) tells us how the strength of this
inclination is updated. This is an advantage of rH(E) over the standard statistical
notion of relevance P (H/E) − P (H).

3. See also Parikh’s contribution to this volume.
4. Parikh (Parikh 1991, Parikh 2001) studies what he calls Games of Partial Informa-

tion and claims in his contribution to this volume that they are more general than
the signaling games as studied in economics and biology.

5. Or, more generally, as a set of subsets of T .
6. If hearers use such an interpretation rule, speakers have no reason anymore to

be vague. But, of course, vagueness can still have positive pay-off when one’s
audience is unsure about your preferences.

7. See van Rooij and Schulz (2004) for more discussion.
8. In the standard model of EGT, populations are – simplifyingly – thought of as

infinite and continuous, so there are no minimal units.
9. A trajectory is the path of development of an evolving entity.

10. One might argue that the strategies of a language user in these two roles are not
independent. If this correlation is deemed to be important, the whole scenario
has to be formalized as a symmetric game.

11. A similar point can be made with regard to the prisoners’ dilemma, where the
unique NE, general defection, is also the unique ESS, both in the symmetric and
in the asymmetric conception.

12. A Markov process is a stochastic process where the system is always in one of
finitely many states, and where the probability of the possible future behaviors
of the system only depends on its current state, not on its history.

13. This idea was first developed in Kandori et al. (1993) and Young (1993). Fairly
accessible introductions to the theory of stochastic evolution are given in Vega-
Redondo (1996) and Young (1998).

14. Provided the population is sufficiently large, that is. Very small populations may
display a weird dynamic behavior, but we skip over this side aspect here.

15. The system of difference equations used in the experiment is

∆xi

∆t
= xi((Ay)i − 〈x × Ay〉) +

X

j

Zji − Zij

n

∆yi

∆t
= yi((Bx)i − 〈y × Bx〉) +

X

j

Zji − Zij

n

where x,y are the vectors of the relative frequencies of the speaker strategies
and hearer strategies, and A and B are the payoff matrices of speakers and
hearers respectively. For each pair of strategies i and j belonging to the same
player, Zij gives the number of individuals that mutate from i to j. Zij is
a random variable which is distributed according to the binomial distribution
b(pij , bxinc) (or b(pij , byinc) respectively), where pij is the probability that an
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arbitrary individual of type i mutates to type j within one time unit, and n is the
size of the population. We assumed that both populations have the same size.

16. Generally, if (si, hj) form a SNE, the hearer has an incentive to deviate from
it as soon as the speaker chooses a mixed strategy x such that for some k 6=
j,

P

i′ xi′uh(si′ , hk) >
P

i′ xi′uh(si′ , hj). The minimal amount of mutants
needed to drive the hearer out of the equilibrium would be the minimal value
of 1 − xi for any mixed strategy x with this property. (The same applies ceteris
paribus to mutations on the hearer side.)
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