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1 Introduction

Classical Optimality Theory in the sense of Prineg &8molensky (2004/1993) implements
the intuition thagrammars cannot count The grammaticality of a candidate is fully
determined by the ranking of the relevant constraints. KMoaleonstraint weights play no
role. Furthermore, if a competition between two cdatés is decided by a constrainit

only matters which candidate violatesnore often. The numerical proportions of the amount
of constraint violations play no role for grammatiisalThis feature of OT is usually called
strict constraint domination.

Several researchers have considered probabilistic gieaticms of classical OT in
recent years (see for instance Anttila 1997, Boersma 16B8sdn and Goldwater 2003). It is
common to these approaches that the evaluation compdoesihot just assign categorical
grammaticality values to the candidates (“grammaticafungrammatical”), but rather
probabilities which may take real values between 0 aitddbes not follow necessarily
though that constraint violations can add up in a probabilistsion of OT. Different
versions of Stochastic OT in fact differ as to whethely predict cumulativity effects in
constraint evaluation.

In this paper we show that cumulativity is necessagctmunt for probabilistic
variation found in actual language use, and we comparetheagy of the predictions that
different versions of Stochastic OT make. We distisigiwo versions of cumulativity,
namelyganging-up cumulativitendcounting cumulativityWe will compare how Paul
Boersma’s version of Stochastic OT on the one haddvaximum Entropy models on the
other hand deal with cumulativity. The second part opigeer reports empirical data on
English genitive variation. It turns out that both vensi of cumulativity do obtain in the
empirical data. In the last part of the paper we comiper@redictions of the two theories
with respect to this empirical domain. The Maximum Epyrmodel proves to be clearly
superior, both with respect to the accuracy of its priedistand to its learnability properties.

2 Cumulativity and Stochastic OT

2.1 Two kinds of cumulativity

In standard OT, the evaluation follows the slogan “Mmener takes it all”. The optimal
candidate is grammatical, and all sub-optimal candida&singrammatical. In a competition
between two candidates, the constraints are evaloagtly one according to their strength,
and once a competition is decided, lower ranked constria&ve no impact on the outcome.

Stochastic generalizations of OT have to reserve gootbility mass to the loser, so
to speak. In this setting the issue whether constraidts@mstraint violations can add up and
have a cumulative effect arises anew. Different ststih generalizations of OT vary in this
respect. Before we look at these models though, letsigrfake precise what we mean by
“‘cumulativity” in a probabilistic setting.

There are actually two notions of cumulativity tharstard OT rejects. One way in
which OT is non-cumulative can, metaphorically spegkioe paraphrased as “Two weak
constraints can never gang up to jointly beat a stromget@int”. If a method of constraint
evaluation does not follow this prinicple, we therefialk aboutganging-up cumulativity.

The other notion of cumulativity pertains to the amoudni@ations of a constraint. OT



follows the principle “A single violation of a strongeonstraint is more severe than any
amount of violations of a weaker constraint”. If thidsfao hold, we talk aboutounting
cumulativity .

What would ganging-up cumulativity mean in a probabilistitirsg? There are
several options here. Generalizing from the categara&se, ganging-up cumulativity entails
thatthe presence of a dominated constraint can matteffo see this point, consider the
tableaux in (1).

(1)

C1 C2 C3 C1 C Cs3
a * b1 *

C1 Co C3
d; * *

dx *

Suppose the constraints are ranked as indicated;;kep>c3s. Under categorical evalution,
ganging-up cumulativity would obtainaf would be the winner of the first competitidn,of
the second competition, bdf would win the third competition. The difference betwéee
second tableaux and the third is thais inactive in the former but active in the laterbbth
casesg, is dominated by an opposing constraint, but still thegmess ofc, alters the
outcome. We take this pattern to be the essence ofrgaopgicumulativity. That several
constraints can “gang up” is a side effect;lallone would be sufficient to ensure the victory
of the second candidate — i.e.aifwould win the first competition — this would effectively
mean that, dominate<;.

Given this, the generalization to probabilistic evabtrats straightforward. A method
of stochastic constraint evaluation shows ganging-up &iivity if it is possible that the
presence of a dominated constraint increases the propalbilhe candidates that are optimal
according to this constraint.

To make this formally precise, we have to pin down vithatans for a constraint to
be dominated, and we have to do this in a theory-indepemna@sniT his is not fully possible
because the notions of constraint ranking and dommatie something theory-internal.
However, we can state a meta-theoretical constmairdlf conceivable notions of constraint
domination. We are using the notion of “weak domination” hetech includes the
possibility of a tie between two constraints. Stroagithation means that the first constraint
weakly dominates the second one, but not the other warg¢A note on terminology: when
we say that a constraint is active in a competitie&,mean that it does not assign the same
number of violations to each candidate, and a consisaiof course, inactive iff it is not
active.)

Constraint 1 (Constraint domination)Suppose two competitions are identical except that
the constraint ¢is only active in the first competition anglanly in the second competition.

Suppose furthermore that the candidate x is optimal according butnot according to.c

If c; weakly dominates;, then the probability of x in the first competition must be at lesst
high as in the second competition.

Probabilistic ganging-up cumulativity, as we conceivengans that a strongly dominated
constraint has an effect. Thus we define:

Definition 1 (Ganging-up cumulativity):A probabilistic constraint evaluation method
predicts ganging-up cumulativitif the following situation is possible:
1. Constraint g strongly dominates,c



2. The competitions A and B are identical (involve the same candidatesagassand
constraint ranking) except that ts active in A but inactive in B.

3. The candidate x, which is part of both A and B, is optimal accordinglotaot
according to ¢.

4. The probability that the evaluation assigns to x relative to A is hidaer the
probability that it assigns to x relative to B.

In a categorical context, i.e., if all probabilitise either 0 or 1, this notion of ganging-up
cumulativity reduces to the standard notion (provided thsetcaint above is fulfilled). So
even though the definition does not, strictly speakimgplive a “ganging-up” of several
constraints, it is a genuine probabilistic generalizatibthe categorical notion of ganging-up
cumulativity.

Paul Boersma (p.c.) suggests another probabilistic nofiganging-up cumulativity.
Consider again the tableaux in (1). As said above honaprobabilistic setting, ganging-up
cumulativity would obtain for instanceat would win the first competitiory, the second,
but d, the third (provided the constraint ranking is kept consdarass the competitions).
According to Boersma'’s notion, a probabilistic evaliaulisplays ganging-up cumulativity if
for eache, there is a ranking such th&(a|{a1,a}) < & P(p|{b1,b:}) < & butP(d){d1,d}) >
1-£. We might call this notion of cumulativistrong ganging-upcumulativity , while the
one that was defined in Definition 1 is fittingly dubbeedak ganging-up cumulativity.
These names are appropriate because strong ganging-u@tvitgugntails categorical
ganging-up cumulativity, which in turn entails weak ganging-upudativity. Weak ganging-
up cumulativity, finally, does not entail strong ganging-umalativity.

In the remainder of this paper, we will exclusively bacayned with weak ganging-
up cumulativity. Therefore we do not give a formally predsfinition of the strong notion
here.

Let us now turn to counting cumulativity. Consider tHadaux in (3):

®3)

C1 Co C1 C2
= [a * by *ohk
a > * & b > *

Supposey would win the first competition whilb, would win the second. This would be an
instance of counting cumulativity. In general, counting clabnity admits that a single
violation of a constraint; is less severe than a single violatiortgfbutn violations ofc,
(for somen>1) are more severe than a single violatiow;of

The essential point here is that both constrainia&éomorphic orderings in both
competitions, while the concrete numerical valuesdifin standard OT, this should never
make a difference. In a system with counting cumulgtivi could make a difference. In the
categorical setting, “to make a difference” meansittdving from ungrammatical to
grammatical”. This can be generalized to the probabikstiting. Here, to make a difference
simply means to change the probabilities that the et@laasigns. This leads to the
following definition:

Definition 2 (Counting cumulativity):A probabilistic constraint evaluation methpdedicts
counting cumulativityiff the following situation is possible:
1. The two competitions A and B are completely identical except thedtis&aint g
assigns more violation marks to the candidate x in A than in B.
2. Despite this difference; induces the same ranking of candidates on A as on B.
3. The evaluation assigns a higher probability to x in A than in B.



If the range of possible probabilities is restricted to@ &, the definition covers categorical
counting cumulativity as a special case.

2.2 Boersma’s Stochastic OT

We will only give a brief sketch of Boersma's modekhe the interested reader is referred to
Boersma and Hayes (2001) for a more thorough introductio. Sh@res the generator
component with standard OT. It also uses a set of remke@diolable constraints as the basis
for grammatical evaluation. The constraints are nated on an ordinal scale though, but
each is assigned a real number on a continuous deabmk This way it is possible to speak
of the distance between two constraints in a meéuimgy. In each evaluation event, some
random noise is added to each constraint rank. The gaoka constraint after adding the
noise is called theelection pointThe constraints can be ordered according to the wdlue
their selection points, and this ordering can be usedning in the standard OT sense.
However, adding the noise value to the ranks of thet@nsmay change their ordering, so
the ranking of selection points may differ from evéilwato evaluation. In this way the
ranking on the continuous scale defines a probabilityilbigton over ordinal rankings. This
in turn defines a probability distribution over the setandidates — the probability of a
candidate to be optimal is the sum of the probabilaifesl ordinal rankings that make it
optimal. The noise that is added to each constranitisaa normally distributed random
variable with mean 0 and standard deviation 1. The protyabila constraint ranking, >
C>>...> C, can thus be given by the following formula (wheris the rank of constraimi and

N is the standard normal distribution):

+ o0 X X1
P(cl>--->cn)=f dx, N (x —r ) f X, N(X,—r) f dx N(x —r )

—0 —o0

A StOT grammar adequately describes a language if it agsighabilities to the linguistic
signs (sentences, syllable structures or whatevengiedrpus that match with their empirical
relative frequencies in this language. If the distahe#seen the ranks of the constraints are
very high, the probability of the ordinal ranking that ohais the ordering of the ranks
converges towards 1. Standard OT, where there is onlyamkéng, can thus be seen as a
borderline case of StOT.

StOT predicts (weak) ganging-up cumulativity. Considsitw@ation where we have
three constraints;, ¢, andcs, and two candidates,andb, such thatci(a) < ci(b), o(a) >
c2(b), andcs(a) > cs(b). (We construe constraints as functions from candgltd numbers of
violation marks here. Hence an expression li€)” denotes the number of violation marks
thatc, assigns td.) Suppose all three constraints are equally ranked. @aemordinal
ranking between them is equally likely. There are twikirays wheree; is the strongest
constraint, and four where one of the other two wirenddP(a) = 1/3andP(b) = 2/3 Now
suppose; is promoted by a very small amount. Then it will be strongest constraint, but if
the promotion step is small enough, the probabilitiesaridb are still very close td/3 and
2/3 respectively. To make the argument mathematicallgmpaitoof, suppose we have an
infinite descending sequence of rankingsdowhich converges towards the rankingcoind
cs. Since the function that maps vectors of ranks to prdbabiin StOT is continuous, the
probabilities ofa andb will converge tol/3 and2/3 respectively. Hence there are rankings
wherec; is the highest ranked constraint BR{a) < 50%.Technically, ifc; would only
compete withc,, it would win with a probability of > 50%, but in a contppien with bothc;
andcs it wins with less than 50% probability. So whiteis dominated by;, it still has an
impact on the probabilities that are assigned.



It can also be seen from this discussion that StO$ doepredict strong ganging-up
cumulativity. The probability o& will always be> 1/3, so a value of 0.2 fas would falsify
strong ganging-up cumulativity.

StOT does not predict counting cumulativity either. Thabpbility of a candidate is
defined indirectly, via probabilities of categorical OT-quetitions. Since categorical OT
does not have counting cumulativity, StOT does not prédadher.

2.3 Maximum Entropy models
Goldwater and Johnson (2003) compare StOT with Maximum ntrmdels (or, as they are
sometimes called, log-linear models) that are statleeo@rt by now in computational
linguistics (see for instance Berger et al. 1996 or Abney 1987 )us briefly explain what
“maximum entropy” means.

Suppose we know that a certain experiment has two possitdiemesA andB, but
we do not know anything else about it. Which probability shauddassign tA andB? The
best answer seems to be: 50% probability for each. Lde\ifithere are five possible
outcomesA, B, C, DandE, the best estimate is to assign 20% to each if we davé further
information. Every other distribution of the probalyilihass would represent a bias which is
not supported by knowledge. And if we also know that theomocwill beA or B with a
probability of 70%, then the least biased estimate issma 35% to botA andB, and 10%
to each of the three other events. There is a akaition that the least biased hypothesis is
the most parsimonious one.

The information theoretic notion ehtropyquantifies the bias of a probability
distribution. The entropid of a probability distributiom is defined as

H(p)=Y p(x)log——
X p(x)

The least biased distribution has the highest entarmy,vice versa. If we have partial
knowledge about a stochastic process and we have t@estine underlying probability
distribution, the best guess is to choose among atlisons that are compatible with our
knowledge the one with the highest entropy.

Let us assume that the unknown probability distribusamlanguagé in the sense of
probabilistic OT, i.e., a probability distribution oveiset of input-output pairs. We know the
setGEN of possible elements of the language (the generatdrq aet of constraints. We also
know how many violations each constraint incurs on eacklidate, the marginal
probabilities of the different inputs, and — crucially —kmew how often each constraint is on
average violated per input in the language in questidnis may be the result of investigating
a large sample df, but the only empirical facts we are able to obsergdtee inputs and the
number of constraint violations of each observat®mwe are looking for a relative
probability distribution over the potential output for leagput which predicts the correct
average degree of violation of each constraint, and grabbistributions with this property,
we will choose the one with the highest entropy. iit lba shown (see for instance Della Pietra
et al. 1995 for a proof) that this distribution takesftiewing form:

1
Z (i)

r

p,(ofi)=—=—exp(=2_r c (i,0)
i

whereZ (i) is a normalization constant which ensures thaptbbabilities of all candidates
sum up to 1. It holds that

Note that we do not claim that this information isikl@e to the learner. Rather, this is the kindhdbrmation
that is (ideally) available to the linguist, and it canused to test the adequacy of theoretical models.



z(i)= T ep(-Yrclio)
]

0:GEN(i,0)

Taking the logarithm on both sides yields

log p (oli)=—2. r.c.(i,0)-logZ (i)
i

So the logarithm of the probability of a candidate lis@ar function of its constraint
violations. (Therefore these probability distributi@me called “log-linear”.) Of course there
are infinitely many log-linear distributions, depending omvhlues of the rank parameters
Della Pietra et al. (1995) also show that among alkthas linear distributions, the one
which maximizes the likelihood of the langudges the one which assigns the correct average
degree of violations to each constraint. In other wdh#spnique log-linear distribution
which assigns maximal likelihood tois at the same time the unique distribution with the
empirically correct predictions of average constraintations that maximizes entropy.

The parametens, theweightsor ranks of a constraint, can be interpreted as measures
of theperplexity that the constraint induces. (Technically, the weiglaictually related to the
logarithm of this perplexity.) The higher the rank of astoaint, the more surprised (or
“perplex”) | will be to see it violated, judging from tle&perience from the training corpus.

It is worth noting that the predecessor of Optimalitydity, Harmonic Grammar
(HG henceforth, see Legendre et al. 1990) has a verlasimathematical setup to MaxEnt
models. In HG, each constraint has a numerical wéatalogous to the rank of constraints in
MaxEnt models), and tHearmony of a candidate is the negated weighted sum of its
constraint violations. The winner of a competitiorhis tandidate with the highest harmony.
The harmony of a candidate thus differs from the lolgiariof its probability under the
MaxEnt interpretation only by the constaifi). Since this constant is identical for all
candidates in a competition, the winner under the H&pnétation is always the candidate
with the highest probability under the MaxEnt interpiieta

Despite their similarity, the motivations for tiveot models are very different. MaxEnt
models are derived from first principles of informattbeory, while HG models are a high
level description of a certain class of connectionetiviarks. While this kinship has been
noted before (Johnson 1998), we are not aware of furtpésrations of this connection.

The general setup of a maximum entropy model is also doitlusto a StOT
grammar. The main difference between StOT and Maydiei evaluation component,

l.e., the way in which constraint ranks are intergtete a probability distribution. Like StOT,
MaxEnt models can be seen as a generalization of sta@darif the ranks (or “weights”, as
the parametensare usually called in the MaxEnt tradition) of thestaints are very high
and spread far apart, the probabilities of candidatesvaid be sub-optimal in classical OT
converge towards 0 in the MaxEnt interpretation.

It follows from the definitions that MaxEnt evaluatipredicts ganging-up
cumulativity in its weak and strong form, as well as ¢mgncumulativity. As for weak
ganging-up cumulativity, consider the scenario in (1), wisalepeated here as (4) for
convenience.

(4)

C1 C2 C3 C1 C (03]
ai * b1 *
o * b, *

’The restriction to positive weights is no serious feton. A constraint with negative weight is equivalemits
negation with the corresponding positive weight, andatcaint with weight O is as good as non-existent.



C1 Co C3

Suppose;=3 andr.-r;=2. Then the probabilities oy andb; are bothe?/( e?+e®)=73%,
and the probability ofl; is both e%(e3+e™))=27% So if everything else remains equal,
activatingcs has an impact even though it is dominated;by

Now suppose the same constraints, but the weight3kaaed 2kinstead of3 and2,
for some positive constakt Consider the scenario in (4) againklgrows to infinity, the
probability of a; and b; converges tdl, while the probability ofd; converges td. This
illustrates that MaxEnt evaluation also predicts strpawgging-up cumulativity.

Finally, consider the tableaux in (5).

(5)

C1 C1
a * by **
o b2

Suppose=log 2. Then the probabilities @ andb; are1l/3and1/5 respectively. Hence
MaxEnt evaluation predicts counting cumulativity.

As a side remark: (5) also illustrates another impoddference between StOT and
MaxEnt: a; is harmonically bounded. Therefore it would have probalfilijmder StOT.
MaxEnt, however, assigns a non-zero probability tGdnerally, no candidate is ever strictly
speaking impossible under MaxEnt. We will return to Hse@ of harmonic bounding later.

3 Empirical evidence for cumulativity: English genitive variaion

In this section we will show that we actually need alativity to describe empirical facts
adequately, and which versions of cumulativity are necgss

Our study deals with English genitive variation, which repnesa case of
grammatical variation in the noun phrase. In Englighy often thes-genitive ¢he king’'s
palace and theof-genitive (he palace of th&ing) can be used to express a possessive
relation.

English genitive variation
s-genitive of-genitive
possessor POSS’'S possessum possessum (head) | of possessor
(head)
the king ‘s palace the palace of the king

However, the choice between these two genitives isamatom, but determined by various
factors. These factors do not determine categoricallglhwtonstruction is to be used, but
rather the likelihood with which the two genitives ased, i.e., their frequency distribution.
Therefore, English genitive variation represents a ghpeobabilistic variatiorT.

® Paul Boersma (p.c.) pointed out to us that StOT and Maxi&ke different predictions with regard to strong
ganging-up cumulativity, even though they behave simiitir ngspect to the weak notion.

Note that only determinexgenitives the girl’s eyey andof-genitives where the possessor is a complement
(the frame of the chgimere compared in this study. Possessors functioning asienedivomen’s magazines, a



In Rosenbach (2002) three such factors were investigatedexperimental study, i.e.,
animacy, topicality, and possessive relation, and thdtsgaovide evidence for ganging-up
cumulativity. In Rosenbach (2003) the factors animacy agidhwwere compared in an
experimental study as well as a corpus analysis. Thtsed this study provide evidence for
counting cumulativity. In the following, we will repotie rationale and findings of these two
studies and point out in how far they provide evidenceudonulativity.

3.1Ganging-up cumulativity

Animacy, topicality, and the type of the possessiveiosiaire well-known factors
determining the choice of genitive construction (see ditgnberg 1982; Quirk et al. 1985;
Jucker 1993; Taylor 1996; Leech et al. 1994; Anschutz 1997; Biberl&x98l; Huddleston &
Pullum 2002). Table 1 illustrates how these factors afegfiish genitive variation:

factors preference for thes-genitive preference for theof-genitive
animacy | [+ animate] possessor: [-animate] possessor:

the boy’s eyes > the eyes of the boy| the frame of the chair > the chair’s frame
topicality | [+topical] possessor: [-topical] possessor:

the boy’s eyes > the eyes of the boy| the headlamps of a car > a car’'s headlamps

possessive [+ prototypical] possessive relation: | [- prototypical] possessive relation:

relation® | the boy’s eyes > the eyes of the boy| the condition of the car > the car’s condition

Table T Animacy, topicality, and possessive relation as faaetermining English genitive
variation

In general, the-genitive is preferred if the possessor is animate, tqucah a prototypical
possessive relation. If not, tbégenitive appears to be the preferred choice. The exarfiple
the boy’s eyeslustrates an important methodological problem: Tleédes animacy,
topicality, and possessive relation correlate to quitexaent with each other. Usually, topics
are animate, and prototypical possessors are animate.t8e,example ahe boy’s eyed is
very difficult to tell whether the-genitive is preferred because the possebsdroy is
animate, or, as a definite noun phrase, high in topicatitybecause the kin relation
represents a prototypical possessive relation. Thatsnwhe three factors cluster, we simply
cannot tell how the three factors contribute to tr@cshof thes-genitive. For this reason,
these three factors need to be teased apart in theieahpmalysis.

This was done in an experimental study in Rosenbach (2002 )questionnaire,
subjects were presented with little text passages adaptac:fime fiction novels which
provided contexts for genitive constructions, and subjectsdiahoose then as
spontaneously as possible to usesienitive or theof-genitive in the given contexts. Here’s
an example from the questionnaire to illustrate thie tas

(6) He passed through the entrance where a sign identified the p#slaad Gardens. At its far west end,
a circular brick building stood, domed in glass and mounted by a whitgraed lantern cupola. A

man of honoyrwere systematically excluded from this study, as #reynot subject to the same systematic
variation.

> A first analysis of the single factors animacy, toptgaknd possessive relation in Rosenbach (2002)
confirmed this pattern.

® Note, that the factor of ‘possessive relation’ is riotssly difficult to define (cf. also Rosenbach 2002: §4.3).
The Rosenbach (2002) study follows Koptjevskaja-Tamm’s (200&)yclassification of possessive relations
into prototypical and non-prototypical ones for theglaages of Europe, with the former comprising kin
relations, body parts, and legal ownership. For furdlegails pertaining to this classification, we again reger
Rosenbach (2002: §6.2.2).

" The factor of topicality was defined both in termslefiniteness and discourse givenness in this study (for
further details see again Rosenbach 2002:112-113).



movement of white shimmered against the red bricks, and Lsaleyimmy Cooper tryinghe door of
the building/ the building’s door] (Elizabeth Gegqriglying for the Ashe$85)

Crucially, only such contexts were chosen where botk-tfenitive and thef-genitive are
possible; note that this is not always the &aSe, for example, indefinite possessive NPs
cannot be expressed by the (determisg@nitive since the possessor renders a possessive
NP definite (cf. e.g. Huddleston 1984:253; Lyons 1989, 1999:23), etlem [flossessor itself
is indefinite (Woisetschlaeger 1983); see a.gook of a teachef a teacher’s book'the

book of a teacher).

To test for the relative strength of the factors acynéopicality, and possessive
relation all logically possible combinations of the 8tfas were tested, resulting in 8
conditions to be tested. There were at least 10 itemsopelitions, in all 93 items were
tested. Table 2 illustrates what the conditions andsitlewwked like:

[+animate] [-animate]

[+topical] [-topical] [+topical] [-topical]
[+proto] | [-proto] [tproto]  |[-proto] [+proto] -proto] +p roto] | [-proto]
the boy’s | the agirl's a the the bag’'s | alorry’'s | acar’s
eyes/ the| mother's | face/ the | woman’s | chair's contents/ | wheels/ | fumes/
eyes of | future/ the | face of a | shadow/ | frame/ the| the the wheels the
the boy | future of | girl the frame of | contents | of alorry | fumes of

the mother shadow of| the chair | of the bag a car
a woman

Table 2:Experimental study (Rosenbach 2002): conditions and items

Note, that in Table 2 the factors are already arrangsdch a way that stipulates animacy as
the most important factor, followed by topicality, aheén possessive relation. If this
hierarchy holds true, we’d expect thgenitive to become less frequent from left to right.
Figure 1 shows the results for the British subjécts.

First of all, we can notice that the relative frequeatthes-genitive decreases steadily —
and significantly — from left to right, except for t#ference between the last two conditions,
which is randont® Therefore, the relative importance of the threéoiacis indeed?

(7)

Note, however, that animacy is rqmdr sethe strongest factor. While for the first three
animate conditions thegenitive is always preferred to tbégenitive, irrespective of the
values for topicality and possessive relation, this pectinanges in the fourth animate
condition (thea woman’s shadowype). Here the possessor is not topical and the migses
relation is a non-prototypical one, i.e. both the valioe topicality and possessive relation
favor theof-genitive in this case. And indeed we can see thaiftgenitive becomes the

animacy > topicality > possessive relation

8 While it is certainly interesting to know in which certs thes- and theof-genitive are used categorically, it
would be fatal for any study of genitive variation tolirte such contexts in the empirical analysis, since this
would seriously confound the quantitative results.

° The same items were tested with 48 American Englisiestsb Since the general pattern is essentially same as
for the British speakers, the results for the Americagligh group will be neglected here.

19 Most likely, the difference between the last twoditinns is random is because they represent the ‘worst’
context for the occurrence of tegenitive. At the lower end of the scale, subjectghihave been simply more
insecure in their choices. Note also that non-topicahimate possessors are particularly prone to receive a
compound interpretation instead of a phrasal (determieadimg. Although the contexts had been carefully
chosen as to force a specific interpretation ofpthesessor, it cannot be completely ruled out that sulnjents
have interpreted lorry’s wheelasa [lorry’s wheel] instead ofa lorry’s] wheel For further discussion on the
deviate behavior of the last two conditions see Ruseim (2002:171-176).

" For the statistical analyses we refer to Rosenf2@82). Note also, that Figure 1 shows that the threerfact
are separate (if naturally correlating with each gthes., none can be reduced to the other(s).



preferred option here (57%the shadow of a womas more frequent thaa woman’s
shadow So, although individually, topicality and possessivati@h are weaker constraints
on the choice of-genitive they can both together ‘knock out’ animacy. Thidear evidence
for ganging-up cumulativity.

animacy, topicality, possessive relation: experimen tal study
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Figure 1: Animacy, topicality, and possessive relation -ultssof experimental study,
British subjects (n=56), absolute number of tokeeg in brackets above each column

3.2 Counting cumulativity

In Rosenbach (2003) the relative strength of titofa animacy and weight were compared.
Among the factors determining English genitive &aoin, syntactic weight is certainly
another important one. Weight can be defined inwags: If we only look at the weight of
the possessor (= absolute weight), we can notatethies-genitive is preferred if the
possessor is short (cf. Biber et al. 1999: 304f%)e also take a look at the relative weight
between possessor and possessum, then the predictiat possessives should show a
preference for ‘short before long’, following Belidjs (1909/10)Gesetz der wachsenden
Glieder? This predicts the-genitive to be preferred with a short possessud éalong
possessum), as dohn’s two elder brothersvhile theof-genitive should be preferred with a
long possessor and a short possessum,the imouse of the London real estate agent John
Miller. Note, however, that there is also a correlabetween animacy and weight: Animates
tend to be shorter than inanimates (see e.g. Wealg)i895, cited in Kirby 1999: 118-9), so,
again, it is difficult to tell whether in examplssch aslohn’s mothethes-genitive is chosen
because the possessohnis animate or because it is shbrAgain, the two factors need to
be teased apart. To this end, another experimsiuidy was carried out in Rosenbach (2003),
which was basically identical in design to the Rumech (2002) study, if, naturally, differing
in the conditions to be tested. Most cruciallyinzacy and weight were teased apart,
comparing two conditions where animacy and weighhokt go together, i.e. a long animate
possessor (& short possessum), aténdark man’s handand an inanimate short possessor

12 As far as we are aware of, this question has only bedressed by Altenberg (1982) in his study of genitive
variation in 1¥-century English. For an analysis of the impact of relatigight on modern English genitive
variation, see Rosenbach (2003).

13 Given the correlation between animacy and weighiykifes (1994: 337) even speculates that animacy is an
epiphenomenon of weight. For a refutation, see Roser(BaéR).



(& long possessum), astine hotel's elegant lobbyhere were also two baseline conditions
which were neutralized as to weight, see Tabjfe 3.

animate inanimate
neutral long possessor/short head short possessor /long neutral
head
the boy’s eyes/ thehe dark man’s hand/ the |the hotel's elegant lobby/ the chair’s frame/
eyes of the boy | hand of the dark man the elegant lobby of the | the frame of the
hotel chair

Table 3:Experimental study: animacy vs. weight — conditiand items (at least 10 items per
condition)

If animacy is a stronger factor than weight, tHemstgenitive should be more frequent with
the dark man’s hanthan withthe hotel's elegant lobhyf, however, weight is stronger than
animacy, it should be the other way round, i.ee sthenitive should be more frequent with
the hotel's elegant lobliphan withthe dark man’s hand

A questionnaire study with 39 American subject®eaded the following results, see
Figure 2:

animacy and weight: experimental study
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Figure 2: Experimental study: relative frequency of thgenitive and thef-genitive
(number of subjects: N = 39); absolute numbeokéns given in brackets above each
column

Figure 2 clearly indicates that animacy is a gisvrfactor than weight, since tegenitive
(64.2%) is more frequent in the animate long/shortdition (e.gthe dark man’s harydhan

in the inanimate long/short conditiotiné hotel's elegant lobhy37.4%. Moreover, the
genitive is also more frequent than tfegenitive in the animate long/short condition,, iie.

is more likely to us¢he dark man’s han(b4.2%)thanthe hand of the dark mgB5.8%).
Note, however, that in this experimental studyraylpossessor was invariably defined by
being premodified by 2 elements, a determiner anddgective, as ithe dark man’s hand
But what about longer possessors? Is anirpacysethe stronger factor no matter how long
the possessor is? To test for this question somiti@uhl data from the British component of

 Note, that only premodifying elements were considereel e argued by Altenberg (1982), only
premodification is a manifestation of weight in the seofslength (i.e. number of words) while
postmodification, consisting of syntactically far momnplex constructions (e.g. clauses) are rather a
manifestation of syntactic complexity. In this respecigheis defined here in terms of length.



the International Corpus of EnglisHCE-GB) was analyzed. Figures 3a and 3b shows the
relative frequency of the-genitive and thef-genitive according to the number of

premodifiers to the possessor, Figure 3a for hupessessors, and Figure 3b for inanimate
possessors,

weight and animacy of possessor in the ICE-GB: huma  n possessors
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Figure 3a: Weight and animacy of the possessdren@E-GB (absolute number of tokens
indicated in brackets above each column): humasgssers

15 As in the experimental study, only genitive constructishere both the-genitive and thef-genitive could

be used were considered here. Also, only premodificatasconsidered and any postmodification was left out.
To control for relative weight, premodified heads waystematically excluded. Note also, that only a subcorpus
of all possessive NPs in the ICE-GB was considered heredefinite possessive NPs where the possessor was

either a proper noun or definite common noun. For fudetils on the data set and the analysis, see Rosenbach
(2003).



weight an animacy of the possessor in ICE-GB: inani  mate possessors
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Figure 3b: Weight and animacy of the possessdrari€E-GB (absolute number of tokens
given in brackets above each column): inanimatsgssors

First, we can notice that tlsegenitive becomes less frequent the longer thegssss is, for
both human and inanimate possessors. For inanpoasessors, thegenitive is always less
frequent than thef-genitive, no matter how short the possessor ishEman possessors,
however, it depends on the number of premodifidistirer thes-genitive or theof-genitive is
preferred. For possessors premodified by up togiements, the-genitive is preferred. That
is, the other person’s noss still more likely tharthe nose of the other persorhis
corresponds to the finding of the experimental gregorted above, whetkedark man’s
handwas preferred tthe hand of the dark maRor any longer possessor, however,dhe
genitive becomes very clearly the preferred chdie.a four-word possessor aghe right
honourablegentleman’s policys much more likely to be expressed by a corredipgrof-
genitive (he policy of the right honourable gentlemaNote, however, that such long
premodified possessors were as such a very infréquoatext in the corpus (both in tee
genitive as well in thef-genitive), and the contexts of more than 3 prefierdiwere so
rarely represented in the corpus that they werejnantified. However, if such possessives
occur, then thef-genitive is by far the more frequent constructsmthe same pattern holds.
So, we can notice the following factor hierarchy:

* animacy > weight: for possessors premodified byoup elements
* weight > animacy: for possessors premodifed by Biare elements

To conclude, the relative strength of animacy aetyft is not absolutely fixed but depends
on the particular weight of the possessor (whiatteiined gradually here in terms of number
of words)'® This is evidence for counting cumulativity

16 Different definitions of weight are on the market. 8eavever Wasow (1997, 2002) for arguing that the
various definitions of weight (as e.g. number of wordslpls/nodes) reveal basically the same results. By now
such an orthographical definition of weight has becdmesttablished operational definition of syntactic weight
in the literature.



Note, finally, that the preferences for the twoigees in the tested contexts for both ganging-
up and counting cumulativity are not meant to bsoalie but only hold for the contexts
tested. We do, for example, not claim that any 3dymssessor is preferably realized by the
s-genitive. It is well possible that for differendbrtexts the preferences shift. So, for example,
the context of a 3-word possessor might well béepably realized by thef-genitive, if the
possessor is indefinitéghe hand of a dark man/a dark man’s harat if the possessive

relation is not a prototypical onthé future of the dark man/the dark man’s fujuhat is
crucial for the present argumentation is that encbntexts tested (which we take to be
empirically valid contexts, if not covering all alsle contexts) such cumulativity effects do
occur — and hence need to be accounted for.

4 Comparison

The results from the last section indicate thaa@eguate modeling of grammatical variation
requires both kinds of cumulativity. In this resp®axEnt models seem to be better suited
for this task than StOT. In this section we invgsté how well these two approaches are able
to model the empirical data from the last sectixecdy. There are learning algorithms both
for StOT and for MaxEnt on the market that induoastraint rankings from corpora. The
acquired constraint rankings in turn define a pbilitg distribution, and this distribution can
be compared with the empirical distribution frore #xperiments and the corpus study.

4.1 Ganging-up cumulativity

In the first pair of experiments, we used the rssiubm the experimental study from
Rosenbach (2002) (see Figure 1) as a training sofffhe generator thus contains eight inputs
(all configurations of the three binary featuresvaty, topicality and possessive relation),
and two outputs for each input, namely the prenahfms-genitive) and the postnominal
construal (>of-genitive). We adopted the OT-system for the amalybthese constructions

that was proposed by Aissen and Bresnan (2002)gUbke technique of Harmonic

Alignment, Aissen and Bresnan derive 12 constrdimsare relevant here, one for each
combination of an input feature with an output éeat The constraints take the form “Avoid
+anim prenominal possessors” etc. We abbreviata #s“*+a/s”, “*+a/of” etc.

4.1.1 Predictions of StOT

Boersma (1998) developed the Gradual Learning Atlgor(GLA), an algorithm that induces
stochastic constraint rankings from a frequenciribigtion over the set of input-output pairs
(provided the constraints are known). We simulaéchining corpus by drawing 100,000
samples according to the empirical frequency digtion’’ The GLA acquired the following
constraint ranking:

*+als -2.17
*+a/of 2.17
*-als 2.76
*-a/of -2.76
*+t/s -1.26
*+t/of 1.26
*-t/s 1.85
*-t/of -1.85
*+pls -0.65
*+p/of 0.65
*-pls 1.24
*-p/of -1.24

" The plasticity value was 0.01, and we kept it constantiriitial value of all constraints was O.



This constraint ranking defines a probability disition over the possible outputs for each
input. It is not possible though to determine thessbabilities analytically. Therefore we
used a random generator to estimate their valuesrdsults are shown in Figure 4.

Animacy, topicality, possessive relation: predictios StOT
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predicted probability (in %)

Figure 4: Animacy, topicality, possessive relation: predins StOT

The ganging-up cumulativity pattern is very clearéh Notably, for the input combination
+a/-t/-p theof-genitive is the preferred option, even though eaagally favors the-genitive,
and the animacy related constraints are each srahgn every other constraints. A
comparison with Figure 1 reveals that the predidtifit the empirical data rather well. A
standard tool to measure the difference betweerptaoability distribution is the Relative
Entropy (also called Kullback-Leibler distance, gaeinstance Cover and Thomas 1991).
Here the entropy of the prediction relative to énepirical distribution is about 0.0121 bit,
which is a comparatively low value.

4.1.2 Predictions of MaxEnt
There are several standard machine learning atgasiaround that can be applied to induce
constraint weights in a MaxEnt model. It is wortiting that Boersma's GLA can be applied
almost unchanged to MaxEnt models. In the contetiese models (but not in the context of
StOT), the GLA belongs to the family of “StochasHcadient Ascent” algorithms that are
frequently used in machine learning, especiallytifiertraining of neural networks (see
Mitchell 1997 and the references cited ther&ifischer (2005) proves that Stochastic
Gradient Ascent is a proper learning algorithmN@xEnt models in the sense that the
algorithm approximates the probability distributibat is defined by the “teacher™s grammar
with arbitrary precision provided the training cospvas generated by a MaxEnt gramr]ﬁar
Based on the same training data and the sameramnstet that were used in the
previous subsection, this algorithm acquired thievidng constraint weight&’

810 be precise, the GLA is a stochastic gradient agdgotithm as long as all constraints are binary. When
counting constraints are used, the two algorithms dilfiginty. See Jager (2003) for a detailed discussion.
9A similar proof for the correctness of the GLA fdiOS does not exist so far.

20 Here the initial value of all constraint weights vea$ to 10.



*+als 9.476

*+a/of 10.524
*-als 10.644
*-a/of 9.356
*+t/s 9.746
*+t/of 10.254
*-t/s 10.374
*-t/of 9.626
*+pls 9.895
*+p/of 10.105
*-pls 10.225
*-p/of 9.775

As in the previous experiment, animacy turns ouiddhe strongest factor, followed by
topicality and possessive relation, and for akéhfeatures, the value “+” favors thgenitive
and vice versa. The absolute values of the StOTehau the MaxEnt model cannot really
be compared because the evaluation procedurdasetit.

From a vector of constraint weights in the MaxEattisg, it is possible to determine
the predicted probabilities of the different outprelative to the inputs simply by applying the
definitions. The results are given in Figure 5.

Animacy, topicality, possessive relation: predictins Maxent
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Figure 5: Animacy, topicality, possessive relation: predinos MaxEnt

Again we find a well-articulated ganging-up cumivigy pattern. The predictions fit the data
even better here than in the previous experimbatKullback-Leibler divergence between
the MaxEnt predictions and the empirical data iy 6r00472 bit.

4.2 Counting cumulativity

We conducted two analogous experiments using thetocw cumulativity data from Section
3.2 (Figures 3a and 3b). Here the correlation betvanimacy, weight and the choice of the
syntactic construction is to be modeled. Theres@ybt possible inputs. The possessor can be
either human or inanimate, and it can have 0,dr,2premodifiers. There are again two
outputs for each input, treegenitive and thef-genitive. The training samples were drawn at



random according to the empirical frequencies e$éh16 possible patterns in the ICE-GB
corpus. The correlation of animacy and the chofageaitive construction was again modeled
by means of the four alignment constraints *+atg/0f, *-a/s, and *-a/of* To take the
potential correlation between weight and the choicgenitive construction into account, we
assumed another constraint, *s, which penalizegyhgi@nominal genitives. The degree of
violation of this constraints depends on the wegjthe possessor. Put simply, each
premodifier violates this constraint once. Thiglisstrated in the following tableaux.

*s

Pauline’s birthday

the birthday of Pauline
the doctor’'s daughter *
the daughter of the doctor
the other person’s nose i
the nose of the other person
the right honourable gentleman’s policy Fxk
the policy of the right honourable
gentleman

4.2.1 Predictions of StOT

As in the previous experiment, the GLA was fed wiiff®,000 samples from the 16 possible
input-output pairs according to the empiricallyetetined probability distribution. The
acquired constraint ranking was:

*+als -1.580
*+a/of 1.580
*-als 1.804
*-a/of -1.804
*s -0.167

This StOT grammar corresponds to the probabilisyritiution given in Figure 6a (for human
possessors) and 6b (for inanimate possessors).

As expected from the theoretical consideratiorSantion 2, StOT does not show
counting cumulativity. The model does distinguigiivieen “*s is violated” and “*s is not
violated”, but the degree of violations is not eetied in the predictions. Accordingly, the
predicted probabilities of tregenitive having possessors with at least one pdéimaponly
depend on animacy, not on weight.

2L A reviewer questioned that a constraint based on fastms as weight/length should be part of the syntactic
grammar, as it belongs to processing. This of counserds on one’s conception of grammar. Note, that in the
recent functional OT approach by Bresnan & Aissen (20@23tcaints which should ultimately be functionally
grounded are explicitly included. In this conception, therethrere is no reason to exclude a constraint from the
grammar just because it is based on a processing ormaerfce factor.



weight and animacy (human possessors)
predictions StOT
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Figure 6a:Weight and animacy (human possessors): predic80Q3
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Figure 6b: Weight and animacy (inanimate possessors): piedgStOT

There is a slight variation between the valueslfd and 3 premodifiers, but this is due to the
fact that we obtained these probabilities by usimgndom generator — this variation is thus
not predicted by the StOT model but it is a kindhofse. Since the data do show a
dependency between weight and the choice of genitie fit of the model is not very good.
The Kullback-Leibler distance between the modelueddata is 0.0314 bit.

4.2.2 Predictions of MaxEnt

Using again the Conjugate Gradient Ascent algoritveobtained the following constraint
weights for a MaxEnt model:

*+als 9.162
*+a/of 10.838
*-als 10.984
*-a/of 9.016

*s 0.754



This translates into the probabilities given indfg 7a and 7b.

weight and animacy (human possessors)
predictions Maxent
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Figure 7a: Weight and animacy (human possessaegigbions MaxEnt
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Figure 7b: Weight and animacy (inanimate possessaedictions MaxEnt

Here we see clear counting cumulativity effectshbor human and for inanimate possessors.
Especially for human possessors, the predicted lativity effect is actually stronger than

the empirically observed one (compare Figure 3andtheless, the fit of the data is better
here than for the StOT model. The Kullback-Leildarergence between the model and the
data is as low as 0.0108 bit.

4.3 Harmonic bounding

Multiple violations of a single constraint can ocgutwo ways. The constraint might
guantify the severity of the violation — as our stvaint *s in the previous subsection — or the
same constraints may be violated at two positioitisimthe same domain of evaluation. One
might wonder whether the issue of counting cumuitgtalso arises in connection with the
latter kind of multiple violationd?> However, this question cannot be settled with réga the
particular notion of counting cumulativity that weed here with respect to the empirical

22 Thanks to Paul Boersma (p.c.) for drawing our atberiib this issue.



domain and the constraints that we considered.IRea&our definition of counting
cumulativity requires two competitions that arendeal except for the amount of violations
of one constraint. This entails that the cardigaditthe two candidate sets are identical.
Multiple violations of the same constraint at twifestent positions would require two
possessive constructions within one sentence &canstraints discussed here. This doubles
the size of the candidate set. Therefore the difinis never applicable in this connection.

There is an important difference between StOTMagEnNt though that is related to
violations of the same constraint at different tomas. We will briefly discuss it in this
subsection.

Within OT syntax, the domain of evaluation is ugutdken to be the entire sentence.
Hence, if there is more than one possessive catistmuvithin one sentence, violation marks
from different NPs might accumulate within the saaf@eaux. For concreteness, consider the
following competition:

(8) a This car’s engine is louder than this carigine.
b. This car’'s engine is louder than the enginghisfcar.
c The engine of this car is louder than thissarigine.
d The engine of this car is louder than the emgitthis car.

Using the constraint inventory from the last subisaqbut omitting those constraints that are
inactive in this competition), the correspondinigléau is:

)
*-als | *-alof | *s
(a) *% *%
(b) * * *
(C) * * *
(d) *%

In this competition, the candidates (b) and (c)reemonically bounded. StOT thus wrongly
predicts them to be ungrammatical. It should beddhat this is not an artefact of the
particular constraint set that is used here. I\vdmgation between the two constructions is
governed by conflicting constraints, every strariking will make one of the two
constructions the winner. It is thus never posdibleave one construction in the subject
position and the other construction in object posit

As pointed out above, MaxEnt does reserve someapility mass for harmonically
bounded candidates. More precisely, the relatiodaility of having ars-genitive in subject
position is predicted to be stochastically indegamndrom the shape of the object and vice
versa:

P(al{a,c}) = P(bl{b,d}) = P(al{a,b}) = P(cl{c,d})

We have not tested this prediction so far. It sefingo say though that the predictions of the
MaxEnt analysis arprima faciecloser to the truth than the predictions of St@fiich
amounts to some kind of non-local agreement betwa#grossessive constructions within one
sentence.

Of course, this conclusion can be avoided if thenain of optimization is a single NP
rather than the entire sentence. Such an approigtt work, but note that one possessive
construction can be syntactically embedded intahargossessive construction, as in

(10) the noise of this car’'s engine



Since such a construction is grammatical, the domBoptimization under StOT cannot just
be the entire NP. Rather, one would perhaps néleerayclic bottom-up optimization or left-
to-right optimization that applies to chunks of stituents. In either case, two evaluations,
involving two different constraint rankings, would needed to evaluate the matrix NP.

5 Conclusion and challenges

In this article we investigated the role of cumiviéy in grammatical variation. We
distinguished two kinds of cumulativity: 1. ganging cumulativity (“Every constraint
matters!”) and 2. counting cumulativity (“Every craint violation matters!”). We
considered several stochastic generalizationsesktimotions. Several empirical studies
(experimental studies and a corpus study) pertgiturthe grammatical variation of genitive
constructions in English revealed that the wealonaif stochastic ganging-up cumulativity,
as well as stochastic counting cumulativity doesuocwhile there was no evidence for strong
ganging-up cumulativity®> Furthermore we compared two probabilistic geneaitins of
standard OT, Boersma’s Stochastic OT, and Maximuaitnopy models. Both models can
handle weak ganging-up cumulativity. MaxEnt models also handle counting cumulativity,
while StOT cannot. Finally, we compared the emplraredictions of these two models with
respect to the empirical data we considered bygustiandard learning algorithms. Both
approaches can model weak ganging-up cumulatithegts very well, while MaxEnt is
clearly superior when the data to be modeled dyspdainting cumulativity effects.

As argued in Goldwater and Johnson (2003) and J2668), MaxEnt models are
also preferable over other versions of probalxdli€tT for theoretical reasons. As sketched in
Section 2, the maximum entropy philosophy can bbevel@ from basic information theoretic
considerations. MaxEnt learning finds the probgpdistribution with the highest entropy
given the empirical observations (where only caastrviolation profiles can be observed).
Intuitively speaking, the entropy of a stochastiogess is a measure of its disorder or
unpredictability. Maximizing entropy given the emgal observations thus amounts to
finding a model that contains no more informatierofder) than what can be derived from
the data.

Last but not least, there are several provablyeobiearning algorithms around for
MaxEnt models, while the learning problem for daher version of probabilistic OT is still
open to date.

To summarize, we presented empirical argumentdththt notions of cumulativity are
needed to model grammatical variation adequatdiyn®available probabilistic
generalizations of OT, MaxEnt models implement iigsght in the most natural way.

Our results and conclusions have been challenge@tgus proponents of OT. The main
intention of this article is to make some intenmggtilata available to the community, and a
thorough discussion of the theoretical status afudativity goes well beyond the scope of
this paper. Nonetheless we would like to stateopimion about some of the points that came
up repeatedly in discussions so far.

1. No evidence for cumulativity has been brought forward so far - this isolated
phenomenan True, we are — to the best of our knowledgkefirst to put forward such
evidence in the context of OT syntax, but similai-aff points as to the length of
constituents have also been reported for word gydenomena in the English verb
phrase, as for example by Hawkins (2002) for pabalecomplement and adjunct
ordering, and by Gries (2003) and Lohse et al. 42@6r particle placement in verb-
particle constructions. Quinn (2004) has arguetittiexe is both ganging-up and

%3 See also Keller (2000), who found evidence for cumutgtivith respect to graded grammaticality judgments.



cumulativity for pronoun conjunction in English. Welieve that the major reason for the
lack of evidence for cumulativity is lack for lowlg for it (at the right places). Until
recently, variation of the more-or-less sort watsiole the OT framework, and the first
OT work on variation was to be found in the fieldpbonology (see e.g. Anttila 1997).
Only very recently, OT approaches have begun ttucasuch variation in the field of
morphosyntax (see Bresnan & Aissen 2002 for a pragratic sketch). So, why should
anyone start looking for a phenomenon before itieppo the theoretical framework?
There is a body of empirical work on grammaticalaton, but so far such studies have
been largely restricted to functionalist and/orisltguist work, and these fields
presumably did not worry about the theoretical iogilons of their work for OT
(functionalists and sociolinguists will most likempt have been aware of it at all).

. MaxEnt models are basically a version of Harmonic Grammar. The fatctgpology

that is predicted by HG is much more liberal than the predictionsioa@d the available
evidence suggest that OT is closer to the truth. So moving from&NAXENt might be
supported by the particular data you consider, but it leads to an overall exptgniass
that is not justified by a single studhis criticism involves aon sequitur The argument
against cumulativity based on factorial typologge($or instance Legendre et al. 2005)
applies to categorical data (and to our knowledgg  phonology — the issue is actually
open for syntax, but this is not our concern hash)le our investigation deals with
guantitative data. These are different issues.rm&etioned article (Legendre et al. 2005)
contains a lucid discussion of the pros and cori¢®fversus OT. In this connection the
authors write:

“One possibility is this. Knowledge relevant to langupgecessing may combine (i) a system of
constraints one might consider more strictly ‘gramaadit interacting exclusively or primarily via strict
domination, with (ii) a set of more pragmatically-basedstraints, reflecting more directly, perhaps,
statistical characteristics of experience, and intergin a less restricted manner, via arbitrarily wegght
constraints. The processgrammaticalizatiormay be one in which constraints effectively move fitbi
latter category to the former. The constraints irttiing in the HG analysis may constitute a mixture of both
types of constraints, while the constraints focused upomost OT studies may be more completely
contained in the ‘grammatical’ class.”

We agree that it is very well possible that sttistination holds for categorical data,
while quantitative data display both kinds of (wealkmulativity. So the argument of
explanatory strength does not necessarily carry fooen categorical to stochastic models.

We do think, furthermore, that quantitative da&ienportant, and if there is any
worth in the postulation of falsifiable theorielseh empirical evidence should be taken
seriously. It has recently been repeatedly strelsgditiguists working within a formal
theoretical framework that syntactic theory shcaddsolidly based on empirical evidence,
as evidenced in various conferences/workshops girieal linguistics/syntax in the past
two or three years. We regard our work in line vetich claims.

. Counting cumulativity can always be avoided by binarizing constraiviesdisagree for
two reasons.

- Theory parsimony: If two theories are identical in their empiricaegdictions, but the
one avoids counting cumulativity while the othes lfi@wver parameters, Occam's razor
favors the second one. This, appbeseris paribusalso to ganging-up cumulativity,
which can be simulated by a non-cumulative modaidigg constraint conjunction.
However, this technique proliferates the numbesarfstraints as well. So while StOT or
similar models could be “tuned” to handle cumulggivMaxEnt can do the same in an
arguably more parsimonious way.

- Restrictiveness:One might counter this argument by saying thatitihg counting
constraints as such constitutes a heavy complicatiohe theory, so that binarizing
constraints might be the smaller price to pay. Poimt of view has been defended by



McCarthy (2003) as well as by Paul Boersma (pHowever, a singl@-ary constraint

leads to more restrictive empirical predictionsthainary constraints. To stick to our
example, our MaxEnt analysis predicts that the gibdiby of theof-genitivestrictly
increases with the weight of the possed&tising binary constraints instead only predicts
weak monotonicity. Such a model would admit thestexice of languages where the
probability of the post-nominal genitive is congtan10% up to 5 premodifiers, jumps to
60% starting with 6 premodiers, remains constatit in premodifers and approaches
100% for higher values. In fact, McCarthy uses Bintonsiderations to show that
constraint evaluation must never involve countihgroy sort. Our data indicate though
that this is not a viable option if one wants tptoaae quantitative effects.

4. StOT is cognitively more realistic than MaxEnt, whatever the maitieahmerits of the
latter model may baVe disagree. There are two versions of this argiinmat we are
aware of, and we think that they are both invalid.

- Boersma and Levelt (2000) present a study where the acquisition of Dlitites
structure was simulated with StOT and the GLA. It turned out thairtfez of acquisition
of different syllable types in the simulation matches the order ichvibuitch infants
acquire these structure$his is in fact a very relevant result. HoweverJager (2003)
the experiment was replicated using MaxEnt andi&tstec Gradient Ascent (which is, as
mentioned above, virtually identical to the GLA egtthat it applies to MaxEnt rather
than to StOT). The findings of Boersma and Levatevalmost identically replicated, so
this does not help to distinguish between the twoeis

- StOT, as a version of OT, is related to connectionist models arefdheindirectly
to the structure of our brain, while MaxEnt is a pure data fittingakeVi is actually HG
that has a connectionist foundation. (Categoriddl)models can be seen a special case of
HG models where constraint weights grow expondwptidhe founders of OT are always
very careful to point out that strict dominatiom.j the exponential growth of constraint
weights, has no connectionist explanation s¥&o if the connectionist foundation of
HG/OT is taken as evidence for neurophysiologitalgibility, then the case for HG is
actually stronger than the case for OT, becaustatter restricts the class of underlying
networks in a (neurophysiologically!) unmotivatedywMaxEnt, as a probabilistic
version of HG, is thus at least as cognitively plale as StOT.
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