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1 Introduction

Pragmatics is about language use in context. This involves theorizing about speakers’ choices of words
and listeners’ ways of interpreting. More often than not, this also involves a certain amount of noise
and uncertainty: speakers and listeners may not know exactly what the relevant contextual parameters
are, they may make mistakes, believe that their interlocutor is uncertain and possibly prone to err, etc.
We believe that taking this picture seriously can, despite its apparent messiness, inspire a stringent
formal approach to pragmatics that lends itself to precise empirical testing. We call it probabilistic
pragmatics here, to emphasize the role that probabilities play in it. But it contains much more. In the
following, we try to sketch its main characterizing features in relation to other approaches and give
some example applications.

Sections 2 and 3 characterize probabilistic pragmatics. Section 2 discusses different levels of
analysis in pragmatic theory, so as to contrast probabilistic pragmatics with alternative approaches.
Section 3 discusses key properties of probabilistic pragmatics. Sections 4, 5 and 6 sketch examples
of applications. Section 4 introduces a baseline model for reasoning about referential expressions
to demonstrate how the probabilistic modeling, inspired by classical pragmatic theory, can be fit to
experimental data. Section 5 exemplifies further ways in which probabilistic pragmatics can shed
light on gradient patterns in empirical data. The leading example for illustration is that of scalar
implicature. Section 6 argues that considering (multiple levels of) contextual uncertainty is essential
to understanding indirect speech acts. This section demonstrates how explicit representations, inspired
from game theory, of interlocutors’ preferences and likely dialogue moves help tackle indirectness of
speech in non-cooperative contexts.

2 Levels of analysis within pragmatic theory

Paul Grice’s work on conversational implicatures (Grice, 1975) has greatly inspired the shaping of
theoretical pragmatics (e.g. Gazdar, 1979; Horn, 1972; Atlas and Levinson, 1981; Levinson, 1983;
Horn, 1989; Levinson, 2000). It thereby also shaped experimental approaches to pragmatic phenom-
ena, of which recent years have seen more and more (e.g. Noveck and Sperber, 2004; Meibauer and
Steinbach, 2011). We take Grice’s ideas as a starting point here.

Grice showed that paying attention to regularities of language use helps reconcile a semantic
analysis of natural language in terms of standard logics with meaning intuitions that seem to contradict
∗Author names appear in alphabetical order
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level example question

constraints Hurford’s constraint:
what?

l In a disjunction “A or B,” A may not entail B.

principles Strongest meaning principle:
what?

l Prefer strongest reading of an ambiguous sentence.

maxims Maxim of Quantity:
what/why?

l Maximize flow of relevant information.

reasons Optimal language use:
why?

l Be rational (or, at least, try to be)!

processes Naive serial modularity:
how?

Compute truth-conditions, then apply pragmatics.

Figure 1: Levels of analysis for pragmatic theory.

such analyses. Crucial in Grice’s approach was the formulation of Maxims of Conversation, which
are speaker-oriented rules of conduct, such as Be relevant!, his Maxim of Manner. The Maxim of
Quantity requires, for example, that speakers provide all the relevant information they are capable of
providing. Listeners, in turn, can derive pragmatic inferences based on the assumption that speakers
adhere to these rules. Whether these rules are normative or merely matter-of-fact may be inessential
for the purpose of deriving pragmatic inferences, but it is important for our purposes here to note
that Grice thought of these regularities not as arbitrary, but derivable from general considerations of
rationality:

“[O]ne of my avowed aims is to see talking as a special case or variety of purposive,
indeed rational, behaviour.” (Grice, 1975, p. 47)

“I would like to be able to think of the standard type of conversational practice not merely
as something that all or most do in fact follow but as something that it is reasonable for
us to follow, that we should not abandon.” bla (Grice, 1975, p. 48)

Probabilistic pragmatics follows Grice in assigning an important role to goal-oriented, optimal behav-
ior. But probabilistic pragmatics is not particularly interested in maxims; it targets the more founda-
tional level of explaining pragmatic phenomena by appeal to reasons and purposes.

There are many levels of analysis at which pragmatic theory can operate. Figure 1 gives five such
levels. There may be more, but these suffice for our present purposes. With the exception of the level
of processes (which we will discuss in Section 3), there is a linear order. From top to bottom, we go
from descriptive to explanatory, from specific to general, from detail to big picture. Different levels
of analysis are motivated, at least in part, by a different weighing of research questions.

On the level of constraints, we are interested in formulating generalizations of pragmatic interest
with a rather specific scope. A prominent example from the recent literature is Hurford’s constraint
(Hurford, 1974; Chierchia, Fox, and Spector, 2012), which is the generalization that a disjunction of
the form “A or B” sounds pragmatically infelicitous if A entails B or vice versa, such as in John is in
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Paris or in France. It hardly needs an argument why we should be interested in generalizations of this
kind; they are the building blocks for an empirical basis of pragmatic theory.

Related to the level of contraints, but slightly more general in scope is the level of principles. Like
constraints, principles aim to capture relevant regularities. Unlike constraints, they may apply to a
larger set of phenomena. (The distinction is vague and flimsy; it is only drawn for illustration.) A
prominent example is the strongest meaning principle (Dalrymple et al., 1998), according to which
the logically strongest reading of ambiguous sentences is the preferred interpretation. This has been
suggested for disambiguating reciprocals (Dalrymple et al., 1998), plural predication (Winter, 2001),
complex implicature cases (Chierchia, Fox, and Spector, 2012) and vague predicates (Cobreros et al.,
2012). In this sense, its scope is more general than that of, say, Hurford’s constraint, while still being
a generalizing description of relevant observations (e.g., meaning intuitions).

The levels of contraints and principles are mainly concerned with a tight description of the observ-
able facts and so chiefly answer what?-questions. While there is no denying that this is important for
an empirically oriented theoretical linguistics, there are other important criteria for scientific theory
formation that emphasize the need to address why?-questions too. These are concerned with parsi-
mony of explanation, reducibility, coherence, plausibility and general intelligibility. This is where
we see the added benefit of pragmatic theory formation at the levels of maxims and reasons, which
try to derive the data-driven generalizations of the former levels from more general ideas. It is here
that we try to answer why certain constraints and principles hold and how all of the observations and
generalizations fit together in a unified picture. Ideally, we would like to be able to follow the lead of
the natural sciences and reduce multiple constraints, principles and data-observations to a smaller set
of common assumptions that not only describe what is happening in a uniform manner, but that also
embeds pragmatic theory in a larger context of human cognition.

A lot of formally-oriented research in pragmatics takes place at the level of constraints and prin-
ciples. The method is to formulate, using mathematical notation or structures (such as a logic, or
an algebraic model structure), a set of assumptions from which particular observations can be de-
rived (given possibly implicit background assumptions accepted by the community). This method
is flexible and so enables good fits to observable data. But sometimes assumptions made to explain
data observations can be and should be explained or motivated by appeal to more fundamental ideas.
This is where the level of reasons comes in, giving reasons for pragmatic facts, not just generalizing
descriptions.

Consider two examples from the recent literature. First, let us look at gradable adjectives like
tall/short or bent/straight. A well-motivated (though not undisputed) formal semantics for these ex-
pressions uses degrees (e.g. Cresswell, 1977; von Stechow, 1984; Rotstein and Winter, 2004; Kennedy
and McNally, 2005). The degree-based approach assumes that a gradable adjective A denotes a func-
tion [[A]]〈e,d〉 = λxe .A(x), mapping an individual x of type e onto the degree d = A(x) to which x has
property A. Truth-conditions for a sentence like (1) are derived by comparing John’s and Bill’s de-
grees of tallness (being antonyms, tall and short “live” on the same scale of degrees) with contextually
supplied thresholds θtall and θshort. A gloss is provided in (2).

(1) John is tall and Bill is short.

(2) John’s degree of tallness is above θtall and Bill’s degree of tallness is below θshort.

What remains to be explained, is how thresholds are fixed in a given context to form truth-conditions
as in (2). We focus here on one observation, just for concreteness of an example. Some antonym pairs
like tall/short are non-overlapping and even non-complementary, i.e., there is a middle ground where
neither tall nor short applies so that θtall should be strictly bigger than θshort across the board. This
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does not follow from the semantics sketched so far. It seems that we need a pragmatic solution to this
problem.

Solt (2011) discusses a possible solution, which she attributes to von Stechow (2006). Non-overlap
and non-complementarity of antonyms can be explained if we assume that positive form adjectives
are not compared to point-valued thresholds, but to a non-trivial interval. If the relevant point of
comparison for tall, say, is the upper bound of that interval, and that of short is the lower bound,
non-overlap and non-complementarity can be derived from this structural assumption.

Many explanations in formal semantics/pragmatics are similar to this line of explanation. An as-
sumption about abstract structural properties or operations entails (in a system of accepted background
principles) the datum to be explained. But in our view, this particular case of a structure-driven expla-
nation is not very convincing. It does not feel like we learn why antonym pairs like tall/short should
be non-complementary. This feeling is corroborated by the existence of pragmatic explanations that
derive non-complementarity from assumptions about language use (e.g. Franke, 2012; Lassiter and
Goodman, 2014; Qing and Franke, 2014). For instance, if the use of adjectives is shaped by the desire
to facilitate referential communication in statistically variable contexts, then it follows that tall and
short will be used only for those individuals that are remarkably taller or shorter than average (Franke,
2012).

Not everything can be easily bent to an optimality-driven functional explanation. Here is a nice
(borderline) example. Spector (2014) argues that the French complex disjunction soit . . . soit is a
positive polarity item whose distribution can be explained by the assumption that it must occur in the
scope of a (hidden) exhaustifity operator. Exhaustification is a formal operation with a long history in
formalizing pragmatics (e.g. Groenendijk and Stokhof, 1984; von Stechow and Zimmermann, 1984;
Schulz and van Rooij, 2006; Fox, 2007). With this, Spector’s assumption of obligatory exhaustification
entails the relevant pattern of observed distribution of soit . . . soit. As the distributional pattern in
question is far from trivial, this is an impressive achievement. So here, the assumption of obligatory
exhaustification explains, in a structural and descriptive sense, the observed empirical data. Still,
the question does arise whether we must accept obligatory exhaustification of a lexical item like soit
. . . soit as a primitive, or whether it can be explained by “deeper principles.” Spector sees little chance
of that for a traditional Gricean approach (see his Section 4.2), but Lauer (2014) argues that obligatory
implicatures are as such consistent with and even predicted by Gricean theory in certain cases. We
remain uncommitted here and stress that we would not want to claim (insanely) that everything of
pragmatic interest needs to be reduced and explained as optimal language use; structural assumptions
about language play a pivotal role. But where it is or seems possible to reduce structural assumptions
to general principles of language use, we believe that it is fruitful and insightful to try.

Probabilistic pragmatics aims at the level of reasons. It aspires to explain language use by con-
siderations of rationality or, better, optimality. (We will enlarge on this in the next section.) This
is not the only conceivable strategy for a pragmatic theory that aims at the level of reasons, but, we
believe, a plausible one that is in line with Gricean ideas (for whatever that is worth) and also one that
has already demonstrated its abilities in the past. Probabilistic pragmatics is meant to complement,
not necessarily to compete with more representation-driven, structural and descriptive approaches,
unless these claim that they are all that is ever needed. We believe that scientific progress comes from
integrating multiple perspectives: one task, many tools.
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3 Probabilistic pragmatics

Probabilistic pragmatics is a research program with a diverse and lively base of proponents that has
grown impressively over the last couple of years. As we conceive it here, probabilistic pragmat-
ics subsumes game theoretic approaches (e.g. Parikh, 2001; Benz, 2012; Jäger, 2012; Clark, 2012;
Franke, 2013; Mühlenbernd, 2013; de Jaegher and van Rooij, 2014; Rothschild, 2013; Pavan, 2014;
Deo, 2015), as well as “Bayesian approaches” (e.g. Frank and Goodman, 2012, 2014; Kao et al., 2014;
Bergen, Levy, and Goodman, 2014; Lassiter and Goodman, 2014; Potts et al., 2015). With some due
neglect of detail and variance between different contributions, five properties characterize probabilis-
tic pragmatics: it is (i) probabilistic (duh!), (ii) interactive, (iii) rationalistic or optimality-based, (iv)
computational and (v) data-oriented. Other approaches within pragmatics share some of these proper-
ties, but no other shares all. Some of these properties are intrinsically connected. Some entail further
properties of interest: e.g., (i), (ii) and (iii) carry us into a Bayesian approach. (It is for this reason
that “Bayesian pragmatics” may be a misnomer: it might obscure more important properties behind a
mere entailment.)

Probabilistic. Pragmatics is a fuzzy and gooey affair. Figuring out what a speaker meant at some
occasion in a given context can be tricky. Even when it feels rather clear, there can hardly be perfect
certainty about what that speaker thought the point of conversation was, which alternative utterances
she may have been aware of (e.g., the extent of her active lexicon and preferences in her production
grammar) and the like. Speakers and listeners are also not infallible and may make mistakes. If so,
speakers and listeners may anticipate that listeners and speakers make mistakes and act accordingly.
None of this needs to happen consciously (see below), but happen it does. Psycholinguists acknowl-
edge this without shame or ado (e.g. Degen and Tanenhaus, 2014).

A defining feature of probabilistic pragmatics is that it takes various sources of uncertainty about
the context into account and that it models this uncertainty with probability distributions. Some ap-
proaches may try to marginalize the role of probabilities to obtain an almost qualitative system of
reasoning (e.g. Franke, 2011); others may want to make good use of the fuzziness of non-trivial prob-
ability distributions. Here are two reasons why the latter strategy makes sense. For one, probability
can be needed for explanatory purposes, such as, e.g., in modeling vague language use (Frazee and
Beaver, 2010; Franke, 2012; Lassiter and Goodman, 2014; Qing and Franke, 2014). We will see ex-
amples in Sections 5 and 6. For another, models that make probabilistic predictions about speakers’
and listeners’ choices lend themselves to straightforward empirical testing; they come, if designed
properly, with a testable likelihood function ready-made for plugging into your statistical analyses.
We will see examples in Section 4. It is possible, perhaps plausible, that ways of representing uncer-
tainty other than probability distributions can do similar, perhaps better, work (cf. Halpern, 2003, for
many alternatives), but probability theory is simply the most established and well-known, and beats
its competitors in terms of practical applicability by a margin, especially when it comes to statistical
testing of a model’s predictions.1

Interactive. Pathological cases aside, pragmatics is business between speakers and hearers. When-
ever two of these meet, they do so in a context. Sure, for reasons of theoretical elegance, say, if
that is our notion of elegance, we can dispense with the pragmatic two-mind problem and strip con-
text down to a single algebraic representation. Good work comes from such abstraction: witness

1Cohen (2009) and Goodman and Lassiter (2014) provide further arguments and perspectives on the use of probabilistic
approaches within semantics and pragmatics.
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exhaustification-based approaches to pragmatic inference (e.g. van Rooij and Schulz, 2004; Schulz
and van Rooij, 2006; Fox, 2007; Chierchia, Fox, and Spector, 2012) or approaches like inquisitive
semantics (Ciardelli, Groenendijk, and Roelofsen, 2013). But other approaches see added value in ex-
plicitly handling speaker, listener and context and the interaction between these. Approaches that do
are the intentions-first approach of Geurts (2010), the dynamic pragmatics of Lauer (2013), relevance
theory (Sperber and Wilson, 1995, 2004) and many approaches in psycholinguistics (e.g., the holistic
constraint-based approach of Degen and Tanenhaus, 2014). Borderline cases of interactive approaches
are Neo-Gricean work (e.g. Horn, 1984; Levinson, 2000) and bidirectional optimality theory (Blutner,
1998, 2000; Blutner and Zeevat, 2008).

Probabilistic pragmatics therefore considers explicitly the role of production and comprehension.
It does not conflate the two. Neither does it assume that speakers and listeners must have the same
perspective on the relevant contextual parameters (see Franke, 2014a, for an extreme case of modeling
divergences). When it comes to fitting a model to empirical data (see Section 4), this allows a much
more straightforward map of a model’s prediction to response patterns from experiments that relate
clearly to either production or comprehension (cf. Degen and Goodman, 2014). Approaches that do
away with an explicit distinction between speaker and hearer are in much muddier waters and must
often rely on linking hypotheses, which are implicit and hence not properly evaluated, about how a
given theoretical approach can even make predictions about (behavioral) data from an experiment (cf.
Chemla and Singh, 2014, for related discussion).

Rationalistic. A key assumption of probabilistic pragmatics, as we conceive it here, is that prag-
matic behavior is (approximately) rational, or better put: optimally adapted to solve a particular pur-
pose. This is an empirical hypothesis, one that must be assessed indirectly by assessing the overal
success of models that instantiate it. It is not a necessary assumption to make for a pragmatic theory
that uses probabilities. But it is also not something that we picked from a lucid dream. In fact, it
brings pragmatic theory into the confines of rational analysis as formulated by John R. Anderson:

“A rational analysis is an explanation of an aspect of human behavior based on the as-
sumption that it is optimized somehow to the structure of the environment. . . . [T]he term
does not imply any actual logical deduction in choosing optimal behavior, only that the
behavior will be optimized.” (471 Anderson, 1991)

Rational analysis has been applied to many aspects of cognition, such as memory and categorization
(e.g. Anderson, 1990, 1991), reasoning (e.g. Oaksford and Chater, 1994; Hahn and Oaksford, 2007)
or inductive learning (Tenenbaum, Griffiths, and Kemp, 2006; Tenenbaum et al., 2011).

Rationality or optimality is an endstate that actual language users may not reach. Probabilistic
pragmatics therefore happily considers noisy approximations to optimal choice. Whether these noisy
realizations are themselves rational (e.g., a tradeoff between exploration and exploitation) is another
matter. The crucial idea is that the assumption of optimality structures theory formation and explains
why we see particular patterns of behavior.

For a rationalistic pragmatics to bite, we must specify what the goal or purpose is that pragmatic
behavior is hypothesized to be optimal for. Again, this is an empirical issue. There can be different
models within this approach that postulate different goals. Mostly, linguists assume that language
use is shaped by the desire to communicate effectively. Some see the function of structuring thought
as a reason for the evolution of grammar (Chomsky, 2011). This may be reasonable. But it is still a
far step from there to see soliloquy as the motor for the evolution of (shared!) conventional meaning
and conversational practices. Beyond blind cooperation, some see a role for egocentric motives,
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argumentation and non-cooperative linguistic behavior as well (e.g. Anscombre and Ducrot, 1983;
Merin, 1999; Rubinstein, 2000; de Jaegher, 2003; de Jaegher and van Rooij, 2014; Blume and Board,
2014). Be that as it may be, we believe that the purpose of use that explains different pragmatic
phenomena can be different. Each particular model should be evaluated by the particular assumptions
that it makes.

A rationalistic analysis of why a particular pragmatic behavior or phenomenon is rational or opti-
mal is often formulated in terms of the beliefs and preferences of language users. The predictions of
the model are then derived by looking at what would be rational or optimal choices given the assumed
beliefs and preferences. Still, probabilistic pragmatics is not necessarily committed to the idea that
these beliefs, preferences and choice mechanisms are actively entertained and executed each time a
pragmatic decision is made. Rather probabilistic pragmatics can be thought of as a computational-
level analysis in the sense of Marr (1982). This is why Figure 1 also contrasts the level of reasons
with the level of processes. Probabilistic pragmatics need not be totally unrelated to predictions about
processes. There could (and some say: should) be some effort to relate computational-level rational-
istic explanations why we see certain behavior to specifications of mechanisms how this behavior can
be implemented, especially in the light of issues of computational complexity (e.g. van Rooij et al.,
2014).

It is important to stress that the relation of probabilistic pragmatics to processing accounts is basi-
cally the same as that of other positions in theoretical pragmatics. These, too, need auxiliary assump-
tion to spell out how a given abstract account makes predictions about processing-related observations
such as reading or reaction times, or eye- or mouse movement (cf. Chemla and Singh, 2014). Nonethe-
less, different abstract theories will constrain the set of plausible processing theories in some way or
other. Probabilistic pragmatics, for example, is domain-general, holistic and yet uncommitted with
respect to the issue of modularity. Let us briefly elaborate.

Probabilistic pragmatics is domain-general in the sense that it is constrained by the same consider-
ations of plausibility as rationalistic explanations in other domains: when we want to make particular
assumptions in a particular rationalistic model, these are subject to domain-general criteria of plau-
sibility. If a purported model needs to assume, for proper fit to the data in question, that, say, an
agent responds rationally to only a subset of the speaker’s utterances, but not to others, then this
would clearly seem strange in the light of common-sense assumptions about rationality. At least in
this sense, probabilistic pragmatics is domain-general. In contrast, many structural, mechanistic ap-
proaches within theoretical pragmatics are not constrained by common-sense in this way, and make
good use of this freedom.

Being domain-general in this sense does not commit probabilistic pragmatics to being non-modular.
Despite appearances, it is perfectly consistent with this approach to maintain that there is a specialized
“pragmatics module” that carries out the computations in question. That the same general constraints
on theory formation apply in other domains, does not mean that the same abstract cognitive system
(or, even more ridiculously, the same brain area) must carry out these computations. Probabilistic
pragmatics, as we see it, is open to the idea that pragmatic reasoning is a piece of special-purpose
cognition, finely attuned to the specific affordances of this domain that may or may not be found in
other areas (to this extent) as well, such as the processing of many layers of contextual clues, the
execution of highly recursive planning strategies, or the representation of (higher-order) mental states.
In this respect, probabilistic pragmatics differs from the modular version of a traditional Gricean ap-
proach to conversational implicature, as sketched by Chemla and Singh (2014).

Similarly, probabilistic pragmatics differs in its processing-related predictions from the version of
a grammatical approach to implicature calculation given by Chemla and Singh (2014). A grammatical
approach to implicatures (Chierchia, Fox, and Spector, 2012) strongly suggests a serial processing
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architecture: aspects relating to the epistemic or doxastic state of the speaker are computed after the
basic implicatures of a sentence are computed. In contrast, probabilistic pragmatics is much happier
with a holistic theory of pragmatic processing. Contextual information about the likely epistemic state
of the speaker, or any other speaker-related parameter, can be taken into account immediately. Con-
textual and pragmatic considerations can affect phonological decoding, parsing and semantic analysis
early on. There is no commitment here to a serial architecture; on the contrary, the probabilistic ap-
proach is particularly happy to marry a deeply holistic, multi-source approach to linguistic processing.

Bayesian. From the idea that a pragmatic theory should be probabilistic, interactive and rationalis-
tic, it is only a small step to assuming that it is Bayesian as well. Under this picture, the listener’s
interpretation would be a form of abductive reasoning, asking which is the most likely (epistemic or
intentional) state that would have triggered the speaker (under a reasonable model of utterance pro-
duction) to say what he actually said (and not something else). We will see in Section 4 how this kind
of reasoning is captured by Bayes rule.

Computational. Probabilistic pragmatics is computational in the sense that it would like to offer
mathematical models: it is a formal approach within theoretical pragmatics. The reason for this are
clear: implications of hypotheses can be assessed and ideas and operations can be communicated
with greater fidelity. Moreover, probabilistic pragmatic models are often implementable, and in fact
implemented, in computer simulations. This is because, being interactive and taking noisy contextual
parameters into account, it can become quite tedious to calculate predictions and implications, espe-
cially for parameterized models. Probabilistic pragmatics does not want to resort to hand-waviness;
it would like to make precise predictions about empirical data (see below). In particular, it sets out
to tackle more and more of the complexity that a psycholinguistic picture of pragmatic phenomena
suggest. This is why computational models are handy and useful within this approach.

Data-oriented. Obviously, probabilistic pragmatics would like to explain empirical data. Otherwise
it should not aspire to play in the garden of linguistic theory. Like much other work in formal prag-
matics, part of the empirical data to be explained is based on introspective meaning intuitions and
generalizations over these (as accepted by the practice of the community). But, as other theoretical
work in pragmatics does too, the focus is increasingly on explaining empirical data from laboratory
experiments or, occasionally, corpora or other sources. The main difference that probabilistic prag-
matics brings along in this respect is that it can, by its very nature, go a step further: it often comes
ready-made to predict, not only particular categorical features of the data, but the full quantitative pat-
tern found in a data set. This will become clear when we look at some of the experimental approaches
outlined in Sections 4 and 5.

4 Reference games

Reference to objects, abstract or concrete, is basic to communication. Reference games are heavily
simplified laboratory tasks designed to investigate production and comprehension of referential ex-
pressions in a confined, controlled environment. Reference games with different kinds of stimuli,
different kinds of experimental measures, and slightly different empirical goals have been studied in
the recent literature (Stiller, Goodman, and Frank, 2011; Degen and Franke, 2012; Frank and Good-
man, 2012; Degen, Franke, and Jäger, 2013; Baumann, Clark, and Kaufmann, 2014; Carstensen, Kon,
and Regier, 2014; Franke and Degen, 2015; Qing and Franke, 2015).
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Figure 2: Example context for a reference game trial, after (Frank and Goodman, 2012).

Consider the example in Figure 2. There are three possible referents. From left to right: a green
square, a green circle and a blue circle. Speaker and hearer both know that these (and only these) are
the referents at stake. The speaker’s task is to identify a given referent. In many experimental set-ups,
the speaker’s choice is constrained to, say, a single property that is true of the referent (see Gatt et al.,
2013, for criticism). The listener’s task is to guess which referent the speaker had in mind for a given
description.

For example, if the speaker wants to refer to the green square and his options are signaling “green”
and “square,” what should he choose? A Grice-inspired rational approach would be to say that the
speaker should choose “square” because that is a more informative description than “green.” What
should the listener choose if he hears “green?” By the same Gricean logic, the listener should choose
the green circle, because a Gricean speaker who would have wanted to refer to the green square
would have said “square.” This is what fully rational agents would be expected to do, if they want to
cooperatively play the communication game, and this is the starting point of rational analysis.

But even before looking at any data, the rational analyst may wish to add assumptions about com-
putational limitations, the environment or other factors that might prevent agents from instantiating
perfectly optimal behavior (Anderson, 1990, 1991). In the present case, it may well be that speakers
have preferences for using shape properties rather than color properties or the other way around. It
may be that listeners’ choice of referents is influenced by contextual salience, not only by reasoning
about informativity of utterances. Also, agents could make mistakes in calculating what the optimal
choice is. A probabilistic pragmatic approach would integrate such factors. Here is a sketch.

A Gricean speaker, who adheres to the Maxim of Quantity, prefers more over less informative
utterances. Most often, it is implicitly assumed that informativity is measured with respect to literal
meaning, not pragmatically refined meaning. We do that here as well. To capture literal meaning in
a probabilistic setting, define a dummy literal interpreter by a conditional probability distribution that
maps each property (that is true of at least one referent) and each referent to a probability:

Pliteral(choose referent r | receive property p) =

{
1

# of referents with property p if p is true of r

0 otherwise.

If the speaker wants to refer to r and believes in literal interpretation, the above conditional probabili-
ties are the speaker’s expectations about the chance of referential success when choosing p. Suppose
that furthermore the speaker has a preference for properties (e.g., shape over color, or nouns over
adjectives). We capture this by adding a bonus or malus f (p) to the expected communicative success
of signaling p, so that we obtain an integrated measure of the speaker’s expected utilities:

EUspeaker(wish to refer to r,choose p ; parameter f ) = Pliteral(r | p)+ f (p) .

The optimal choice for a speaker who wants to refer to r is any property p that maximizes expected
utility. But if speakers make mistakes in calculating these expected utilities, they might sometimes
choose other properties too. This would be infrequent if large mistakes are infrequent. Also, we
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property

referent square green circle blue N

� .94 .06 0 0 144• 0 .44 .56 0 144• 0 0 .17 .83 144

(a) production

referent

property � • • N

/0 .3 .12 .58 240
green .36 .64 0 180
circle 0 .35 .65 180

(b) prior elicitation & comprehension

Table 1: A small data set from a reference game experiment. Each table shows the proportion of
choices. Columns are choice options, rows are choice situations (experimental trials).

would expect that if errors occur, it is more likely that a sub-optimal property p′ is picked than one
that is even worse than p′. In other words, we would expect choice probabilities to be a monotonic
function of expected utilities. Many probabilistic choice functions implement this (based on different
ideas about what the underlying noise or error source is). A convenient and well-motivated choice
is the soft-max function (e.g. Luce, 1959; Sutton and Barto, 1998; Goeree, Holt, and Palfrey, 2008),
which has a free parameter λ that captures the inverse error rate in calculating expected utilities. The
production probability of choosing p given r is:

Pprod(choose p | wish to refer to r ; parameters λ , f ) =
exp
(
λ ·EUspeaker(r, p; f )

)
∑p′ exp

(
λ ·EUspeaker(r, p′; f )

) .
A Gricean listener assumes that the speaker abides by the Maxim of Quantity. If the speaker

may make mistakes, listeners likely anticipate that. To infer which referent a speaker had in mind, a
rational listener would apply Bayes rule:

Pcomp(choose r | receive p ; parameters λ , f ) =
P(r) ·Pprod(p | r;λ , f )

∑r′ P(r′) ·Pprod(p | r′;λ , f )
.

Here, P(r) is the prior probability that the speaker wants to refer to referent r. Frank and Goodman
(2012) suggest to measure this empirically. Their prior elicitation condition asked subjects which ref-
erent they thought a speaker had in mind who gave a referential description in an unknown language.
Data from this prior elicitation condition was then fed into the model as an empirical estimate of a
priori salience of referents.

To illustrate how a probabilistic approach lends itself to modeling empirical data, let’s consider
a small data set (taken from Qing and Franke, 2015). The data comes from three experimental con-
ditions: (i) prior elicitation (N = 240), (ii) comprehension (N = 360) and (iii) production (N = 432).
Every subject, recruited via Amazon’s Mechanical Turk, saw only one condition, and only one trial
of that condition (a one-shot experiment). All conditions used a forced-choice paradigm. So, in the
comprehension condition, subjects were presented with the context in Figure 2 and had to select a ref-
erent for either “green” or “circle.” In the production condition, subjects saw the context in Figure 2
and had to select a property for a designated referent.

Data from these experiments is shown in Table 1. The data from the prior elicitation condition is
shown as the first row in the table on the right, together with the comprehension data. Inspection of the
data suggests that speakers did conform to the Gricean postulate of informativity, at least in tendency:
the majority of speakers selected property “square” to describe the green square and property “blue” to
describe the blue circle. But there also seems to be a tendency to prefer shape-properties: the number
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of subjects that chose “circle” to refer to the green circle is higher than the number of subjects that
chose “green” in this case, and the number of subjects who chose “square” to describe the green square
is higher than the number of subjects that chose “blue” to describe the blue circle. Next, data from
the prior elicitation condition suggests that the uniquely colored object may be most salient, followed
by the unique shape. The interpretation of descriptions “green” or “circle” is hard to assess with the
naked eye. It could well be a merge of prior salience and reasoning about the speaker’s production
probabilities, as the model suggests, but to assess this properly, we need a stringent model fit. In any
case, it seems that there are subtle quantitative patterns in the data that a probabilistic model would
like to catch.

One of the nice properties of probabilistic pragmatics, mentioned in Section 3, is that models often
deliver a directly applicable likelihood function for data observations from a suitable experiment. In
general terms, we get:

P(possible data point d |model,concrete parameter values) ,

directly from the theoretical model. For example, the production probabilities Pprod(p | r ; λ , f ) de-
fined above give us a parameterized likelihood function for each possible observation in the production
experiment. If, for example, λ = 3 and f (p) = 0 for all p, then we predict that a choice of “square” in
the production comprehension has a probability of ca. 0.82. That we observed 135 out of 144 subjects
choosing “square”, then has a likelihood of Binomial(135 ; n = 144, p = 0.82) ≈ 2.61e−5.2 If we
increase λ to 4, this increases to ca. 0.88. If we assume λ = 4 and that f (p) =−0.1 for color proper-
ties, the predicted probability of choice “square” is 0.92. This is just to demonstrate how probabilistic
pragmatics is able, in principle, to make precise predictions about expected choice frequencies.

Looking at only one condition is not enough, of course. If we take the whole data set into account,
we can ask whether there are plausible values for λ and specifications of f that make the model match
the observed choice frequencies in a satisfactory way. Since we have a likelihood function, we can use
it to find parameter values that make the observed data most likely (Myung, 2003). Assuming a fixed
f (p) = x for both color terms, we calculate that the best fitting parameters for our little toy data are
λ̂ ≈ 4.13 and x̂ ≈ −0.1 for the production data and λ̂ ≈ 3.46 and x̂ ≈ −0.23 for the comprehension
data.3 Under best-fitting parameters the model’s predictions are almost perfectly aligned with the
observed choice frequencies. This is visualized in Figure 3.

Actually, the presented parameter fit based on our small data set is not enough to warrant substan-
tial conclusions about the absolute quality of the presented model. The point here is mere illustration,
nothing more. But it should suffice to see that probabilistic pragmatic modeling does provide a handle
on subtle gradient aspects of empirical data. The real work, however, would begin basically where
we must now leave it. In concrete applications, we would like to learn about model parameters from
data-driven inferences. Moreover, we would like to compare probabilistic models that differ in theo-
retically relevant ways, based on their ability to predict the data. For example, Qing and Franke (2015)
show by statistical model comparison that variants of the approach sketched here do worse overal, if
the comprehension rule does not consider empirically measured salience. Franke and Degen (2015)
show by the same method that, if we take individual-level data into account, other production and
comprehension rules appear credible as well.

2Subjects could choose only properties that were true of the specified referent in the experiment, so this is a binary
choice. The function Binomial(k ; n, p) gives the probability that k out of n trials are hits if the probability of a hit on each
trial is p.

3We could, of course, look for a single parmeter pair that best fits both production and comprehension. Here, we simply
assume that the listener need not have faithful estimates of the production parameters. It is zooming in on issues like this,
that make for the daily (nightly?) work of the probabilistic pragmatics enthusiasts.
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Figure 3: Prediction-observation plot. The model’s predictions for the best-fitting parameters (see
main text) are plotted on the horizontal axis, the empirically observed frequencies on the vertical axis.
The perfect model would show all data points on the gray unit line.

5 Gradience in pragmatic data

Experimental approaches to pragmatic phenomena are increasingly popular. Frequently, experimental
data show gradient patterns that are unexpected under established models from theoretical pragmatics,
which are often built from set theory and variations on standard logics. Probabilistic pragmatics does
not enter the ring to knock out the establish contesters. Rather, it is one way of reconciling black-and-
white theoretical ideas with empirically attested shades of gray.

Take the case of scalar implicatures. Under appropriate contextual conditions, an utterance of the
logically weaker sentence in (3-a) suggests (3-b) because of the close association of logically stronger
all with its “scale mate” some.

(3) a. Kiki borrowed some of Bubu’s records.
b. Kiki borrowed some but not all of Bubu’s records.

There are many accounts of scalar implicature, some of which disagree fundamentally (e.g. Geurts,
2010; Sauerland, 2012; Chemla and Singh, 2014, for overview). Nonetheless, we suspect that most
would agree that whether an enriched implicature meaning is assessed in a given context depends on
many factors (relevance, availability of alternatives, the question under discussion, . . . ). Still, most
prominent formal accounts —all highly successful given the standards of theoretical linguistics—
treat scalar implicature as if it was a binary phenomenon. Exceptions exist, but are rare (e.g. Russell,
2012; Goodman and Stuhlmüller, 2013). Yet there are empirical observations that are hard to reconcile
with a categorical formal picture. We will look at some presently. The solution could be to say that
formalization can only carry this far; or to deny that there is anything of theoretical interest to the
attested gradience; or to start building models (one step at a time) around the existing theoretical ideas
that gradually work towards integrating gradient contextual clues into formal accounts that are capable
of predicting how different factors affect the strength of a scalar inference in context. Unsurprisingly,
we would like to take the latter option.

There are many ways in which scalar implicatures appear fuzzy and gooey. Firstly, the readiness
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Figure 4: Mean Likert-scale ratings of sentences of the form “Some of the As are Bs” for different
target set sizes in different experiments (see main text). The gray line gives the expected applicability
under standard linguistic theory (for |A |= 14).

with which interpreters draw the scalar inference from some to some but not all depends on many
contextual cues and additional factors and may not be as high as formal accounts may implicitly sug-
gest (e.g. Degen and Tanenhaus, 2014; Degen, to appear). Secondly, beyond the some/all case, there is
substantial variability in the strength of scalar inferences, depending on the lexical items at stake (e.g.
Doran et al., 2009; van Tiel et al., 2014). Pairs like some/all or sometimes/always invite scalar im-
plicature answers in suitable experimental settings much more strongly than pairs like big/enormous
or attractive/stunning. Finally, when we look more closely at the preferred pragmatic interpretation
of some in terms of actual quantities described, we see systematic patterns that seem to call out for a
quantitative account. Let’s consider this last point in slightly more detail.

Suppose there are 10 circles. I tell you that some of the circles are white. How many of the 10
circles do you think are white? Likely, you would guess 4 or 5. And you would probably also consider
2 less likely than 6. But it would be unlikely that this is simply because you bring prior expectations
to bear on the situation from general world knowledge. After all, what should a sane person expect a
priori about the likely coloring of 10 circles mentioned in a linguistics paper? It seems more plausible
that what we consider likely quantities is mediated by our linguistic interpretation of the sentence
“Some of the circles are white.”

Relevant data on sentences of the form “Some of the As are Bs” have been collected by presenting
subjects with pictures that varied the cardinality |A∩B | (the target set size) and asking them to rate
how well the sentence described the picture on a Likert scale (Degen and Tanenhaus, 2011; van Tiel
and Geurts, 2013; Degen and Tanenhaus, 2014; van Tiel, 2014). Mean ratings for different target set
sizes from two of these experiments are shown in Figure 4.4 The plot also shows what a simple
minded application of standard theoretical approaches would give us: semantic meaning of some
would exclude the case where no A is B; a scalar inference would exclude the case where all As are
Bs; and we would otherwise expect the description to be just fine. It is hard to imagine that anybody
working in theoretical pragmatics would commit to the empirical predictions sketched by the gray line
in Figure 4. Some element of noise surely must perturb the picture. But what, how and why exactly?
To answer these questions in a stringent and empirically assessable way, a quantitative approach seems
necessary.

One such approach hinges on prototypes and typicality. This idea has been shaped into a precise
quantitative model by van Tiel (2014). In simplified terms, the model aims to predict mean ratings as

4The plot is taken from Franke (2014b). See there and the original papers for details about the experiments.
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a function of the distance between target set size |A∩B | and the prototypical interpretation of “Some
of the As are Bs.” The prototypical interpretation is taken to be the target set size with the highest
mean rating. With some further assumptions in place, van Tiel’s model matches his observed data
very well. This is not the place to discuss strengths and weaknesses of van Tiel’s general approach
(see Cummins, 2014, for discussion). We mention this work, because it provides a nice contrasting
example of a successful quantitative approach that does not share some of the fundamental properties
of probabilistic pragmatics as characterized in Section 3. While it is computational and data-oriented,
it is not probabilistic, interactive and rationalistic. In particular, it does not explain the data as the
result of goal-oriented language use.

As an alternative to a typicality-based explanation, Franke (2014b) gives an extension of the
basic probabilistic model of Section 4. The extension tries to explain the relevant data (e.g., Fig-
ure 4) by assuming that acceptability ratings reflect the production probability Pprod(use quantifier q |
target set size = n) with which a speaker would like to use quantifier q = some to describe a cardinal-
ity n. For this to work, two theoretically interesting changes have to be made to the simple baseline
model from Section 4. Firstly, for referential language use, communicative success is likely to be
binary: either the right referent is inferred (success) or not (failure). But when communicating quan-
tities, it may be better to guess 5 when the real quantity is 4 than to guess 8. How bad a certain
difference between interpretation and actual quantity is a free parameter. In other words, we include a
parameter for the extent of allowable pragmatic slack. Secondly, the model assumes that there could
be different levels of salience of different alternative expressions. The models includes alternatives
none, all, many, most (with some dummy semantic meaning) and also numeral expressions one, two,
three but treats the salience of each of these as a free parameter. It is estimated from the data. So,
instead of assuming that the notion of alternativeness is categorical and fixed for good by grammar, we
have a gradient competition model between differently salient alternatives. With these assumptions
in place, the probabilistic model explains the observed ratings very well and also yields empirical
estimates of gradient alternativeness (see Franke, 2014b, for details). Whether the typicality-based
model of van Tiel, the probabilistic model sketched here, or yet some other alternative comes out first
in stringent model comparison, is a matter open for future investigation.

Another way in which the interpretation of some shows interesting gradient behavior is in its
interaction with prior world knowledge. If instead of talking about the colors of circles, we hear (4),
then it does seem to influence our estimate of the quantity of flunkers whether the students in question
(normally) perform very well or whether that particular test was known to be hard.

(4) Some of the students failed the test.

The probabilistic model sketched in Section 4 would have little trouble integrating prior expectations
and merging them with quantity reasoning. Most obviously, the comprehension probabilities Pcomp
would simply need to factor prior expectations in the application of Bayes rule, much like the model
of Section 4 did with the estimated salience of referents.

But in certain cases, the interaction between quantity reasoning and world knowledge can be
puzzling. Consider the case below, taken from Geurts (2010).

(5) Cleo threw all her marbles in the swimming pool. Some of them sank to the bottom.

General world knowledge would have us expect that all of the marbles sank. But an utterance of (5)
seems to suggest rather pointedly that not all of the marbles sank. This is not predicted from the
simple and obvious extension of the probabilistic model mentioned in the previous paragraph. What’s
going on?
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There are many solutions to this problem in related frameworks (e.g. Franke, 2009; Rothschild,
2013; Franke, 2014a). Let’s focus here on a recent proposal that nicely ties in with other very promis-
ing work. Degen, Tessler, and Goodman (2015) present a simple extension of the basic model of
Section 4 in which the listener does not only infer the likely world state (e.g., the number of sunken
marbles or the number of flunkers). The listener also tries to infers what the relevant prior expectations
should be (according to the speaker), in particular whether anything abnormal or unexpected is going
on. This is a joint inference: an inference about several (possibly related) parameters of interest. In
the case of (5), the listener would be able to infer that most likely (according to the speaker) not all of
the marbles sank and there is something fishy about the world (maybe the pool is filled with fish oil or
the marbles are hollow). Degen, Tessler, and Goodman show that this model makes astute predictions
about empirically observed listeners’ interpretations of sentences like (5) for many items that differ
with respect to the associated prior expectations.

Modeling listeners’ joint inferences about several parameters at once seems very promising and
has already proven its worth in other applications. Consider the general idea. All of these are, or
can be, highly interdependent: conclusions about (pragmatic) inferences licensed by an utterance,
the contextual resolution of semantic variables (pronouns, deixis, temporal reference, . . . ), inferences
about the question under discussion that the speaker meant to address, the level of pragmatic slack
assumed feasible by the speaker etc. The idea of a joint inference is that listeners would, on occasion
and perhaps frequently, infer many or all of these in one swoop. Probabilistic pragmatics has little
trouble modeling such holistic inferences. Lassiter and Goodman (2014) model the interpretation
of vague gradable adjectives as a joint inference about the contextually relevant threshold of use for
a word like tall and the most likely interpretation (say, someone’s body height). A joint inference
that extends to uncertainty about the lexical meanings that a speaker entertains has been applied to
otherwise perplexing manner implicatures (Bergen, Levy, and Goodman, 2012, 2014) and alleged
embedded implicature readings (Potts et al., 2015). Non-literal interpretations can be captured by
joint inference models that allow for uncertainty about the question under discussion (Kao, Bergen,
and Goodman, 2014; Kao et al., 2014). In sum, there seems to be a lot of potential in modeling holistic
inferences about multiple interdependent unknowns in a probabilistic modeling approach.

6 Indirect speech acts

The previous two case studies dealt with empirical domains where the data to be explained are of a
gradient, continuous nature. This section is more in line with traditional pragmatics in the sense that
it concerns introspective judgments about pragmatic interpretations, i.e., data that are prima facie cat-
egorical. We will argue that assumption about quantitative relations between subjective probabilities
are a helpful analytical tool in such a setting as well.

The problem Indirect speech acts seem to pose a challenge to a rationalistic model of pragmatics.
They seem to constitute blatant violations of Gricean Maxims (especially Quantity and Manner, but
sometimes also Quality and Relation). If the Gricean Maxims express principles of rational com-
munication, indirect speech acts appear to be examples of irrational behavior. Following the overall
tradition of Brown and Levinson (1987), we will make a case here, however, that indirect speech can
in fact be conceived as rational behavior if the assumptions and goals of the interlocutors are properly
taken into account, and sketch a mathematical implementation of this idea which is heavily influenced
by game theory (especially by the Iterated Best Response model of game theoretic pragmatics; (cf.
Franke, 2011; Jäger, 2012; Franke and Jäger, 2014)).
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In the chapter Games People Play of his popular book The Stuff of Thought: Language as a
Window into Human Nature (Pinker, 2008), as well as in a series of journal publications (Pinker,
2007; Pinker, Nowak, and Lee, 2008; Lee and Pinker, 2010), Steven Pinker discusses a variety of
examples and offers an informal solution to the apparent paradox that people choose complicated and
error-prone ways of communicating things that could be expressed in a perfectly clear and perspicuous
way. According to Pinker, three factors are at play here: successful indirect speech acts (1) maintain
plausible deniability, (2) establish shared knowledge but not common knowledge of the intended
content, and (3) avoid mixing of relationship types.

Plausible deniability is perhaps best illustrated with Pinker’s example of a veiled bribe:

“The veiled bribe is another recognizable plot device, as when the kidnapper in Fargo
shows a police officer his drivers’s license in a wallet with a fifty-dollar bill protruding
from it and suggests, ‘So maybe the best thing would be to take care of that here in
Brainerd.”’ (Pinker, 2008, p. 374)

If the police officer is corrupt, he will let the speaker off the hook, but if he is honest, the speaker still
avoids being charged for bribing an officer.

Stalnaker (2005) gives another example which fits into this context (even though he does not offer
a specific analysis):

“In May, 2003, the US Treasury Secretary, John Snow, in response to a question, made
some remarks that caused the dollar to drop precipitously in value. The Wall Street Jour-
nal sharply criticized him for ‘playing with fire,’ and characterized his remarks as ‘dump-
ing on his own currency,’ ‘bashing the dollar,’ and ‘talking the dollar down.’ What he in
fact said was this: ‘When the dollar is at a lower level it helps exports, and I think exports
are getting stronger as a result.’ This was an uncontroversial factual claim that everyone,
whatever his or her views about what US government currency policy is or should be,
would agree with. Why did it have such an impact?” (Stalnaker, 2005, p. 82)

If we suppose that John Snow knew what he was doing, he might have chosen to avoid a more direct
statement because his indirect statement left the option open to deny such intentions later on (what,
according to Stalnaker, he in fact did).

Pinker illustrates the second motivation—creating shared knowledge but avoiding to establish
common/mutual knowledge—with a sexual proposition that is couched in indirect terms.

“Say a woman has just declined a man’s invitation to see his etchings. She knows—or at
least is highly confident—that she has turned down an invitation for sex. And he knows
that she has turned down the invitation. But does he know that she knows that he knows?
And does she know that he knows that she knows? A small uncertainty within one’s own
mind can translate into a much bigger uncertainty when someone else is trying to read
it.” (Pinker, 2008, p. 418)

Regarding the third motivation—avoid the mixing of relationship types—, Pinker offers the fol-
lowing example:

“How about this: You want to go to the hottest restaurant in town. You have no reserva-
tion. Why not offer fifty dollars to the maitre d’ if he will seat you immediately? This
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was the assignment given to the writer Bruce Feiler by Gourmet magazine in 2000.5 The
results are eye-opening.

The first result is predictable to most people who imagine themselves in Feiler’s shoes:
the assignment is terrifying. Though no one, to my knowledge has ever been arrested for
bribing a maitre d’, Feiler felt like the kidnapper in Fargo [. . . ]

The second result is that when Feiler did screw up the courage to bribe a maitre d’, he
thought up an indirect speech act on the spot. He showed up at Balthazar, a popular
restaurant in Manhattan, and with sweaty skin and a racing heart he looked the maitre
d’ in the eye, handed him a folded twenty-dollar bill, and mumbled, ‘I hope you can fit
us in.’ Two minutes later they were seated, to the astonishment of his girlfriend. On
subsequent assignments he implicated the bribes with similar indirectness:

I was wondering if you might have a cancellation.

Is there any way you could speed up my wait?

We were wondering if you had a table for two.

This is a really important night for me.” (Pinker, 2008, p. 399)

According to Pinker, a direct speech act such as “I will pay you 20 dollar if you let me jump the line.”
would not have worked because a maitre d’ is in a position of dominance/authority. Doing a business
transaction such as providing a free table without wait in exchange for 20 dollar is incompatible with a
relation of authority; it is typical of a relationship of reciprocity/exchange/fairness. These relationship
types are incompatible, so by openly accepting the bribe, the maitre d’ would have forgone his position
of authority. The indirect speech act offered him a way to take the money while saving face; he could
pretend to maintain the authority relationship type while acting according to the reciprocity type.

The three factors Pinker mentions undoubtedly do play a role in the pragmatics of indirect speech
acts, but they perhaps do not cover the whole story. Consider a situation where a mobster wants to
coerce a restaurant owner into paying protection money:

(6) Your little daughter is very sweet. She goes to the school in Willow Road, I believe.

This is clearly a veiled threat. If there are witnesses and the mobster is tried for extortion in a court
of law, there will be no plausible deniability though. Every judge or juror will recognize the threat
as such. Also, there is no ambiguity about the type of social relationship speaker and hearer are
in here. It might be argued that (6), as opposed to a direct speech act such as (7), does not create
common knowledge of a threat. After all, (6) could, in principle, be an innocent remark, while no
such misunderstanding is possible with (7).

(7) If you do not pay your protection money, we will kidnap your daughter.

So while (6) does not establish common knowledge, it does establish common knowledge that it is
very likely that the speaker wants to convey a threat. But why should this subtle difference motivate
the speaker to prefer (6) over (7)?

In general, there are actually two problems to be addressed: (a) why do indirect speech acts work
in the first place, and (b) when and why is it rational to prefer indirect speech acts over direct ones?

5B. Feiler, “Pocketful of Dough,”, Gourmet, October 2000. Cited after Pinker (2008), 457.
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Why do indirect speech acts work? Let us return to Stalnaker’s example, repeated here as (8-a):

(8) a. When the dollar is at a lower level it helps exports, and I think exports are getting stronger
as a result.

b. The US Treasure will take measures to lower the dollar’s exchange rate.

How does (8-a) convey the information that the speaker intends to take action leading to a weaker
dollar, i.e., the literal content of (8-b)? Here is a sketch of a rationalistic explanation couched in
decision and game theory.

Suppose the speaker S is in one of two states — or, in the language of game theory, has one of two
possible types:

• t1: S will take actions to reduce the dollar’s value.

• t2: S will take no actions to reduce the dollar’s value.

The listener L has some prior assumptions about the relative likelihood of these two types, which can
be represented as a prior probability distribution P: 0 < P(t1) < 1 is the listener’s level of credence
that S is of type t1; P(t2) = 1−P(t1).

How likely is it that S would utter (8-a) in t1, and in t2? For either type, the statement expresses
an economic truism, but for t1 it would be a useful argument to justify his intentions. It is conceivable
that t2 utters this sentence, just to say something meaningless during a public hearing, but as there
myriads of meaningless statements to choose from, this likelihood is small. Let us use the following
notation for the production probability that the speaker emits (8-a) (where s, the signal, symbolizes
(8-a)) when she is of either type:

• P(s|t1): Likelihood that S utters s if he is in t1.

• P(s|t2): Likelihood that S utters s if he is in t2.

Given the considerations above, it seems fair to assume that P(s|t1)> P(s|t2).
As in the previous sections, we assume that the listener L will use Bayes’ rule to compute the

posterior probability distribution over S’s types, given the signal observed:

P(t|s) =
P(s|t)P(t)

∑t ′ P(s|t ′)P(t ′)
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Since P(s|t1)> P(s|t2), it follows that P(t1|s)> P(t1), i.e., the posterior probability of t1 is higher than
its prior probability.6 Note that P(t1|s) will still be smaller than 1 as long as P(s|t2)> 0.

If we assume that S would never lie, statement (8-b) does have 0 likelihood in t2, so upon observing
it, the posterior probability of t1 would be 1. So, choosing the indirect formulation (8-a) serves to make
the content of (8-b) more likely for L without making it certain. As the actions of currency traders
heavily depend on how they assess the probability of future economic events, the reactions to John
Snow’s remark in 2003 seem entirely plausible.

Why be indirect? The previous considerations illustrate the reasoning of a rational listener. Let us
now consider a rational speaker S who wants to use her signal to influence some decision of some
equally rational listener L. Here is another example of indirect speech. Suppose S visits a bazaar and
sees a beautiful carpet that she desperately wants to buy. The price has to be negotiated. She could
initiate her interaction with the carpet dealer with one of the three statements in (9).

(9) a. This rug has somewhat faded colors, but the pattern is kind of nice. (= s1)
b. This is a beautiful carpet. (= s2)
c. I have decided to buy this carpet. (= s3)

Before we can analyze the potential impact of these statements, let us set up a model of the (possible)
subsequent business interaction. For simplicity’s sake, we assume that the potential seller, L, will offer
a certain price once, or say nothing. The potential buyer, S, has the choice to accept or reject the offer
if one is made.

To simplify things further, we take it that L will offer either a high price (35$) or a low price (15$).
The carpet has an inherent value vs for S and vr for L. If both interlocutors are rational, a transaction
can only take place if vr ≤ vs. If the price paid is strictly between vr and vs, both parties will benefit
from the transaction.

We consider three possible types of S (where 1$ is the unit of values):

• ts
1 is not really interested in owning the carpet: vs = 0.

• ts
2 has a moderate interest in the carpet: vs = 20.

6Here is the derivation. Please note that P(t1|s)+P(t2|s) = 1. If P(s|t2) = 0, P(s|t1) = 1. As we assumed above that
P(t1)< 1, in this case trivially P(t1|s)> P(t1). Now let us assume P(s|t2)> 0.

P(s|t1) > P(s|t2)
P(s|t1)
P(s|t2)

> 1

P(s|t1)P(t1)
P(s|t2)P(t2)

>
P(t1)
P(t2)

P(s|t1)P(t1)/P(s)

P(s|t2)P(t2)/P(s)
>

P(t1)
P(t2)

P(t1|s)
P(t2|s)

>
P(t1)
P(t2)

P(t1|s)
1−P(t1|s)

>
P(t1)

1−P(t1)
P(t1|s)−P(t1)P(t1|s) > P(t1)−P(t1)P(t1|s)

P(t1|s) > P(t1)
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• ts
3 has a strong interest in the carpet: vs = 40.

Then there are two possible types of L:

• t l
1 is moderately interested in selling the carpet: vr = 30.

• t l
2 is strongly interested in selling the carpet: vr = 10.

L assumes a priori that S is not terribly interested in the carpet: P(ts
1) = 0.9,P(ts

2) = 0.09 and P(tS
3 ) =

0.01, while S prior assumption is that L is probably only moderately interested in selling: P(t l
1) =

0.9 and P(t l
2) = 0.1. Finally, we assume that both interlocutors would prefer not to embark upon a

conversation that does not result in a sale. For concreteness’ sake, we say that both value the time lost
this way with 1$.

The structure of this strategic situation can be represented as the extensive game which is depicted
in Figure 5.

L

S

(vs−15,−vr +15)

ACCEPT

(−1,−1)

REJECT

low price

S

(vs−35,−vr +35)

ACCEPT

(−1,−1)

REJECT

high
price

(0,0)

no offer

Figure 5: The carpet sale game

The game is played top-down starting at the root. Branching node labels indicate which interlocutor’s
turn it is. The game is over if a leaf is reached; the numbers at the leaves indicate S’s and L’s payoff.

If the values of vs and vr are known, this kind of game can be solved via backward induction. In our
setting, these values are not known to the other conversation partner, but they can estimate them using
their prior probabilities. The expected value of vs is E(vs) = P(ts

1) · 0+P(ts
2) · 20+P(ts

3) · 40 = 2.2.
The expected value of vr is E(vr) = P(t l

1) · 30+P(t l
2) · 10 = 28. Filling in these values leads to the

game in Figure 6.
In both S-nodes, REJECT is the rational choice. So L has to expect that both low price and high

price leads to a payoff of −1, which makes no offer the rational choice. (The rational choices are
indicated by bold lines in Figure 6.) This is not surprising, as E(vr)> E(vs), i.e., there is no possible
price that would lead to a positive expected payoff for both interlocutors.

If S is type ts
1, she is satisfied with this outcome. If she is in another type, she has an interest though

in changing L’s prior assumptions about her type, as this possibly induces him to make an offer that
might be profitable for her. Pre-play communication offers her such an option. If she sends a signal
to L prior to his first move, she has the chance to manipulate his beliefs about her type, and thus his
choice of action.

As before, we assume that L holds a belief about S’s production probabilities that are conditional
on S’s type. An example is displayed in Table 2. The values are somewhat arbitrarily chosen, with
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L

S

(−13.8,−13)

ACCEPT

(−1,−1)

REJECT

low price

S

(−33.8,7)

ACCEPT

(−1,−1)

REJECT

high
price

(0,0)

no offer

Figure 6: The carpet sale game: expected utilities

the intention to be both plausible and to yield intuitively plausible results in connection with the
carpet sale game. The parameter x is to be interpreted as a very small constant, since there is a large

s1 s2 s3

ts
1 9x x 0

ts
2 4x 30x 20x

ts
3 x 150x 500x

Table 2: Production probabilities (conditional on type)

number of other possible utterances, so the probabilities of s1, s2, and s3, in absolute terms, are very
small. The numbers chosen are compatible with the intuition that a disinterested S will likely not
give any indication of interest at all, and if she does, she will only show mild interest. A moderately
interested S is more likely to express her interest, and she will likely choose somewhat stronger terms.
A strongly interested S is most likely to say so, probably in clear and direct terms. — Note that we
are considering a non-strategic speaker at this point, i.e., a person who expresses her views without
considering possible social consequences. Likewise, we are considering a listener L who is rational
but socially inapt; he is capable of applying Bayes’ rule, but it does not cross his mind that S might
try to manipulate him.

With L’s prior beliefs and beliefs about the speaker’s production behavior, L’s posterior distribu-
tion over S’s types upon observing a signal is as given in Table 3 (from Bayes’ rule; rounded to two
decimal digits). The strategic situation L is facing upon receiving a signal is shown in Figure 7. Upon

ts
1 ts

2 ts
3

s1 0.96 0.04 0.00
s2 0.18 0.53 0.29
s3 0.00 0.26 0.74

Table 3: L’s posterior distribution

observing s1, L will conclude that S would reject either offer. This leaves no offer as his best choice. If
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L

S1

s1 : (−14.10, −vr +15)
s2 : (7.35, −vr +15)
s3 : (19.71, −vr +15)

ACCEPT

(−1,−1)

REJECT

low price

S2

s1 : (−34.10, −vr +35)
s2 : (−12.65, −vr +35)
s3 : (−0.29, −vr +35)

ACCEPT

(−1,−1)

REJECT

high
price

(0,0)

no offer

Figure 7: The carpet sale game: L’s posterior expected utilities

he observes s2, he expects low price to be accepted and high price to be rejected. Observing s3 leads
him to expect that both offers would be accepted.

If L is of type t l
1, only the high price would secure him a profit. For t l

2, both the high and the low
price would be profitable. So L’s best responses to the different signals are as in Figure 8.

S

L

no offer

t l
1

no offer

t l
2

s1

L

no offer

t l
1

low price

t l
2

s2

L

high price

t l
1

high price

t l
2

s3

Figure 8: Best response strategy of a rational but naive L

When S plans her utterance (if she thinks strategically, that is), she can go through these calcula-
tions and determine her expected utilities depending on her type and the different possible messages.
They are given in Figure 9.

S

0

s1

−1.5

s2

−35

s3

ts
1

S

0

s1

0.5

s2

−15

s3

ts
2

S

0

s1

2.5

s2

5

s3

ts
3

Figure 9: The carpet sale game: S expected utilities, given a rational but naive L

S’s utility-maximizing choices (indicated by bold lines) are sending s1 if she is not really inter-
ested, s2 if she is moderately interested, and s3 if she is strongly interested to buy the carpet. So the
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rational thing to do for S is to send a direct signal if her stakes are high and a moderately indirect
signal if her stakes are low.

We might also consider a pragmatically sophisticated L who is able to anticipate S’s calculations.
For such an L, message si acquires the pragmatic meaning “I am of type ts

i .” His best response to this
would still be as in Figure 8 though. The strategy pair: S sends message si iff she is of type ts

i and L
responds as in Figure 8 are in equilibrium, i.e., they are rational responses to each other.

There is another twist to this story. Suppose S is more optimistic that L strongly wants to sell
the carpet. Let us say that S’s prior probabilities are P(t l

1) = P(t l
2) = 0.5. We call this the eagerness

assumption. Then S’s expected utilities shift to those in Figure 10. In this scenario, even a strongly
interested buyer will only indicate her interest by using the indirect message s2.

S

0

s1

−7.5

s2

−35

s3

ts
1

S

0

s1

2.5

s2

−15

s3

ts
2

S

0

s1

12.5

s2

5

s3

ts
3

Figure 10: The carpet sale game: S expected utilities, given a rational but naive L, under the eagerness
assumption

We refrain from a formal analysis of a setting where L is unsure about S’s prior assumptions
about him, as this would go beyond the scope of this article. However, the lesson to be drawn from
these considerations can be formulated as such: A rational and sophisticated speaker in a negotiation
situation will use an indirect message if her stakes are low or if she believes that her opponent’s stakes
are high.

The bigger picture So far, we tacitly assumed that the interlocutor’s prior assumptions about each
other were common knowledge. If this is not the case, indirect signals carry secondary information
about these prior assumptions. Being very indirect may, in the appropriate setting, indicate exactly
that: Your stakes in this are higher than mine! Conversely, a direct signal then carries the secondary
message: My stakes are higher than yours!

If these prior assumptions are not common knowledge, this kind of secondary information will in-
form further levels of recursive strategic reasoning. This provides further motivation for using indirect
speech acts. When the mobster in our example (6) above is indirect, he perhaps tries to communicate:
“Your stakes are high, as I will hurt your daughter if you don’t pay. My stakes, on the other hand, are
low since I bribed the police and can pretty much do what I want in this neighborhood.” Likewise, an
indirect sexual innuendo is apt to carry the secondary message: “Your stakes are high since I am very,
very attractive. My stakes are low because, well, I am attractive and there are many other potential
partners if you should reject me.” Conversely, a direct sexual come-on communicates: “Your stakes
are low since I consider myself to be rather unattractive. My stakes are high because I haven’t had sex
in quite some time and if you reject me, it will stay that way.” Seen this way, it is unsurprising that
the indirect approach is likely to be more effective.7

7Communicating that the speaker’s stakes are low may backfire in certain situations. Compare the two attempts to a
marriage proposals from the TV series Dexter (S3E4, October 19, 2008, Showtime):
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In this example, the interlocutors had an immediate interest to communicate implicatures about
their degree of interest in buying or selling the carpet, since both have a chance to save/earn more
money by manipulating the other person’s assumptions about each other. A similar case can be made
to some other instances of indirect speech. Consider Pinker’s example about the kidnapper trying to
bribe a police officer. Here it makes sense for the speaker to convey the impression that his stakes are
low —that he just wants to save the paperwork of an official ticket—, lest the police officers suspects
the speaker has graver reasons to avoid contact with the police. In other cases, the interlocutors’
higher-order expectations about each other do not have an obvious impact on what a rational course
of action will be. For the maitre d’ in the other example of an attempted bribe discussed by Pinker,
it arguably shouldn’t make a difference how important it is for the patron to get a table quickly.
Even trickier are instances of indirect speech that are chosen for politeness reasons. Why would it
be rational to downplay one’s interest in another glass of wine by saying “I wouldn’t mind another
glass of wine”? The more direct “Pour me another glass of wine!” should be more apt if the intention
behind the speech act is to get another glass of wine.

Intuitively, there are at least two conceivable motivations at play here: The speaker does not want
to come across as over-eager to get more wine, and she does not want to convey the impression that
she is in a position to give the listener an order. Both considerations are irrelevant for the interaction
at hand, but they affect the speaker’s reputation, i.e., the assumptions that other people, both the
addressee and inadvertent listeners, form about the speaker. These assumptions may in turn affect
the behavior of those listeners in future interactions with the speaker, and planning for those future
interactions is, of course, a rational thing to do.

There is a sizable literature on rationality in repeated games (see for instance Axelrod, 1984;
Mailath and Samuelson, 2006 as two representative book-length treatments). This format has drawn
a lot of attention because in many repeated games, cooperative and even altruistic behavior, which
would be irrational in one-shot interactions, can be shown to be rational if the expected outcomes of
future interactions are properly taken into account. As a general lesson, this line of investigation has
shown that rationality in one-time interactions and rationality in repeated interactions may diverge
considerably. We take it that the reputation-building and face-saving effects that underlie many in-
direct speech acts and instances of polite behavior can be integrated into the overall perspective of
rational communication if a theory of repeated interactions is taken into account. An attempt at a
formal implementation would go beyond the scope of this article though.

• First attempt:
Dexter: My insurance would cover you. Rita, if we got married, we’d have joint assets. You wouldn’t
have to worry. Let’s not forget about marital deductions. With Astor and Cody as dependants...
Rita vomits

• Second attempt:
Dexter: My life has always felt like an unanswered question... a string of days and nights waiting for
something to happen, but I didn’t know what. Rita, we’re connected. Wherever I am, I feel you, and
the kids... with me. You’re what makes me real. I want us to always go out for banana splits and
replant the lemon tree that keeps dying, and I never ever want to miss a pizza night. And that’s how
I know I want to marry you. If something as simple as pizza night is the highlight of my week. But
not without the kids. Cody, Astor, you guys are my family and I’m gonna hang onto you for dear life.
Please, say yes?
Rita (crying overjoyed): Yes! Yes, we will marry you!
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7 Conclusion

Natural language pragmatics can and should be studied at several levels of description simultane-
ously. Probabilistic pragmatics focuses on the level of reasons, to provide justifications for maxims,
principles and constraints, while abstracting over specific cognitive processes. Operating at the level
or reasons, probabilistic pragmatics is a conglomerate of converging approaches from different tradi-
tions (such as Bayesian psycholinguistics and game theoretic and decision theoretic pragmatics) that
revolve around functional explanations of pragmatic phenomena as rational or optimally adapted for a
conversational purpose. We have tried to characterize probabilistic pragmatics here, hoping that these
considerations may inspire conceptual reflection about pragmatic theory in general. Our main points
were these.

• Formal pragmatics can benefit from applying probabilistic techniques. There are two aspect to
this. First and foremost, probability calculus is the basis of statistics. As such it is essential for
the interpretation of quantitative empirical data such as experimental results and corpus studies.
However, probability theory is relevant for pragmatics also at a deeper conceptual level. Under
the subjective or Bayesian interpretation, probabilities represent degrees of epistemic certainty.
Therefore they are well-suited to model epistemic states. As illustrated in our case studies, this
affords fine-grained analyses of pragmatic phenomena that are not easily replicable in more
traditional frameworks such as epistemic logics.

• At the level of reasons, pragmatic inference is interactive, i.e., it involves reasoning about
the beliefs and intentions of the other interlocutor. This makes game theory, as an established
mathematical framework for strategic decision making, a useful tool for formal pragmatics.

• Pragmatic behavior can be conceived as a form of rational interaction. This means that behav-
ioral patterns can be explained by the assumption that there is a quantity —call it utility— that
the interlocutors strive to maximize. Utilities can be justified by general considerations.

It is worth pointing out that by taking a rationalistic stance, formal pragmatics follows a similar
trajectory as other fields of (psycho-)linguistics such as the study of human sentence processing
(cf. Crocker, 2005; Levy, Reali, and Griffiths, 2009).

• To state a truism, theories of formal pragmatics are to be formulated in a mathematically pre-
cise way. Less trivially, a formal specification should make it amenable to a computational
implementation, both when comparing model predictions to empirical data and when exploring
consequences of a theory via computer simulations.

• Last but not least, probabilistic pragmatics is data-oriented, i.e., it confronts purely conceptual
theorizing with observations that go beyond the traditional introspective method.
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