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1 Introduction 
 
Classical Optimality Theory in the sense of Prince and Smolensky (2004/1993) implements 
the intuition that grammars cannot count. The grammaticality of a candidate is fully 
determined by the ranking of the relevant constraints. Numerical constraint weights play no 
role. Furthermore, if a competition between two candidates is decided by a constraint c, it 
only matters which candidate violates c more often. The numerical proportions of the amount 
of constraint violations play no role for grammaticality. This feature of OT is usually called 
strict constraint domination. 

Several researchers have considered probabilistic generalizations of classical OT in 
recent years (see for instance Anttila 1997, Boersma 1998, Johnson and Goldwater 2003). It is 
common to these approaches that the evaluation component does not just assign categorical 
grammaticality values to the candidates (“grammatical” or “ungrammatical”), but rather 
probabilities which may  take real values between 0 and 1. It does not follow necessarily 
though that constraint violations can add up in a probabilistic version of OT. Different 
versions of Stochastic OT in fact differ as to whether they predict cumulativity effects in 
constraint evaluation. 

In this paper we show that cumulativity is necessary to account for probabilistic 
variation found in actual language use, and we compare the accuracy of the predictions that 
different versions of Stochastic OT make. We distinguish two versions of cumulativity, 
namely ganging-up cumulativity and counting cumulativity. We will compare how Paul 
Boersma’s version of Stochastic OT on the one hand and Maximum Entropy models on the 
other hand deal with cumulativity. The second part of the paper reports empirical data on 
English genitive variation. It turns out that both versions of cumulativity do obtain in the 
empirical data. In the last part of the paper we compare the predictions of the two theories 
with respect to this empirical domain. The Maximum Entropy model proves to be clearly 
superior, both with respect to the accuracy of its predictions and to its learnability properties. 
 
2 Cumulativity and Stochastic OT 
 
2.1 Two kinds of cumulativity 
In standard OT, the evaluation follows the slogan “The winner takes it all”. The optimal 
candidate is grammatical, and all sub-optimal candidates are ungrammatical. In a competition 
between two candidates, the constraints are evaluated one by one according to their strength, 
and once a competition is decided, lower ranked constraints have no impact on the outcome.  

Stochastic generalizations of OT have to reserve some probability mass to the loser, so 
to speak. In this setting the issue whether constraints and constraint violations can add up and 
have a cumulative effect arises anew. Different stochastic generalizations of OT vary in this 
respect. Before we look at these models though, let us first make precise what we mean by 
“cumulativity” in a probabilistic setting. 

There are actually two notions of cumulativity that standard OT rejects. One way in 
which OT is non-cumulative can, metaphorically speaking, be paraphrased as “Two weak 
constraints can never gang up to jointly beat a stronger constraint”. If a method of constraint 
evaluation does not follow this prinicple, we therefore talk about ganging-up cumulativity. 
The other notion of cumulativity pertains to the amount of violations of a constraint. OT 



 

follows the principle “A single violation of a stronger constraint is more severe than any 
amount of violations of a weaker constraint”. If this fails to hold, we talk about counting 
cumulativity . 

What would ganging-up cumulativity mean in a probabilistic setting? There are 
several options here. Generalizing from the categorical case, ganging-up cumulativity entails 
that the presence of a dominated constraint can matter. To see this point, consider the 
tableaux in (1). 
 
(1) 

 c1 c2 c3   c1 c2 c3 

a1  *   b1   * 
a2 *    b2 *   

  
 c1 c2 c3 

d1  * * 
d2 *   

 
Suppose the constraints are ranked as indicated, i.e., c1>c2>c3. Under categorical evalution, 
ganging-up cumulativity would obtain if a1 would be the winner of the first competition, b1 of 
the second competition, but d2 would win the third competition. The difference between the 
second tableaux and the third is that c2 is inactive in the former but active in the later. In both 
cases, c2 is dominated by an opposing constraint, but still the presence of c2 alters the 
outcome. We take this pattern to be the essence of ganging-up cumulativity. That several 
constraints can “gang up” is a side effect. If c2 allone would be sufficient to ensure the victory 
of the second candidate – i.e., if a2 would win the first competition – this would effectively 
mean that c2 dominates c1.  
 Given this, the generalization to probabilistic evaluation is straightforward. A method 
of stochastic constraint evaluation shows ganging-up cumulativity if it is possible that the 
presence of a dominated constraint increases the probability of the candidates that are optimal 
according to this constraint. 
 To make this formally precise, we have to pin down what it means for a constraint to 
be dominated, and we have to do this in a theory-independent way. This is not fully possible 
because the notions of constraint ranking and domination are something theory-internal. 
However, we can state a meta-theoretical constraint for all conceivable notions of constraint 
domination. We are using the notion of “weak domination” here, which includes the 
possibility of a tie between two constraints. Strong domination means that the first constraint 
weakly dominates the second one, but not the other way round. (A note on terminology: when 
we say that a constraint is active in a competition, we mean that it does not assign the same 
number of violations to each candidate, and a constraint is, of course, inactive iff it is not 
active.) 
 
Constraint 1 (Constraint domination): Suppose two competitions are identical except that 
the constraint c1 is only active in the first competition and c2 only in the second competition. 
Suppose furthermore that the candidate x is optimal according to c1, but not according to c2. 
If c1 weakly dominates c2, then the probability of x in the first competition must be at least as 
high as in the second competition. 
 
Probabilistic ganging-up cumulativity, as we conceive it, means that a strongly dominated 
constraint has an effect. Thus we define: 
 
Definition 1 (Ganging-up cumulativity): A probabilistic constraint evaluation method 
predicts ganging-up cumulativity iff the following situation is possible: 

1. Constraint c1 strongly dominates c2. 



 

2. The competitions A and B are identical (involve the same candidates, constraints, and 
constraint ranking) except that c2 is active in A but inactive in B. 

3. The candidate x, which is part of both A and B, is optimal according to c2 but not 
according to c1. 

4. The probability that the evaluation assigns to x relative to A is higher than the 
probability that it assigns to x relative to B. 

 
In a categorical context, i.e., if all probabilities are either 0 or 1, this notion of ganging-up 
cumulativity reduces to the standard notion (provided the constraint above is fulfilled). So 
even though the definition does not, strictly speaking, involve a “ganging-up” of several 
constraints, it is a genuine probabilistic generalization of the categorical notion of ganging-up 
cumulativity. 
 
Paul Boersma (p.c.) suggests another probabilistic notion of ganging-up cumulativity. 
Consider again the tableaux in (1). As said above, in a non-probabilistic setting, ganging-up 
cumulativity would obtain for instance if a1 would win the first competition, b1 the second, 
but d2 the third (provided the constraint ranking is kept constant across the competitions). 
According to Boersma’s notion, a probabilistic evaluation displays ganging-up cumulativity if 
for each ε, there is a ranking such that, P(a2|{a1,a2}) < ε, P(b2|{b1,b2}) < ε, but P(d2|{d1,d2}) > 
1-ε. We might call this notion of cumulativity strong ganging-up cumulativity , while the 
one that was defined in Definition 1 is fittingly dubbed weak ganging-up cumulativity. 
These names are appropriate because strong ganging-up cumulativity entails categorical 
ganging-up cumulativity, which in turn entails weak ganging-up cumulativity. Weak ganging-
up cumulativity, finally, does not entail strong ganging-up cumulativity.  
 In the remainder of this paper, we will exclusively be concerned with weak ganging-
up cumulativity. Therefore we do not give a formally precise definition of the strong notion 
here. 
 
Let us now turn to counting cumulativity. Consider the tableaux in (3): 
 
(3) 

  c1 c2   c1 c2 

� a1  *  b1  *** 
 a2 *  � b2 *  

 
Suppose a1 would win the first competition while b2 would win the second. This would be an 
instance of counting cumulativity. In general, counting cumulativity admits that a single 
violation of a constraint c1 is less severe than a single violation of c2, but n violations of c2 
(for some n>1) are more severe than a single violation of c1. 
 The essential point here is that both constraints define isomorphic orderings in both 
competitions, while the concrete numerical values differ. In standard OT, this should never 
make a difference. In a system with counting cumulativity, it could make a difference. In the 
categorical setting, “to make a difference” means “switching from ungrammatical to 
grammatical”. This can be generalized to the probabilistic setting. Here, to make a difference 
simply means to change the probabilities that the evaluator assigns. This leads to the 
following definition: 
 
Definition 2 (Counting cumulativity): A probabilistic constraint evaluation method predicts 
counting cumulativity iff the following situation is possible: 

1. The two competitions A and B are completely identical except that the constraint c1 
assigns more violation marks to the candidate x in A than in B. 

2. Despite this difference, c1 induces the same ranking of candidates on A as on B. 
3. The evaluation assigns a higher probability to x in A than in B. 



 

 
If the range of possible probabilities is restricted to 0 and 1, the definition covers categorical 
counting cumulativity as a special case. 
 
2.2  Boersma’s Stochastic OT 
We will only give a brief sketch of Boersma's model here – the interested reader is referred to  
Boersma and Hayes (2001) for a more thorough introduction. StOT shares the generator 
component with standard OT. It also uses a set of ranked and violable constraints as the basis 
for grammatical evaluation. The constraints are not ranked on an ordinal scale though, but 
each is assigned a real number on a continuous scale, its rank. This way it is possible to speak 
of the distance between two constraints in a meaningful way. In each evaluation event, some 
random noise is added to each constraint rank. The ranking of a constraint after adding the 
noise is called the selection point. The constraints can be ordered according to the value of 
their selection points, and this ordering can be used as ranking in the standard OT sense. 
However, adding the noise value to the ranks of the constraint may change their ordering, so 
the ranking of selection points may differ from evaluation to evaluation. In this way the 
ranking on the continuous scale defines a probability distribution over ordinal rankings. This 
in turn defines a probability distribution over the set of candidates – the probability of a 
candidate to be optimal is the sum of the probabilities of all ordinal rankings that make it 
optimal. The noise that is added to each constraint rank is a normally distributed random 
variable with mean 0 and standard deviation 1. The probability of a constraint ranking c1 > 
c2>...> cn can thus be given by the following formula (where r i is the rank of constraint ci and 
N is the standard normal distribution): 
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A StOT grammar adequately describes a language if it assigns probabilities to the linguistic 
signs (sentences, syllable structures or whatever) in the corpus that match with their empirical 
relative frequencies in this language. If the distances between the ranks of the constraints are 
very high, the probability of the ordinal ranking that matches the ordering of the ranks 
converges towards 1. Standard OT, where there is only one ranking, can thus be seen as a 
borderline case of StOT. 

StOT predicts (weak) ganging-up cumulativity. Consider a situation where we have 
three constraints, c1,  c2, and c3, and two candidates, a and b, such that  c1(a) < c1(b), c2(a) > 
c2(b), and c3(a) > c3(b). (We construe constraints as functions from candidates to numbers of 
violation marks here. Hence an expression like “c1(b)” denotes the number of violation marks 
that c1 assigns to b.) Suppose all three constraints are equally ranked. Then each ordinal 
ranking between them is equally likely. There are two rankings where c1 is the strongest 
constraint, and four where one of the other two wins. Hence P(a) = 1/3 and P(b) = 2/3. Now 
suppose c1 is promoted by a very small amount. Then it will be the strongest constraint, but if 
the promotion step is small enough, the probabilities of a and b are still very close to 1/3 and 
2/3 respectively. To make the argument mathematically water-proof, suppose we have an 
infinite descending sequence of rankings for c1 which converges towards the ranking of c2 and 
c3. Since the function that maps vectors of ranks to probabilities in StOT is continuous, the 
probabilities of a and b will converge to 1/3 and 2/3 respectively. Hence there are rankings 
where c1 is the highest ranked constraint but P(a) < 50%. Technically, if c1 would only 
compete with c2, it would win with a probability of > 50%, but in a competition with both c2 
and c3 it wins with less than 50% probability. So while c3 is dominated by c1, it still has an 
impact on the probabilities that are assigned. 



 

It can also be seen from this discussion that StOT does not predict strong ganging-up 
cumulativity. The probability of a will always be > 1/3, so a value of 0.2 for ε would falsify 
strong ganging-up cumulativity. 

StOT does not predict counting cumulativity either. The probability of a candidate is 
defined indirectly, via probabilities of categorical OT-competitions. Since categorical OT 
does not have counting cumulativity, StOT does not predict it either. 
 
2.3 Maximum Entropy models 
Goldwater and Johnson (2003) compare StOT with Maximum Entropy models (or, as they are 
sometimes called, log-linear models) that are state of the art by now in computational 
linguistics (see for instance Berger et al. 1996 or Abney 1997). Let us briefly explain what 
“maximum entropy” means. 

Suppose we know that a certain experiment has two possible outcomes, A and B, but 
we do not know anything else about it. Which probability should we assign to A and B? The 
best answer seems to be: 50% probability for each. Likewise, if there are five possible 
outcomes, A, B, C, D and E, the best estimate is to assign 20% to each if we don't have further 
information. Every other distribution of the probability mass would represent a bias which is 
not supported by knowledge. And if we also know that the outcome will be A or B with a 
probability of 70%, then the least biased estimate is to assign 35% to both A and B, and 10% 
to each of the three other events. There is a clear intuition that the least biased hypothesis is 
the most parsimonious one. 

The information theoretic notion of entropy quantifies the bias of a probability 
distribution. The entropy H of a probability distribution p is defined as 
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The least biased distribution has the highest entropy, and vice versa. If we have partial 
knowledge about a stochastic process and we have to estimate the underlying probability 
distribution, the best guess is to choose among all distributions that are compatible with our 
knowledge the one with the highest entropy. 
 Let us assume that the unknown probability distribution is a language L in the sense of 
probabilistic OT, i.e., a probability distribution over a set of input-output pairs. We know the 
set GEN of possible elements of the language (the generator) and a set of constraints. We also 
know how many violations each constraint incurs on each candidate, the marginal 
probabilities of the different inputs, and – crucially – we know how often each constraint is on 
average violated per input in the language in question.1 This may be the result of investigating 
a large sample of L, but the only empirical facts we are able to observe are the inputs and the 
number of constraint violations of each observation. So we are looking for a relative 
probability distribution over the potential output for each input which predicts the correct 
average degree of violation of each constraint, and among all distributions with this property, 
we will choose the one with the highest entropy. It can be shown (see for instance Della Pietra 
et al. 1995 for a proof) that this distribution takes the following form: 
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where Zr(i) is a normalization constant which ensures that the probabilities of all candidates 
sum up to 1. It holds that 
                                                
1Note that we do not claim that this information is available to the learner. Rather, this is the kind of information 
that is (ideally) available to the linguist, and it can be used to test the adequacy of theoretical models. 
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Taking the logarithm on both sides yields 
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So the logarithm of the probability of a candidate is a linear function of its constraint 
violations. (Therefore these probability distributions are called “log-linear”.) Of course there 
are infinitely many log-linear distributions, depending on the values of the rank parameters r j. 
Della Pietra et al. (1995) also show that among all these log-linear distributions, the one 
which maximizes the likelihood of the language L is the one which assigns the correct average 
degree of violations to each constraint. In other words, the unique log-linear distribution 
which assigns maximal likelihood to L is at the same time the unique distribution with the 
empirically correct predictions of average constraint violations that maximizes entropy. 
 The parameters r j, the weights or ranks of a constraint, can be interpreted as measures 
of the perplexity that the constraint induces. (Technically, the weight is actually related to the 
logarithm of this perplexity.) The higher the rank of a constraint, the more surprised (or 
“perplex”) I will be to see it violated, judging from the experience from the training corpus. 

It is worth noting that the predecessor of Optimality Theory, Harmonic Grammar 
(HG henceforth, see Legendre et al. 1990) has a very similar mathematical setup to MaxEnt 
models. In HG, each constraint has a numerical weight (analogous to the rank of constraints in 
MaxEnt models), and the harmony of a candidate is the negated weighted sum of its 
constraint violations. The winner of a competition is the candidate with the highest harmony. 
The harmony of a candidate thus differs from the logarithm of its probability under the 
MaxEnt interpretation only by the constant Zr(i). Since this constant is identical for all 
candidates in a competition, the winner under the HG interpretation is always the candidate 
with the highest probability under the MaxEnt interpretation.  
 Despite their similarity, the motivations for the two models are very different. MaxEnt 
models are derived from first principles of information theory, while HG models are a high 
level description of a certain class of connectionist networks. While this kinship has been 
noted before (Johnson 1998), we are not aware of further explorations of this connection.2 

The general setup of a maximum entropy model is also quite similar to a StOT 
grammar. The main difference between StOT and MaxEnt is the evaluation component, 
i.e., the way in which constraint ranks are interpreted as a probability distribution. Like StOT, 
MaxEnt models can be seen as a generalization of standard OT. If the ranks (or “weights”, as 
the parameters r are usually called in the MaxEnt tradition) of the constraints are very high 
and spread far apart, the probabilities of candidates that would be sub-optimal in classical OT 
converge towards 0 in the MaxEnt interpretation. 
 It follows from the definitions that MaxEnt evaluation predicts ganging-up 
cumulativity in its weak and strong form, as well as counting cumulativity. As for weak 
ganging-up cumulativity, consider the scenario in (1), which is repeated here as (4) for 
convenience. 
 
(4)  

 c1 c2 c3   c1 c2 c3 

a1  *   b1   * 
a2 *    b2 *   

  

                                                
2The restriction to positive weights is no serious restriction. A constraint with negative weight is equivalent to its 
negation with the corresponding positive weight, and a constraint with weight 0 is as good as non-existent. 



 

 c1 c2 c3 

d1  * * 
d2 *   

 
 
 
Suppose r1=3 and r2=r3=2. Then the probabilities of a1 and b1 are both e-2/( e-2+e-3)≈73%, 
and the probability of d1 is both e-4/(e-3+e-4))≈27%. So if everything else remains equal, 
activating c3 has an impact even though it is dominated by c1. 
 Now suppose the same constraints, but the weights are 3k and 2k instead of 3 and 2, 
for some positive constant k. Consider the scenario in (4) again. If k grows to infinity, the 
probability of a1 and b1 converges to 1, while the probability of d1 converges to 0. This 
illustrates that MaxEnt evaluation also predicts strong ganging-up cumulativity.3 
 Finally, consider the tableaux in (5). 
 
(5) 

 c1   c1 

a1 *  b1 ** 
a2   b2  

  
 
Suppose r1=log 2. Then the probabilities of a1 and b1 are 1/3 and 1/5 respectively. Hence 
MaxEnt evaluation predicts counting cumulativity. 
 As a side remark: (5) also illustrates another important difference between StOT and 
MaxEnt: a1 is harmonically bounded. Therefore it would have probability 0 under StOT. 
MaxEnt, however, assigns a non-zero probability to it. Generally, no candidate is ever strictly 
speaking impossible under MaxEnt. We will return to the issue of harmonic bounding later. 
 
3 Empirical evidence for cumulativity: English genitive variation 
 
In this section we will show that we actually need cumulativity to describe empirical facts 
adequately, and which versions of cumulativity are necessary. 

Our study deals with English genitive variation, which represents a case of 
grammatical variation in the noun phrase. In English, very often the s-genitive (the king’s 
palace) and the of-genitive (the palace of the king) can be used to express a possessive 
relation. 
 
 

English genitive variation 
s-genitive of-genitive 

possessor POSS ’s possessum 
(head) 

possessum (head) of possessor 

the king ‘s palace the palace of the king 
 
However, the choice between these two genitives is not random, but determined by various 
factors. These factors do not determine categorically which construction is to be used, but 
rather the likelihood with which the two genitives are used, i.e., their frequency distribution. 
Therefore, English genitive variation represents a case of probabilistic variation.4  

                                                
3 Paul Boersma (p.c.) pointed out to us that StOT and MaxEnt make different predictions with regard to strong 
ganging-up cumulativity, even though they behave similar with respect to the weak notion. 
4 Note that only determiner s-genitives (the girl’s eyes) and of-genitives where the possessor is a complement 
(the frame of the chair) were compared in this study. Possessors functioning as modifiers (women’s magazines, a 



 

In Rosenbach (2002) three such factors were investigated in an experimental study, i.e., 
animacy, topicality, and possessive relation, and the results provide evidence for ganging-up 
cumulativity. In Rosenbach (2003) the factors animacy and weight were compared in an 
experimental study as well as a corpus analysis. The results of this study provide evidence for 
counting cumulativity. In the following, we will report the rationale and findings of these two 
studies and point out in how far they provide evidence for cumulativity. 
 
 
 
3.1 Ganging-up cumulativity 
Animacy, topicality, and the type of the possessive relation are well-known factors 
determining the choice of genitive construction (see e.g. Altenberg 1982; Quirk et al. 1985; 
Jucker 1993; Taylor 1996; Leech et al. 1994; Anschutz 1997; Biber et al. 1999; Huddleston & 
Pullum 2002). Table 1 illustrates how these factors affect English genitive variation:5 
 

factors preference for the s-genitive preference for the of-genitive 
animacy [+ animate] possessor:  

the boy’s eyes > the eyes of the boy 
[-animate] possessor:  
the frame of the chair > the chair’s frame 

topicality  [+topical] possessor: 
the boy’s eyes > the eyes of the boy 

[-topical] possessor: 
the headlamps of a car > a car’s headlamps 

possessive 
relation6 

[+ prototypical] possessive relation: 
the boy’s eyes > the eyes of the boy 

[- prototypical] possessive relation: 
the condition of the car > the car’s condition 

Table 1: Animacy, topicality, and possessive relation as factors determining English genitive 
variation 

 
In general, the s-genitive is preferred if the possessor is animate, topical, or in a prototypical 
possessive relation. If not, the of-genitive appears to be the preferred choice. The example of 
the boy’s eyes illustrates an important methodological problem: The factors animacy, 
topicality, and possessive relation correlate to quite an extent with each other. Usually, topics 
are animate, and prototypical possessors are animate. So, in the example of the boy’s eyes it is 
very difficult to tell whether the s-genitive is preferred because the possessor the boy is 
animate, or, as a definite noun phrase, high in topicality,7 or because the kin relation 
represents a prototypical possessive relation. That is, when the three factors cluster, we simply 
cannot tell how the three factors contribute to the choice of the s-genitive. For this reason, 
these three factors need to be teased apart in the empirical analysis. 
 This was done in an experimental study in Rosenbach (2002). In a questionnaire, 
subjects were presented with little text passages adapted from crime fiction novels which 
provided contexts for genitive constructions, and subjects had to choose then as 
spontaneously as possible to use the s-genitive or the of-genitive in the given contexts. Here’s 
an example from the questionnaire to illustrate the task: 
 
(6)  He passed through the entrance where a sign identified the park as Island Gardens. At its far west end, 

a circular brick building stood, domed in glass and mounted by a white and green lantern cupola. A 

                                                                                                                                                   
man of honour) were systematically excluded from this study, as they are not subject to the same systematic 
variation. 
5 A first analysis of the single factors animacy, topicality, and possessive relation in Rosenbach (2002) 
confirmed this pattern.  
6 Note, that the factor of ‘possessive relation’ is notoriously difficult to define (cf. also Rosenbach 2002: §4.3). 
The Rosenbach (2002) study follows Koptjevskaja-Tamm’s (2001) binary classification of possessive relations 
into prototypical and non-prototypical ones for the languages of Europe, with the former comprising kin 
relations, body parts, and legal ownership. For further details pertaining to this classification, we again refer to 
Rosenbach (2002: §6.2.2). 
7 The factor of topicality was defined both in terms of definiteness and discourse givenness in this study (for 
further details see again Rosenbach 2002:112-113). 



 

movement of white shimmered against the red bricks, and Lynley saw Jimmy Cooper trying [the door of 
the building/ the building’s door].                                    (Elizabeth George, Playing for the Ashes, 585) 

 
Crucially, only such contexts were chosen where both the s-genitive and the of-genitive are 
possible; note that this is not always the case.8 So, for example, indefinite possessive NPs 
cannot be expressed by the (determiner) s-genitive since the possessor renders a possessive 
NP definite (cf. e.g. Huddleston 1984:253; Lyons 1989, 1999:23), even if the possessor itself 
is indefinite (Woisetschlaeger 1983); see e.g. a book of a teacher ≠ a teacher’s book (‘the 
book of a teacher’).   

To test for the relative strength of the factors animacy, topicality, and possessive 
relation all logically possible combinations of the 3 factors were tested, resulting in 8 
conditions to be tested. There were at least 10 items per conditions, in all 93 items were 
tested. Table 2 illustrates what the conditions and items looked like: 
 

[+animate] [-animate] 
[+topical] [-topical] [+topical] [-topical] 

[+proto] [-proto] [+proto] [-proto] [+proto] [-proto] [+p roto] [-proto] 
the boy’s 
eyes/ the 
eyes of 
the boy 

the 
mother’s 
future/ the 
future of 
the mother 

a girl’s 
face/ the 
face of a 
girl 

a 
woman’s 
shadow/ 
the 
shadow of 
a woman 

the 
chair’s 
frame/ the 
frame of 
the chair 

the bag’s 
contents/ 
the 
contents 
of the bag 

a lorry’s 
wheels/ 
the wheels 
of a lorry 

a car’s 
fumes/ 
the 
fumes of 
a car 

Table 2: Experimental study (Rosenbach 2002): conditions and items 
 
Note, that in Table 2 the factors are already arranged in such a way that stipulates animacy as 
the most important factor, followed by topicality, and then possessive relation. If this 
hierarchy holds true, we’d expect the s-genitive to become less frequent from left to right. 
Figure 1 shows the results for the British subjects.9  

First of all, we can notice that the relative frequency of the s-genitive decreases steadily – 
and significantly – from left to right, except for the difference between the last two conditions, 
which is random.10 Therefore, the relative importance of the three factors is indeed:11  
 
(7) animacy > topicality > possessive relation 
 
Note, however, that animacy is not per se the strongest factor. While for the first three 
animate conditions the s-genitive is always preferred to the of-genitive, irrespective of the 
values for topicality and possessive relation, this picture changes in the fourth animate 
condition (the a woman’s shadow type). Here the possessor is not topical and the possessive 
relation is a non-prototypical one, i.e. both the values for topicality and possessive relation 
favor the of-genitive in this case. And indeed we can see that the of-genitive becomes the 

                                                
8 While it is certainly interesting to know in which contexts the s- and the of-genitive are used categorically, it 
would be fatal for any study of genitive variation to include such contexts in the empirical analysis, since this 
would seriously confound the quantitative results. 
9 The same items were tested with 48 American English subjects. Since the general pattern is essentially same as 
for the British speakers, the results for the American English group will be neglected here. 
10 Most likely, the difference between the last two conditions is random is because they represent the ‘worst’ 
context for the occurrence of the s-genitive. At the lower end of the scale, subjects might have been simply more 
insecure in their choices. Note also that non-topical, inanimate possessors are particularly prone to receive a 
compound interpretation instead of a phrasal (determiner) reading. Although the contexts had been carefully 
chosen as to force a specific interpretation of the possessor, it cannot be completely ruled out that subjects may 
have interpreted a lorry’s wheel as a [lorry’s wheel] instead of [a lorry’s] wheel. For further discussion on the 
deviate behavior of the last two conditions see Rosenbach (2002:171-176). 
11 For the statistical analyses we refer to Rosenbach (2002). Note also, that Figure 1 shows that the three factors 
are separate (if naturally correlating with each other), i.e., none can be reduced to the other(s). 



 

preferred option here (57%): the shadow of a woman is more frequent than a woman’s 
shadow.  So, although individually, topicality and possessive relation are weaker constraints  
on the choice of s-genitive they can both together ‘knock out’ animacy. This is clear evidence 
for ganging-up cumulativity. 
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Figure 1: Animacy, topicality, and possessive relation – results of experimental study,  
British subjects (n=56), absolute number of token given in brackets above each  column 

 
3.2 Counting cumulativity 
In Rosenbach (2003) the relative strength of the factors animacy and weight were compared. 
Among the factors determining English genitive variation, syntactic weight is certainly 
another important one. Weight can be defined in two ways: If we only look at the weight of 
the possessor (= absolute weight), we can notice that the s-genitive is preferred if the 
possessor is short (cf. Biber et al. 1999: 304-5). If we also take a look at the relative weight 
between possessor and possessum, then the prediction is that possessives should show a 
preference for ‘short before long’, following Behaghel’s (1909/10) Gesetz der wachsenden 
Glieder.12 This predicts the s-genitive to be preferred with a short possessor (and a long 
possessum), as in John’s two elder brothers, while the of-genitive should be preferred with a 
long possessor and a short possessum, as in the house of the London real estate agent John 
Miller .  Note, however, that there is also a correlation between animacy and weight: Animates 
tend to be shorter than inanimates (see e.g. Wedgwood 1995, cited in Kirby 1999: 118-9), so, 
again, it is difficult to tell whether in examples such as John’s mother the s-genitive is chosen 
because the possessor John is animate or because it is short.13 Again, the two factors need to 
be teased apart. To this end, another experimental study was carried out in Rosenbach (2003), 
which was basically identical in design to the Rosenbach (2002) study, if, naturally, differing 
in the conditions to be tested.  Most crucially, animacy and weight were teased apart, 
comparing two conditions where animacy and weight do not go together, i.e. a long animate 
possessor (& short possessum), as in the dark man’s hand, and an inanimate short possessor 

                                                
12 As far as we are aware of, this question has only been addressed by Altenberg (1982) in his study of genitive 
variation in 17th-century English. For an analysis of the impact of relative weight on modern English genitive 
variation, see Rosenbach (2003). 
13 Given the correlation between animacy and weight, Hawkins (1994: 337) even speculates that animacy is an 
epiphenomenon of weight. For a refutation, see Rosenbach (2003). 



 

(& long possessum), as in the hotel’s elegant lobby; there were also two baseline conditions 
which were neutralized as to weight, see Table 3.14 
 

animate inanimate 
neutral long possessor/short head short possessor /long 

head 
neutral 

the boy’s eyes/ the 
eyes of the boy 

the dark man’s hand/ the 
hand of the dark man 

the hotel’s elegant lobby/ 
the elegant lobby of the 
hotel 

the chair’s frame/ 
the frame of the 
chair 

Table 3: Experimental study: animacy vs. weight – conditions and items (at least 10 items per 
condition) 

 
If animacy is a stronger factor than weight, then the s-genitive should be more frequent with 
the dark man’s hand than with the hotel’s elegant lobby. If, however, weight is stronger than 
animacy, it should be the other way round, i.e., the s-genitive should be more frequent with 
the hotel’s elegant lobby than with the dark man’s hand.  
 A questionnaire study with 39 American subjects revealed the following results, see 
Figure 2:  

animacy and weight: experimental study
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Figure 2: Experimental study: relative frequency of the s-genitive and the of-genitive   

 (number of subjects: N = 39); absolute number of tokens given in brackets above each 
column 

 
Figure 2  clearly indicates that animacy is a stronger factor than weight, since the s-genitive 
(64.2%) is more frequent in the animate long/short condition (e.g. the dark man’s hand) than 
in the inanimate long/short condition (the hotel’s elegant lobby), 37.4%. Moreover, the s-
genitive is also more frequent than the of-genitive in the animate long/short condition, i.e., it 
is more likely to use the dark man’s hand (64.2%) than the hand of the dark man (35.8%). 
Note, however, that in this experimental study a long possessor was invariably defined by 
being premodified by 2 elements, a determiner and an adjective, as in the dark man’s hand. 
But what about longer possessors? Is animacy per se the stronger factor no matter how long 
the possessor is? To test for this question some additional data from the British component of 

                                                
14 Note, that only premodifying elements were considered here. As argued by Altenberg (1982), only 
premodification is a manifestation of weight in the sense of length (i.e. number of words) while 
postmodification, consisting of syntactically far more complex constructions (e.g. clauses) are rather a 
manifestation of syntactic complexity. In this respect, weight is defined here in terms of length. 



 

the International Corpus of English (ICE-GB) was analyzed. Figures 3a and 3b shows the 
relative frequency of the s-genitive and the of-genitive according to the number of 
premodifiers to the possessor, Figure 3a for human possessors, and Figure 3b for inanimate 
possessors.15 
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Figure 3a: Weight and animacy of the possessor in the ICE-GB (absolute number of tokens 
indicated in brackets above each column): human possessors  

 

                                                
15 As in the experimental study, only genitive constructions where both the s-genitive and the of-genitive could 
be used were considered here. Also, only premodification was considered and any postmodification was left out. 
To control for relative weight, premodified heads were systematically excluded. Note also, that only a subcorpus 
of all possessive NPs in the ICE-GB was considered here, i.e., definite possessive NPs where the possessor was 
either a proper noun or definite common noun. For further details on the data set and the analysis, see Rosenbach 
(2003). 
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Figure 3b: Weight and animacy of the possessor in the ICE-GB (absolute number of tokens 
given in brackets above each column): inanimate possessors  

 
First, we can notice that the s-genitive becomes less frequent the longer the possessor is, for 
both human and inanimate possessors. For inanimate possessors, the s-genitive is always less 
frequent than the of-genitive, no matter how short the possessor is. For human possessors, 
however, it depends on the number of premodifiers whether the s-genitive or the of-genitive is 
preferred. For possessors premodified by up to two elements, the s-genitive is preferred. That 
is, the other person’s nose is still more likely than the nose of the other person. This 
corresponds to the finding of the experimental study reported above, where the dark man’s 
hand was preferred to the hand of the dark man. For any longer possessor, however, the of-
genitive becomes very clearly the preferred choice. So, a four-word possessor as in the right 
honourable gentleman’s policy is much more likely to be expressed by a corresponding of-
genitive (the policy of the right honourable gentleman). Note, however, that such long 
premodified possessors were as such a very infrequent context in the corpus (both in the s-
genitive as well in the of-genitive), and the contexts of more than 3 premodifiers were so 
rarely represented in the corpus that they were not quantified. However, if such possessives 
occur, then the of-genitive is by far the more frequent construction, so the same pattern holds. 
So, we can notice the following factor hierarchy:  
 

• animacy > weight: for possessors premodified by up to 2 elements 
• weight > animacy: for possessors premodifed by 3 or more elements 

 
To conclude, the relative strength of animacy and weight is not absolutely fixed but depends 
on the particular weight of the possessor (which is defined gradually here in terms of number 
of words).16 This is evidence for counting cumulativity 
 

                                                
16 Different definitions of weight are on the market. See however Wasow (1997, 2002) for arguing that the 
various definitions of weight (as e.g. number of words/phrases/nodes) reveal basically the same results. By now, 
such an orthographical definition of weight has become the established operational definition of syntactic weight 
in the literature. 



 

Note, finally, that the preferences for the two genitives in the tested contexts for both ganging-
up and counting cumulativity are not meant to be absolute but only hold for the contexts 
tested. We do, for example, not claim that any 3-word possessor is preferably realized by the 
s-genitive. It is well possible that for different contexts the preferences shift. So, for example, 
the context of a 3-word possessor might well be preferably realized by the of-genitive, if the 
possessor is indefinite (the hand of a dark man/a dark man’s hand), or if the possessive 
relation is not a prototypical one (the future of the dark man/the dark man’s future). What is 
crucial for the present argumentation is that in the contexts tested (which we take to be 
empirically valid contexts, if not covering all possible contexts) such cumulativity effects do 
occur – and hence need to be accounted for.  
 
4 Comparison 
The results from the last section indicate that an adequate modeling of grammatical variation 
requires both kinds of cumulativity. In this respect MaxEnt models seem to be better suited 
for this task than StOT. In this section we investigate how well these two approaches are able 
to model the empirical data from the last section exactly. There are learning algorithms both 
for StOT and for MaxEnt on the market that induce constraint rankings from corpora. The 
acquired constraint rankings in turn define a probability distribution, and this distribution can 
be compared with the empirical distribution from the experiments and the corpus study. 
 
4.1 Ganging-up cumulativity 
In the first pair of experiments, we used the results from the experimental study from 
Rosenbach (2002) (see Figure 1) as a training corpus. The generator thus contains eight inputs 
(all configurations of the three binary features animacy, topicality and possessive relation), 
and two outputs for each input, namely the prenominal (> s-genitive) and the postnominal 
construal (> of-genitive). We adopted the OT-system for the analysis of these constructions 
that was proposed by Aissen and Bresnan (2002). Using the technique of Harmonic 
Alignment, Aissen and Bresnan derive 12 constraints that are relevant here, one for each 
combination of an input feature with an output feature. The constraints take the form “Avoid 
+anim prenominal possessors” etc. We abbreviate them as “*+a/s”, “*+a/of” etc. 
 
4.1.1 Predictions of StOT 
Boersma (1998) developed the Gradual Learning Algorithm (GLA), an algorithm that induces 
stochastic constraint rankings from a frequency distribution over the set of input-output pairs 
(provided the constraints are known). We simulated a training corpus by drawing 100,000 
samples according to the empirical frequency distribution.17 The GLA acquired the following 
constraint ranking: 

 
*+a/s -2.17 
*+a/of 2.17 
*-a/s 2.76 
*-a/of -2.76 
*+t/s -1.26 
*+t/of 1.26 
*-t/s 1.85 
*-t/of -1.85 
*+p/s -0.65 
*+p/of 0.65 
*-p/s 1.24 
*-p/of -1.24 

 

                                                
17 The plasticity value was 0.01, and we kept it constant. The initial value of all constraints was 0. 



 

 
This constraint ranking defines a probability distribution over the possible outputs for each 
input. It is not possible though to determine these probabilities analytically. Therefore we 
used a random generator to estimate their values. The results are shown in Figure 4. 
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Figure 4: Animacy, topicality, possessive relation: predictions StOT 
 
The ganging-up cumulativity pattern is very clear here. Notably, for the input combination 
+a/-t/-p the of-genitive is the preferred option, even though +a generally favors the s-genitive, 
and the animacy related constraints are each stronger than every other constraints. A 
comparison with Figure 1 reveals that the predictions fit the empirical data rather well. A 
standard tool to measure the difference between two probability distribution is the Relative 
Entropy (also called Kullback-Leibler distance, see for instance Cover and Thomas 1991). 
Here the entropy of the prediction relative to the empirical distribution is about 0.0121 bit, 
which is a comparatively low value. 
 
4.1.2 Predictions of MaxEnt 
There are several standard machine learning algorithms around that can be applied to induce 
constraint weights in a MaxEnt model. It is worth noting that Boersma's GLA can be applied 
almost unchanged to MaxEnt models. In the context of these models (but not in the context of 
StOT), the GLA belongs to the family of “Stochastic Gradient Ascent” algorithms that are 
frequently used in machine learning, especially for the training of neural networks (see 
Mitchell 1997 and the references cited therein).18 Fischer (2005) proves that Stochastic 
Gradient Ascent is a proper learning algorithm for MaxEnt models in the sense that the 
algorithm approximates the probability distribution that is defined by the “teacher”'s grammar 
with arbitrary precision provided the training corpus was generated by a MaxEnt grammar.19 
 Based on the same training data and the same constraint set that were used in the 
previous subsection, this algorithm acquired the following constraint weights:20 
 
                                                
18To be precise, the GLA is a stochastic gradient ascent algorithm as long as all constraints are binary. When 
counting constraints are used, the two algorithms differ slightly. See Jäger (2003) for a detailed discussion.  
19A similar proof for the correctness of the GLA for StOT does not exist so far. 
20 Here the initial value of all constraint weights was set to 10. 



 

  
*+a/s 9.476 
*+a/of 10.524 
*-a/s 10.644 
*-a/of 9.356 
*+t/s 9.746 
*+t/of 10.254 
*-t/s 10.374 
*-t/of 9.626 
*+p/s 9.895 
*+p/of 10.105 
*-p/s 10.225 
*-p/of 9.775 

 
As in the previous experiment, animacy turns out to be the strongest factor, followed by 
topicality and possessive relation, and for all three features, the value “+” favors the s-genitive 
and vice versa. The absolute values of the StOT model and the MaxEnt model cannot really 
be compared because the evaluation procedure is different.  

From a vector of constraint weights in the MaxEnt setting, it is possible to determine 
the predicted probabilities of the different outputs relative to the inputs simply by applying the 
definitions. The results are given in Figure 5. 
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Figure 5: Animacy, topicality, possessive relation: predictions MaxEnt 
 
Again we find a well-articulated ganging-up cumulativity pattern. The predictions fit the data 
even better here than in the previous experiment; the Kullback-Leibler divergence between 
the MaxEnt predictions and the empirical data is only 0.00472 bit. 
 
4.2 Counting cumulativity 
We conducted two analogous experiments using the counting cumulativity data from Section 
3.2 (Figures 3a and 3b). Here the correlation between animacy, weight and the choice of the 
syntactic construction is to be modeled. There are eight possible inputs. The possessor can be 
either human or inanimate, and it can have 0, 1, 2 or 3 premodifiers. There are again two 
outputs for each input, the s-genitive and the of-genitive. The training samples were drawn at 



 

random according to the empirical frequencies of these 16 possible patterns in the ICE-GB 
corpus. The correlation of animacy and the choice of genitive construction was again modeled 
by means of the four alignment constraints *+a/s, *+a/of, *-a/s, and *-a/of.21 To take the 
potential correlation between weight and the choice of genitive construction into account, we 
assumed another constraint, *s, which penalizes heavy prenominal genitives. The degree of 
violation of this constraints depends on the weight of the possessor. Put simply, each 
premodifier violates this constraint once. This is illustrated in the following tableaux. 
 

 *s 
Pauline’s birthday  
the birthday of Pauline  
the doctor’s daughter * 
the daughter of the doctor  
the other person’s nose ** 
the nose of the other person   
the right honourable gentleman’s policy *** 
the policy of the right honourable 
gentleman 

 

 
4.2.1 Predictions of StOT 
As in the previous experiment, the GLA was fed with 100,000 samples from the 16 possible 
input-output pairs according to the empirically determined probability distribution. The 
acquired constraint ranking was: 
 

*+a/s -1.580 
*+a/of 1.580 
*-a/s 1.804 
*-a/of -1.804 
*s -0.167 

 
This StOT grammar corresponds to the probability distribution given in Figure 6a (for human 
possessors) and 6b (for inanimate possessors). 

As expected from the theoretical considerations in Section 2, StOT does not show 
counting cumulativity. The model does distinguish between “*s is violated” and “*s is not 
violated”, but the degree of violations is not reflected in the predictions. Accordingly, the 
predicted probabilities of the s-genitive having possessors with at least one premodifier only 
depend on animacy, not on weight. 

 

                                                
21 A reviewer questioned that a constraint based on factors such as weight/length should be part of the syntactic 
grammar, as it belongs to processing. This of course depends on one’s conception of grammar. Note, that in the 
recent functional OT approach by Bresnan & Aissen (2002) constraints which should ultimately be functionally 
grounded are explicitly included. In this conception, therefore, there is no reason to exclude a constraint from the 
grammar just because it is based on a processing or performance factor. 
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Figure 6a: Weight and animacy (human possessors): predictions StOT 
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Figure 6b: Weight and animacy (inanimate possessors): predictions StOT 
 

There is a slight variation between the values for 1, 2 and 3 premodifiers, but this is due to the 
fact that we obtained these probabilities by using a random generator – this variation is thus 
not predicted by the StOT model but it is a kind of noise. Since the data do show a 
dependency between weight and the choice of genitive, the fit of the model is not very good. 
The Kullback-Leibler distance between the model and the data is 0.0314 bit. 
 
4.2.2 Predictions of MaxEnt 
Using again the Conjugate Gradient Ascent algorithm, we obtained the following constraint 
weights for a MaxEnt model: 

*+a/s 9.162 
*+a/of 10.838 
*-a/s 10.984 
*-a/of 9.016 
*s 0.754 

 



 

This translates into the probabilities given in Figure 7a and 7b. 
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Figure 7a: Weight and animacy (human possessors): predictions MaxEnt 
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Figure 7b: Weight and animacy (inanimate possessors): predictions MaxEnt 
 
Here we see clear counting cumulativity effects, both for human and for inanimate possessors. 
Especially for human possessors, the predicted cumulativity effect is actually stronger than 
the empirically observed one (compare Figure 3a). Nonetheless, the fit of the data is better 
here than for the StOT model. The Kullback-Leibler divergence between the model and the 
data is as low as 0.0108 bit. 
 
4.3 Harmonic bounding 
Multiple violations of a single constraint can occur in two ways. The constraint might 
quantify the severity of the violation – as our constraint *s in the previous subsection – or the 
same constraints may be violated at two positions within the same domain of evaluation. One 
might wonder whether the issue of counting cumulativity also arises in connection with the 
latter kind of multiple violations.22 However, this question cannot be settled with regard to the 
particular notion of counting cumulativity that we used here with respect to the empirical 
                                                
22 Thanks to Paul Boersma (p.c.) for drawing our attention to this issue. 



 

domain and the constraints that we considered. Recall that our definition of counting 
cumulativity requires two competitions that are identical except for the amount of violations 
of one constraint. This entails that the cardinality of the two candidate sets are identical. 
Multiple violations of the same constraint at two different positions would require two 
possessive constructions within one sentence for the constraints discussed here. This doubles 
the size of the candidate set. Therefore the definition is never applicable in this connection. 
 There is an important difference between StOT and MaxEnt though that is related to 
violations of the same constraint at different locations. We will briefly discuss it in this 
subsection.  

Within OT syntax, the domain of evaluation is usually taken to be the entire sentence. 
Hence, if there is more than one possessive construction within one sentence, violation marks 
from different NPs might accumulate within the same tableaux. For concreteness, consider the 
following competition: 
 
(8) a. This car’s engine is louder than this car’s engine. 
 b. This car’s engine is louder than the engine of this car. 
 c. The engine of this car is louder than this car’s engine. 
 d. The engine of this car is louder than the engine of this car. 
 
Using the constraint inventory from the last subsection (but omitting those constraints that are 
inactive in this competition), the corresponding tableau is: 
 
(9)  
 

 *-a/s *-a/of *s 
(a) **  ** 
(b) * * * 
(c) * * * 
(d)  **  

 
 
In this competition, the candidates (b) and (c) are harmonically bounded. StOT thus wrongly 
predicts them to be ungrammatical. It should be noted that this is not an artefact of the 
particular constraint set that is used here. If the variation between the two constructions is 
governed by conflicting constraints, every strict ranking will make one of the two 
constructions the winner. It is thus never possible to have one construction in the subject 
position and the other construction in object position. 

As pointed out above, MaxEnt does reserve some probability mass for harmonically 
bounded candidates. More precisely, the relative probability of having an s-genitive in subject 
position is predicted to be stochastically independent from the shape of the object and vice 
versa: 
 

P(a|{a,c}) = P(b|{b,d}) = P(a|{a,b}) = P(c|{c,d}) 
 
We have not tested this prediction so far. It seems fair to say though that the predictions of the 
MaxEnt analysis are prima facie closer to the truth than the predictions of StOT, which 
amounts to some kind of non-local agreement between all possessive constructions within one 
sentence. 
 Of course, this conclusion can be avoided if the domain of optimization is a single NP 
rather than the entire sentence. Such an approach might work, but note that one possessive 
construction can be syntactically embedded into another possessive construction, as in 
 
(10) the noise of this car’s engine 



 

 
Since such a construction is grammatical, the domain of optimization under StOT cannot just 
be the entire NP. Rather, one would perhaps need either cyclic bottom-up optimization or left-
to-right optimization that applies to chunks of constituents. In either case, two evaluations, 
involving two different constraint rankings, would be needed to evaluate the matrix NP. 
 
 
5 Conclusion and challenges 
In this article we investigated the role of cumulativity in grammatical variation. We 
distinguished two kinds of cumulativity: 1. ganging-up cumulativity (“Every constraint 
matters!”) and 2. counting cumulativity (“Every constraint violation matters!”). We 
considered several stochastic generalizations of these notions. Several empirical studies 
(experimental studies and a corpus study) pertaining to the grammatical variation of genitive 
constructions in English revealed that the weak notion of stochastic ganging-up cumulativity, 
as well as stochastic counting cumulativity does occur, while there was no evidence for strong 
ganging-up cumulativity.23 Furthermore we compared two probabilistic generalizations of 
standard OT, Boersma’s Stochastic OT, and Maximum Entropy models. Both models can 
handle weak ganging-up cumulativity. MaxEnt models can also handle counting cumulativity, 
while StOT cannot. Finally, we compared the empirical predictions of these two models with 
respect to the empirical data we considered by using standard learning algorithms. Both 
approaches can model weak ganging-up cumulativity effects very well, while MaxEnt is 
clearly superior when the data to be modeled display counting cumulativity effects. 

As argued in Goldwater and Johnson (2003) and Jäger (2003), MaxEnt models are 
also preferable over other versions of probabilistic OT for theoretical reasons. As sketched in 
Section 2, the maximum entropy philosophy can be derived from basic information theoretic 
considerations. MaxEnt learning finds the probability distribution with the highest entropy 
given the empirical observations (where only constraint violation profiles can be observed). 
Intuitively speaking, the entropy of a stochastic process is a measure of its disorder or 
unpredictability. Maximizing entropy given the empirical observations thus amounts to 
finding a model that contains no more information (= order) than what can be derived from 
the data. 

Last but not least, there are several provably correct learning algorithms around for 
MaxEnt models, while the learning problem for all other version of probabilistic OT is still 
open to date. 

To summarize, we presented empirical arguments that both notions of cumulativity are 
needed to model grammatical variation adequately. Of the available probabilistic 
generalizations of OT, MaxEnt models implement this insight in the most natural way. 

 
Our results and conclusions have been challenged by various proponents of OT. The main 
intention of this article is to make some interesting data available to the community, and a 
thorough discussion of the theoretical status of cumulativity goes well beyond the scope of 
this paper. Nonetheless we would like to state our opinion about some of the points that came 
up repeatedly in discussions so far. 

 
1. No evidence for cumulativity has been brought forward so far - this is an isolated 

phenomenon. - True, we are – to the best of our knowledge – the first to put forward such 
evidence in the context of OT syntax, but similar cut-off points  as to the length of 
constituents have also been reported for word order phenomena in the English verb 
phrase, as for example by Hawkins (2002) for postverbal complement and adjunct 
ordering, and by Gries (2003) and Lohse et al. (2004) for particle placement in verb-
particle constructions. Quinn (2004) has argued that there is both ganging-up and 

                                                
23 See also Keller (2000), who found evidence for cumulativity with respect to graded grammaticality judgments. 



 

cumulativity for pronoun conjunction in English. We believe that the major reason for the 
lack of evidence for cumulativity is lack for looking for it (at the right places). Until 
recently, variation of the more-or-less sort was outside the OT framework, and the first 
OT work on variation was to be found in the field of phonology (see e.g. Anttila 1997). 
Only very recently, OT approaches have begun to capture such variation in the field of 
morphosyntax (see Bresnan & Aissen 2002 for a programmatic sketch). So, why should 
anyone start looking for a phenomenon before it applies to the theoretical framework? 
There is a body of empirical work on grammatical variation, but so far such studies have 
been largely restricted to functionalist and/or sociolinguist work, and these fields 
presumably did not worry about the theoretical implications of their work for OT 
(functionalists and sociolinguists will most likely not have been aware of it at all).  
 

2. MaxEnt models are basically a version of Harmonic Grammar. The factorial typology 
that is predicted by HG is much more liberal than the predictions of OT, and the available 
evidence suggest that OT is closer to the truth. So moving from StOT to MaxEnt might be 
supported by the particular data you consider, but it leads to an overall explanatory loss 
that is not justified by a single study. This criticism involves a non sequitur. The argument 
against cumulativity based on factorial typology (see for instance Legendre et al. 2005) 
applies to categorical data (and to our knowledge only to phonology – the issue is actually 
open for syntax, but this is not our concern here), while our investigation deals with 
quantitative data. These are different issues. The mentioned article (Legendre et al. 2005) 
contains a lucid discussion of the pros and cons of HG versus OT. In this connection the 
authors write: 
 
 “One possibility is this. Knowledge relevant to language processing may combine (i) a system of 
constraints one might consider more strictly ‘grammatical’, interacting exclusively or primarily via strict 
domination, with (ii) a set of more pragmatically-based constraints, reflecting more directly, perhaps, 
statistical characteristics of experience, and interacting in a less restricted manner, via arbitrarily weighted 
constraints. The process of grammaticalization may be one in which constraints effectively move from the 
latter category to the former. The constraints interacting in the HG analysis may constitute a mixture of both 
types of constraints, while the constraints focused upon in most OT studies may be more completely 
contained in the ‘grammatical’ class.” 
 

We agree that it is very well possible that strict domination holds for categorical data, 
while quantitative data display both kinds of (weak) cumulativity. So the argument of 
explanatory strength does not necessarily carry over from categorical to stochastic models. 
 We do think, furthermore, that quantitative data are important, and if there is any 
worth in the postulation of falsifiable theories, then empirical evidence should be taken 
seriously. It has recently been repeatedly stressed by linguists working within a formal 
theoretical framework that syntactic theory should be solidly based on empirical evidence, 
as evidenced in various conferences/workshops on empirical linguistics/syntax in the past 
two or three years. We regard our work in line with such claims.  
 

3. Counting cumulativity can always be avoided by binarizing constraints. We disagree for 
two reasons. 
- Theory parsimony: If two theories are identical in their empirical predictions, but the 
one avoids counting cumulativity while the other has fewer parameters, Occam's razor 
favors the second one. This, applies ceteris paribus also to ganging-up cumulativity, 
which can be simulated by a non-cumulative model by using constraint conjunction. 
However, this technique proliferates the number of constraints as well. So while StOT or 
similar models could be “tuned” to handle cumulativity, MaxEnt can do the same in an 
arguably more parsimonious way. 
- Restrictiveness: One might counter this argument by saying that admitting counting 
constraints as such constitutes a heavy complication of the theory, so that binarizing 
constraints might be the smaller price to pay. This point of view has been defended by 



 

McCarthy (2003) as well as by Paul Boersma (p.c.). However, a single n-ary constraint 
leads to more restrictive empirical predictions than n binary constraints. To stick to our 
example, our MaxEnt analysis predicts that the probability of the of-genitive strictly  
increases with the weight of the possessor.24 Using binary constraints instead only predicts 
weak monotonicity. Such a model would admit the existence of languages where the 
probability of the post-nominal genitive is constant at 10% up to 5 premodifiers, jumps to 
60% starting with 6 premodiers, remains constant until 17 premodifers and approaches 
100% for higher values. In fact, McCarthy uses similar considerations to show that 
constraint evaluation must never involve counting of any sort. Our data indicate though 
that this is not a viable option if one wants to capture quantitative effects. 
 

4. StOT is cognitively more realistic than MaxEnt, whatever the mathematical merits of the 
latter model may be. We disagree. There are two versions of this argument that we are 
aware of, and we think that they are both invalid. 
 - Boersma and Levelt (2000) present a study where the acquisition of Dutch syllable 
structure was simulated with StOT and the GLA. It turned out that the order of acquisition 
of different syllable types in the simulation matches the order in which Dutch infants 
acquire these structures. This is in fact a very relevant result. However, in Jäger (2003) 
the experiment was replicated using MaxEnt and Stochastic Gradient Ascent (which is, as 
mentioned above, virtually identical to the GLA except that it applies to MaxEnt rather 
than to StOT). The findings of Boersma and Levelt were almost identically replicated, so 
this does not help to distinguish between the two models 
 - StOT, as a version of OT, is related to connectionist models and therefore indirectly 
to the structure of our brain, while MaxEnt is a pure data fitting device. It is actually HG 
that has a connectionist foundation. (Categorical) OT-models can be seen a special case of 
HG models where constraint weights grow exponentially. The founders of OT are always 
very careful to point out that strict domination, i.e., the exponential growth of constraint 
weights, has no connectionist explanation so far.25 So if the connectionist foundation of 
HG/OT is taken as evidence for neurophysiological plausibility, then the case for HG is 
actually stronger than the case for OT, because the latter restricts the class of underlying 
networks in a (neurophysiologically!) unmotivated way. MaxEnt, as a probabilistic 
version of HG, is thus at least as cognitively plausible as StOT. 
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