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Abstract. Natural languages are shaped by evolutionary processes, both
in the sense of biological evolution of our species, and, on a much shorter
time scale, by a form of cultural evolution. There are long research tradi-
tions in theoretical biology and economics (a) to model communication
by means of game theory, and (b) to use game theory to study biological
and cultural evolution. Drawing mostly on recent work by Pawlowitsch
(2006), the paper argues that results and methods from game theory are
apt to formalize the intuitive notion of linguistic universals as emergent
properties of communication.

1 Introduction: Language and evolutionary game theory

One of the central issues in modern linguistics is the search for universals,
that is properties that are shared by all languages. Empirical research over the
past few decades has unearthed a solid amount of universals or quasi-universals
(properties that are shared by almost all natural languages), some of them quite
contingent.

There is an ongoing intense and at times ideological discussion within the
linguistic community what a satisfactory explanation for universals should look
like. One school of thought (most prominently defended by Noam Chomsky; see
for instance Chomsky 1957, 1995) takes it that universals are reflexes of our in-
nate linguistic competence that is shared basically by all humans and ultimately
genetically determined. We will call this the nativist position. The other creed
(see for instance Bybee 2001, Barlow and Kemmer 2000, or Haspelmath 1999)
holds the view that languages are adapted to its functions in communication
and cognition. Therefore linguistic universals should be explained in terms of
language function. This school of thought is usually dubbed functionalist.

⋆ This article is mainly the result of collaboration with Christina Pawlowitsch. Some
parts of the paper are de facto co-authored by her. This does not mean that she
necessarily agrees with all aspects of my meta-theoretic interpretaion of the game
theoretic model. All mistakes and omissions are of course mine. I am also indebted
to Simon Huttegger for very helpful discussions.



Both approaches face severe epistemological problems. It is not much of an
explanation to claim that a certain universal is based on innate, genetically
determined, properties of the human brain. Without a independent justification
for that assumed innate feature of the brain, the innateness hypothesis amounts
to little more than a restatement of the facts. Functionalism, by itself, is no
more explanatory either. To show that a certain property of human languages
facilitates their usage has to be complemented by a plausible reconstruction
of a causality that leads to this kind of adaptation. Additionally, functionalist
explanations are frequently post hoc, i.e. functionalist research frequently starts
out with some empirically established universal and tries to find a function that
the universal is an adaptation for, rather than truly predicting universals from
function.

However, both approaches seem to be fundamentally true, if properly con-
ceived. Nobody would deny that there are innate constraints on what kind of
linguistic items an infant is able to acquire and to put to use. To take a simple
example: Many languages employ the relative pitch of speech sounds to encode
grammatical distinctions. For instance, in English a rising intonation at the end
of a sentence can be used to mark the sentence as a question. In other lan-
guages, as for instance in Chinese, the same sequence of sounds can acquire a
completely different meaning, depending on whether it is pronounced with a ris-
ing or a falling intonation. There are no languages, however, that would employ
absolute pitch to mark linguistic distinctions. A low pitch of a female speaker
might still be higher, in terms of absolute frequency, than the high pitch of a
male speaker. What matters for natural languages though is the position of a
certain pitch within the range of pitches that a particular speaker is able to
produce. For all we know, the reliance on relative pitch is a good candidate for
a linguistic universal that is based on innate properties of the human brain.

On the other hand, some linguistic universals cannot be reduced to the cog-
nitive state of a single language user. They are irreducibly social in nature. A
well-known candidate is Zipf’s law (Zipf 1935, 1949). It states that in a large
corpus of naturally occurring speech, the frequency of occurrence of the words of
the language are distributed according to a power law. The most frequent word
is used about twice as many times as the second most frequent, about ten times
as often as the tenth most frequent word etc. More generally, if you list the words
of a language according to their frequency of usage, the rank of a word in this
list is approximately inversely proportional to its frequency of occurrence. This
law has been validated many times for many languages. It is a good candidate
for a universal property of language usage. However, this regularity is certainly
not cognitively represented in the minds of language users. Rather, it is an emer-
gent property of the usage of language in social interaction. The two approaches
should thus be considered as complementary rather than as mutually exclusive.
Evolutionary game theory, I would like to argue, provides a formal framework
that model questions of language evolution that allows us to integrate the two
approaches, innateness and the social function of language.



2 Modeling language evolution as a game

Game theory is a formal language that allows us to study the interaction of

individual agents, and the joint outcome of this interaction. The evolutionary
branch of game theory explicitly takes into account the path dependence of this
interaction under some limited form of rationality.

An evolutionary game consists of two parts. First, the so–called stage game,
that is, the basic situation of interaction that is encountered repeatedly among
a group of individuals, where it is defined what are possible action choices of
individuals, so–called strategies, and how individuals’ payoffs are calculated as
a function of the strategy profile in the whole population. Second, the game

dynamics, which described according to which rule individuals’ strategies are
updated from one period to the next. This rule can be either exogenously given,
representing something like a “law of nature”, that is, a feedback mechanism of
the environment; or it can be derived from some optimizing behavior of individ-
ual agents. This is usually seen as the part of the model setup where different
degrees of rationality enter the description of the problem. In an economic model
it is most often plausible to assume that agents are perfectly rational, in the sense
that they can calculate their optimal choice of action given their state of knowl-
edge and their beliefs about other agents actions. On the other hand, in most
ecological or biological models it rarely makes sense to assume that agents con-
sciously interact rather they perform some predefined program whenever they
get the stimulus to do so. Taking these as the two extremes of one scale, I would
argue that most linguistic applications lie somewhere in between, depending on
the particular problem at hand. If we are interested in an aspect of the origins of
language in an anthropological sense we are most probably closer to a biological
set up, whereas if we are interested in some aspects of the pragmatics of language
use, it definitely makes sense to assume that agents are conscious about their
interaction, that they have beliefs about other players actions, that they employ
some kind of optimizing behavior given all these considerations etc.

Any optimizing behavior, or even imitation, in the last event, implicitly as-
sumes some innate abilities or properties that are not further explained in the
model. Assumptions on innate abilities of individual agents, however, do not
only enter the construction of the game dynamics, they also may be part of
the description of possible actions choices of individual agents. For example, if
a strategy of an agent represents a program to perform a particular utterance
whenever he or she observes a particular event of nature, this definitely involves
the assumption that this agent has an abstract notion of this event and that he
or she has the ability to link this to an arbitrary sign.

What is particular about applications of evolutionary game theory to lin-
guistic questions is that strategies in the stage game are very often not just
verbal descriptions like “cooperate” or “do not cooperate”, but take the form
of a mathematically complex object, similar to a quantitative trait in biology.
This is a direct consequence of the fact that linguistic interaction is sequential
in nature, and thus most naturally modeled as an extensive game. Normalizing
an extensive game leads to strategies that are functions of a particular kind.



As such these strategies can display properties that we can describe in some
formal language. For the kind of game I am going to discuss below, strategies
can be described by stochastic matrices, using the language of linear algebra.
Eventually, we aim at learning something about the regularity patterns of these
strategies that are used in an equilibrium outcome of the model.

Thus, innateness assumptions typically enter the description of a game,
whereas the functionalist point of view is reflected in the solution concept ap-
plied. This is not to say that innateness enters the model only at the level of
assumptions. An evolutionary game can also serve the purpose of explaining
some property of language that is considered to be innate—but what sustains
this property are the equilibrium conditions of individuals interaction. It is in
this sense I consider the explanatory value of a game theoretic model as func-

tionalist—even though it may rely on assumptions that concern innate abilities
of individual agents.

I will discuss this and related issues in more detail for a specific class of games
that are widely used in game theoretic approaches to language.

3 Sender–receiver games

Sender–receiver games in the style of Lewis (1969) or Nowak and Krakauer
(1999) have received particular attention in the newly arising literature that uses
evolutionary game theory to study questions about the evolution of language.

In these games there is a finite number of events that potentially become the
object of communication and a finite number of arbitrary signs. In each round
of the game, nature presents the sender with on of the events. The sender in
turn emits a signal that is visible to the receiver. Finally, the receiver guesses an
event, possibly using the signal received as a clue. If the guess of the receiver is
correct, both players score a point, otherwise neither receives a payoff.

A strategy in the role of the sender is thus a map from the set of events to
the set of signals, and a strategy in the role of the receiver is a map from received
signals to events.

As long as domain and range of these functions are finite, it is convenient
to use the language of linear algebra and to represent functions as matrices.
(The formalization used here is more or less taken unchanged from Pawlowitsch,
2006).

A strategy in the role of the sender can be represented by an n × m matrix
P (n being the number of events, and m the number of signals), such that each
row contains exactly one cell with the entry 1, while all other cells have the entry
0. The intended interpretation is that pij = 1 if event i is mapped to signal j.
Likewise a strategy in the role of the receiver can be represented by an m × n

matrix Q, where here the interpretation is that qji = 1 if signal j is associated
event i and 0 otherwise.

For the sake of simplicity, in the context of this paper I confine attention
to cases where n = m, i.e. there are exactly as many signals as events. Also,
I assume that all events occur with the same probability, and that sending or



receiving signals does not incur any costs. With these assumptions, the payoff
function is identical for both players, and it can be defined by

π(P, Q) =
n

∑

i=1

m
∑

j=1

pijqji,

(The utility that was informally described in the text can be obtained if π(P, Q) is
divided by n, because each event occurs with probability 1

n
. However, multiplying

all payoffs by a constant factor does not alter the structure of a game, and we
can thus as well drop this factor.)

In the language of linear algebra, this can conveniently be written as

π(P, Q) = tr(PQ),

where tr(PQ) denotes the trace of (PQ).

It is assumed that all individuals of a linguistic community finds themselves
in the roles of sender and receiver with equal probabilities. A strategy for the
symmetrized game, then, is a pair of two matrices, (P, Q), and the payoff function
is given by

F [(P, Q), (P ′, Q′)] =
1

2
tr(PQ′) +

1

2
tr(P ′Q).

Note that this payoff function is symmetric,

F [(P, Q), (P ′, Q′)] = F [(P ′, Q′), (P, Q)],

giving rise to a so–called doubly symmetric or partnership game, that is, a sym-
metric game with a symmetric payoff function.

3.1 Mixed strategies and population games

Rephrasing the model at hand in a population based framework, every pair
(P, Q) can be identified with a particular type of agent. A state of the population,
then, is a vector of type frequencies,

x = (x1, x2, . . . , xL) s.t.

L
∑

l=1

xl = 1,

where xl is the fraction of agents using pure strategy l. Formally such a vector
of type frequencies is equivalent to a mixed strategy.

The average payoff of a type is interpreted as its fitness,

fl(x) =

L
∑

l′=1

xl′F [(Pl, Ql) , (Pl′ , Ql′)] ;



the average fitness in the population is denoted by

f̄(x) =

L
∑

l=1

xlfl(x).

To every vector of type frequencies x = (x1, x2, . . . , xL) we can assign the
population’s average strategy profile in terms of the P and Q matrices,

(P̄ (x), Q̄(x)) = (

L
∑

1

xlPl,

L
∑

1

xlQl),

which can be written as

(P̄ (x), Q̄(x)) =

































p̄11 . . . p̄1j . . . p̄1m

...
...

p̄i1 . . . p̄ij . . . p̄im

...
...

p̄n1 . . . p̄nj . . . p̄nm
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q̄11 . . . q̄1i . . . q̄1n

...
...

q̄j1 . . . q̄ji . . . q̄jn

...
...

q̄m1 . . . q̄mj . . . q̄mn

































,

where p̄ij is the sum of all type frequencies whose i, j–th entry in P is equal to
1, and q̄ji is the sum of all type frequencies whose j, i–th entry in Q is equal to
1, that is,

p̄ij =
∑

l:pl
ij

=1

xl and q̄ji =
∑

l:ql
ji

=1

xl.

In general the average strategy profile is a pair of two stochastic matrices,
which are denoted by (P̄ , Q̄). The average payoff or fitness of a type fl(x) then
can be written as the payoff of this strategy from play against the population’s
average strategy,

fl(x) = F
[

(Pl, Ql) ,
(

P̄ (x), Q̄(x)
)]

=
1

2
tr

(

PlQ̄(x)
)

+
1

2
tr

(

P̄ (x)Ql

)

,

and the average fitness in the population is the payoff of the population’s average
strategy from play against itself,

f̄(x) = F
[(

P̄ (x), Q̄(x)
)

,
(

P̄ (x), Q̄(x)
)]

= tr
(

P̄ (x)Q̄(x)
)

.

Hurford (1989) introduces essentially the same model—though he does not
use the language of game theory. He uses this model to study the evolutionary
emergence of a particular linguistic universal known as bidirectionality, that is,
the property that whenever an individual links a particular sign to a particular
concept (object of communication), then this individual will also link this concept
to that sign.1 In a nutshell, by this I mean the fact that each adult speaker of

1 Sometimes this is also referred to as the notion of the Saussurean sign.



a language uses, in the role of the speaker, a code that she is able understand
in the role of the hearer. This feature is so deeply entrenched in our conception
of “language” that it seems to be almost too obvious to mention. However,
there are plenty of signaling systems that do not have this property. An obvious
example are intermediate stages in the acquisition of a natural language (both
in first language acquisition by infants and in second language acquisition by
adults). New linguistic items are much faster acquired passively than actively.
This means that a language learner can interpret some linguistic items correctly
without being able to produce them.

In the sender–receiver game at hand there are some strategies that display
perfect bidirectionality. For 2 events and 2 signals, these are

(P1, Q1) =

[(

1 0
0 1

)

,

(

1 0
0 1

)]

, and (P2, Q1) =

[(

0 1
1 0

)

,

(

0 1
1 0

)]

.

But there are also strategies that are not bidirectional at all; rather they display
what one would call “perfectly inconsistent behavior” in the role of the sender
and the receiver, namely

(P1, Q2) =

[(

1 0
0 1

)

,

(

0 1
1 0

)]

, and (P2, Q1) =

[(

1 0
0 1

)

,

(

0 1
1 0

)]

.

Most linguistic theories hold that bidirectionality is an innate property, which
is ultimately genetically determined. If we look at isolated sender–receiver inter-
action, bidirectionality is not required for successful communication. But obvi-
ously bidirectionality seems to be fixed in humans. Shifting the question to an
evolutionary framework, Hurford asks whether bidirectionality could get fixed
due to some evolutionary advantage in a population based setting. In order to
test this hypothesis, Hurford ran a series of computer experiments, where he lets
“Saussurean strategists”, that is, individuals who update their Q according to
their received P in a best–response fashion according to the asymmetric game,
compete against types with other behavioral rules. Individuals who communi-
cate better leave relatively more offspring and parents transmit their type to
their kids. This simulation is run for different initial conditions. There seems to
be good evidence that for most initial conditions Saussurean strategists indeed
do better than other behavioral types. However, this is not true for all initial
conditions.

3.2 Equilibrium selection

The kind of evolutionary dynamics that Hurford, Nowak and their coworkers
assume in their simulations assigns fitness to communicating agents which is
proportional to the average communicative success of that agent within the
given population. This success rate, in turn, depends on the relative frequency
of communicative strategies within this population. We are thus dealing with
frequency dependent selection, which can be modeled by means of evolutionary
game theory.



In the tradition of evolutionary game theory, a Nash equilibrium in mixed
strategies is interpreted as an equilibrium composition of the population. It gen-
erally holds that in a Nash equilibrium in mixed strategies, all strategies that
are played with some positive probability must yield the same payoff given the
specific probability mix of all the other players. In the population interpreta-
tion of mixed strategies in mind, this translates into the condition that in a
Nash–equilibrium state of the population every type l that is present with some
positive frequency must yields the same average payoff as all the other resident
types—given the actual composition of the population.

For a Nash–equilibrium strategy of a symmetrized game, the strategies choices
in the two roles have to be best responses to each other, that is, P is a best re-
sponse to Q and Q is a best response to P . The condition that Q is a best
response to P is the criterion that Hurford (1989) uses to characterize bidi-
rectionality. Adopting this concept of bidirectionality, we may say that in a
Nash–equilibrium composition of the population, bidirectionality is satisfied on
the level of the population’s average sender and receiver matrices. Interestingly,
this property does not extend from the population’s average to the individuals’
level.

Let us consider an example. Suppose n = m = 2, i.e. we have two signals
and two event. Then the set of all sender matrices is given by

P2×2 =

{

P1 =

(

1 0
0 1

)

, P2 =

(

0 1
1 0

)

,

P3 =

(

1 0
1 0

)

, P4 =

(

0 1
0 1

)}

,

and the set of all receiver matrices is given by

Q2×2 =

{

Q1 =

(

1 0
0 1

)

, Q2 =

(

0 1
1 0

)

,

Q3 =

(

1 0
1 0

)

, Q4 =

(

0 1
0 1

)}

.

Now suppose one half of the population uses pure strategy (P1, Q2), and the
other half uses (P2, Q1). Then population’s average strategy is

(P̄ , Q̄) =

[(

0.5 0.5
0.5 0.5

)

,

(

0.5 0.5
0.5 0.5

)]

.

In this case P̄ is a best response to Q̄ and vice versa, but still every individual
agent is perfectly inconsistent between his or her sender and receiver strategy.

As for most models used in language evolution, the sender–receiver game
considered has an abundance of equilibria. In the case of 2 events and 2 sig-
nals, there are already 6 symmetric Nash equilibria in pure strategies, (P1, Q1),
(P2, Q2), (P3, Q3), (P3, Q4), (P4, Q3), (P4, Q4), and there are whole continua of
equilibria in mixed strategies. For these equilibria the average strategy profile is



of the form
[(

1 − α α

1 − α α

)

,

(

1 − β β

1 − β β

)]

,

where α and β are between 0 and 1—for example, if one half of the population
uses pure strategy (P1, Q1), and the other half uses (P2, Q2). The population’s
average strategy profile then is

[(

0.5 0.5
0.5 0.5

)

,

(

0.5 0.5
0.5 0.5

)]

.

[(

0.5 0.5
0.5 0.5

)

,

(

0.5 0.5
0.5 0.5

)]

.

The problem of equilibrium selection is therefore of major importance.
An important part of the program in evolutionary game theory has focused

on establishing links between the static analysis of Nash equilibria, and its re-
finement concepts, and the stability properties of game dynamics. A great deal
of effort has been devoted to the so–called replicator dynamics.

In continuous time, the replicator dynamics is given by a system of L differ-
ential equations,

ẋl

xl

= fl(x) − f̄(x), l = 1, . . . , L,

where ẋl denotes the derivative of xl with respect to time. So the growth rate of
type l is given by the difference of its average payoff minus the average payoff in
the population.

This dynamics can be interpreted in the sense of both biological as well
as cultural transmission of strategies from one generation to the next (roughly
corresponding to the nativist and the functionalist perspective in linguistics that
were mentioned in the beginning). Agents who communicate more successfully
are more successful in finding mates, acquiring sufficient sources of food, escaping
dangers, and so on, which yields them either a direct or an indirect advantage
in reproduction, or increases the chances of their offspring to reach reproduction
age. Or, in the context of cultural evolution, agents who communicate more
successfully, are more likely to be imitated by other agents and therefore the
strategies that they use will reproduce with a higher rate.

A Nash–equilibrium strategy is necessarily a rest point of the replicator dy-
namics. The reverse is not generally true. For example, every monomorphic state,
that is, a state where the whole population consists of only one type, trivially is a
rest point of the replicator dynamics, but it is not necessarily a Nash–equilibrium
strategy.

In language evolution we are not so much interested in any one particular
equilibrium; rather we want to understand where a particular dynamics typically
will lead us to and what this implies for the qualitative regularity patterns of
the communicative strategies that are used by agents.



The most commonly applied refinement concept in an evolutionary context
is that of an evolutionarily stable strategy. A strategy played in a symmetric
Nash equilibrium is evolutionarily stable if either (i) it has no alternative best
replies (that is, if it is a strict equilibrium), or if (ii) in case that there is an
alternative best reply, this alternative best reply yields a strictly lower payoff
against itself than the original Nash strategy yields against this alternative best
reply. As a lighter version of this, if in case (ii) the alternative best reply yields
only a lower or equal payoff against the original Nash strategy, then the original
Nash strategy is called a neutrally stable or weakly evolutionarily stable strategy.

Though their name seems to hint at some dynamic story, both evolutionary
and neutral stability are as such static refinement criteria for symmetric Nash
equilibria. However, as it has been shown by Taylor and Jonker (1978) for the
continuous case, and by Hofbauer, Schuster and Sigmund (1979) for the discrete
case, every evolutionarily stable strategy is a locally asymptotically stable rest
point of the replicator dynamics. This means that a system that has reached such
a state will return there if it is disturbed by a small perturbation. In analogy to
this, Thomas (1985), and in a more general context Bomze and Weibull (1995),
show that every neutrally stable strategy is Lyapunov stable in the replicator
dynamics. If a system is in a Lyapunov stable state, it will remain within the
local environment of this state if a small perturbation occurs.

Unfortunately, none of the converses of these results is true in general. This
means that whenever we have found an evolutionarily stable strategy, we know
that once a population has attained such a strategy, it is locally asymptotically
stable, but this does not rule out there to be other asymptotically stable rest
points that do not correspond to an evolutionarily stable strategy; analogously
for neutral stability and Lyapunov stability. However, in the case of sender–
receiver games, help comes from their symmetry properties.

Akin and Hofbauer (1982) show that for doubly symmetric games each orbit
of the replicator dynamics, indeed, converges to some rest point. This is related
to the property that for such games, the replicator dynamics induces a strictly
monotonic increase in the average payoff along every non–stationary solution
path, which in biology this is known as Fisher’s fundamental theorem of natural

selection. Hofbauer and Sigmund (1988) show that in this case a locally asymp-
totically stable rest point is evolutionarily stable, so that for doubly symmetric
games, evolutionary stability indeed coincides with asymptotic stability. Bomze
(2002) shows that an analogous result holds true between neutral stability and
Lyapunov stability so that for doubly symmetric games with pairwise interac-
tion a rest point of the replicator dynamics is Lyapunov stable if and only if
it corresponds to a neutrally stable Nash equilibrium. So we can rule out that
there are other rest points that are Lyapunov stable, and the dynamics typi-
cally will lead to a Nash equilibrium that satisfies neutral stability. Once we are
able to identify general patterns in the strategies used in population states that
satisfy the essentially static criterion of neutral stability, then this will tell us
something about the regularity patterns of the communicative strategies that
can be expected to arise in the long run.



For the sender–receiver game considered here evolutionarily stable strategies
are all pairs of permutation matrices (P, Q) such that one matrix is the transpose
of the other (Wärneryd 1993, Trapa and Nowak 2000). For 2 events and 2 signals,
these are the two pairs

(P1, Q1) =

[(

1 0
0 1

)

,

(

1 0
0 1

)]

, and (P2, Q2) =

[(

0 1
1 0

)

,

(

0 1
1 0

)]

.

For 2 events and 2 signals evolutionarily stable strategies are also the only neu-
trally stable strategies. However, if the number of events or signals is greater or
equal to 3, this is no longer true.

For example, if n = m = 3 a possible neutrally stable strategy looks like

(P, Q) =









1 − α α 0
0 0 1
0 0 1



 ,





1 0 0
1 0 0
0 1 − β β







 , α, β ∈ (0, 1).

There is no strategy (P ′, Q′) ∈ P∆ × Q∆ such that F [(P, Q), (P ′, Q′)] =
F [(P, Q), (P, Q)] and such that F [(P, Q), (P ′, Q′)] > F [(P ′, Q′), (P ′, Q′)]. The
same is true if in the example above either α or β is 0 or 1, which means that
one of the two matrices contains a column that consists entirely of zeros.

This example shows that sender–receiver games may possess equilibrium
states that are neutrally but not evolutionarily stable. In fact, Pawlowitsch
(2006) shows that games with more than two events and signals has infinitely
many such states. These are generally states that involve a certain amount of
synonymy and homonomy on the population level; they represent sub-optimal
communication strategies.

Pawlowitsch furthermore shows that this set of neutrally but not evolution-
arily stable states always has a basin of attraction that has a Lebesgue measure
larger than zero. So if an initial state is chosen at random and each initial
state has a positive probability density, there is a positive probability that the
population will converge to such a suboptimal state. I performed a numerical
approximation which revealed that the joint basin of attraction of the set of neu-
trally but not evolutionarily stable strategies in a 3 × 3 game comprises about
1.2% of the state space. (See the Appendix for details.)

4 Evolution of sender–receiver games and linguistic

universals

Let us return to the main methodological point of this paper, the potential of
evolutionary game theory for illuminating the concept of a linguistic universal.
Intuitively, a universal of a certain game under a certain dynamics is a set of
population states U such that with probability one, a population will eventually
enter U and never leave it afterwards. To make this precise, one has to assume a
probability distribution over initial states. Since I assume that the stage game by
definition excludes all “impossible” states, I take it that each strategy, pure or



mixed, has a positive probability density. Since under the replicator dynamics,
each trajectory in a doubly symmetric game converges to some rest point (as
shown in Akin and Hofbauer 1982), a set U is a universal if and only if almost

all initial states converge to some point x∗ ∈ U .

Given the considerations in the previous section, we can conclude that any
set containing the set of Nash equilibria is a universal. This follows from the facts
that (a) all orbits converge to a rest point, and (b) if an interior point converges
to a single point, this point is a Nash equilibrium (as shown for instance in
Hofbauer and Sigmund 1998:69/70). Since the boundary of a simplex is a null
set, almost all points converge to some Nash equilibrium.

The significance of Pawlowitsch’s result is that each universal has to include
all neutrally stable states, including those that are not evolutionarily stable. In
the model chosen, perfect bidirectionality (in the sense of a one-one map between
forms and meanings) is thus not a universal.

Is it possible to give a more precise characterization of the set of universals
of this game? Huttegger (2006) proves that almost all points of the state space
converge to a Nash equilibrium at the boundary of the state space. Translated
into our terminology, this means that it is a universal that not all possible
grammars are represented in the population.

It is important to stress that these universals are social in nature, rather than
cognitive. Being in a Nash equilibrium state at the boundary of the state space
is a property of a population, not of an individual member of such a population.

To draw conclusions about universal properties of the state of individual
agents, it would be necessary to narrow down the class of population level uni-
versals further. This problem proves to be surprisingly difficult though, and I
have to close this section with some conjectures and suggestions for further re-
search.

It might perhaps seem plausible to assume that almost all orbits converge
to a Lyapunov stable—and thus neutrally stable—point. This would amount
to the claim that any set containing all neutrally stable states is a universal.
However, it is possible to come up with games where this is not the case. In the
Appendix I discuss a doubly symmetric game which has a non-neutrally stable
Nash equilibrium that attracts a set with a positive measure.

Of course, this game is not a sender–receiver game. It is thus possible—and
in fact, it seems highly likely—that in sender–receiver games, almost all points
converge to a neutrally stable strategy. At the present point, I have to leave this
open as an issue for further research.

The notion of a universal depends on the underlying dynamics, and modi-
fying this dynamics may thus lead to different universals. An empirically well-
motivated choice would be the kind of stochastic dynamics of finite populations
that is studied in (Kandori, Mailath and Rob, 1993) and (Young, 1993). Strictly
speaking, these models predict that there are no universals at all except for
the trivial one comprising the entire state space. However, linguists frequently
operate with the notion of a statistical universal, which is a property that is
shared by almost all languages. This concept could be formalized as a set with



the property that an orbit with a randomly chosen initial state, observed at a
randomly chosen time, will be within this set with a sufficiently high probability.
Under stochastic evolution, this would correspond to a set containing all stochas-
tically stable states and their environments. In fact, van Rooij (2004) and Jäger
(in press) employ the notion of stochastic stability to derive certain empirically
attested statistical universals from a game theoretic model.

To wrap up, I tried to argue that the notion of a linguistic universal can
be illuminated by considering a (cultural) evolutionary dynamics, because this
approach promises to give a causal explanation for seemingly functionally mo-
tivated features of natural languages. Evolutionary game theory is a suitable
mathematical framework to carry out this programme because the dynamics of
language use arguably involves frequency dependent selection, and because lin-
guistic interaction can naturally be formalized by game theoretic means. I have
to close with a note of caution though: to actually derive universals analytically
from a game theoretic model, it is not sufficient to study static equilibrium prop-
erties. Rather, a careful exploration of the dynamic properties of the model is
inevitable.
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Appendix

Numerical estimation of the size of the basin of attraction As mentioned in the
text, the joint basin of attraction of the set of neutrally but not evolutionar-
ily stable strategies is about 1.2% of the entire strategy space. The result was
obtained by using a Monte-Carlo method. A random initial state s was picked
out by a random generator according to the uniform distribution over the 729-
dimensional simplex, the replicator dynamics was solved numerically for the
initial condition s, and the asymptotic behavior was analyzed at t = 1000 (by
which time all time series have converged towards a rest point, within the lim-
its of precision imposed by the numerical algorithm used). This procedure was
repeated 5,000 times. It turned out that in 4,941 cases the solution converged
towards an evolutionarily stable state, and in 59 cases to a neutrally but not
evolutionarily stable state. This means that with a confidence of 95%, the true
value lies between 0.9% and 1.5%, with a maximum likelihood estimation of
1.2%.

Basins of attraction The utility matrix of the game in question is:

A =





2 2 2
2 3 −1
2 −1 0





This game is doubly symmetric, and it has two Nash equilibria: e1 and e2.
Consider the linear manifold E = {x ∈ intS3 : x3 = 4x2}. For points x ∈ E, we



have

ẋ2 = x2(2x1 + 3x2 − x3 − x · Ax)

= x2(2x1 − x2 − x · Ax)

ẋ3 = x3(2x1 − x2 − x · Ax)

= 4x2(2x1 − x2 − x · Ax),

and thus ẋ3 = 4ẋ2. So ẋ is always tangential to E, and E is thus an invariant
set. As e1 is the only Nash equilibrium within the closure of this set, all points in
E converge towards e1. Now consider the set F = {x ∈ intS3 : x3 > 4x2}. Since
e2 is not in the closure of this set, a trajectory starting in F and converging
towards e2 would have to leave F . This is impossible though because all interior
points remain within the interior under the replicator dynamics—so no orbit can
touch a boundary face—and a trajectory cannot cross E due to uniqueness of
solutions of autonomous differential equations. We thus conclude that all points
in F converge towards e1. Since F has a positive Lebesgue measure, e1 has a
basin of attraction that is not a null set. Nevertheless e1 is not neutrally stable,
because

e2 · Ae1 = e1 · Ae1

e2 · Ae2 > e1 · Ae2

In figure 1 the phase portrait of the game is sketched. The bold line indicates

e
2 e

3

e
1

Fig. 1. Phase portrait

the boundary between the basins of attraction of e1 and e2. It is easy to see
that e1 is not Lyapunov stable (because every open environment has a non-
empty intersection with the basin of attraction of e2), but nevertheless attracts
a non-null set.


