
Lambek Grammars as Combinatory

Categorial Grammars

GERHARD JÄGER, Zentrum für Allgemeine Sprachwissenschaft
(ZAS), Jägerstr. 10/11, 10117 Berlin, Germany.
E-mail: jaeger@zas.gwz-berlin.de

Abstract

We propose a combinatory reformulation of the product free version of the categorial calculus LL,
i.e. the associative Lambek calculus that admits empty premises. We prove equivalence of the

combinatory with the standard Natural Deduction presentation of LL. The result offers a new
perspective on the relation between the type logical and the combinatory branch of the Categorial
Grammar research program.

Keywords: Categorial Grammars, Lambek Calculus, CCG

1 The Lambek calculus

1.1 Sequent presentation

In his seminal paper [6], Joachim Lambek introduced the (associative) Lambek calcu-
lus, a type logical extension of Bar Hillel’s [3] Basic Categorial Grammars. Lambek
gives two equivalent proof theories for his calculus, an axiomatic one and a Gentzen
style sequent calculus. We will restrict attention to the product-free fragment of this
calculus. There the categorial slashes “/” and “\” are the only logical constants. The
sequent calculus consists of the rules of use and of proof for them, together with the
identity axiom scheme for arbitrary types. Being a subsystem of positive implicational
intuitionistic logic, the history of a proof in the Lambek calculus can be recorded in
λ-terms, using the Curry-Howard correspondence.

Definition 1.1 (LL: Sequent presentation)

id
x : A⇒ x : A

X ⇒M : A Y, x : B,Z ⇒ N : C
/L

Y, y : B/A,X,Z ⇒ N [x← (yM)] : C

X, x : A⇒M : B
/R

X ⇒ λx.M : B/A

X ⇒M : A Y, x : B,Z ⇒ N : C
\L

Y,X, y : A \B,Z ⇒ N [x← (yM)] : C

x : A,X ⇒M : B
\R

X ⇒ λx.M : A \B

Lambek originally added the additional constraint that the premises of each sequent
be non-empty. We omit this requirement as an essentially superfluous complication,
thus arriving at the product free version of the calculus LL.

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–12 0000 c© Oxford University Press



2 Lambek Grammars as Combinatory Categorial Grammars

In [6] it is proved that the Cut rule is admissible in the Lambek calculus. The proof
carries over to the version of LL considered here without complications.

1.2 Natural Deduction

Alternatively, LL can be presented in a Natural Deduction format, i.e. the rules of use
for the implicational slashes can be replaced by explicit Modus Ponens rules. Here
Curry-Howard labels mirror the proof history directly.

Definition 1.2 (LL: Natural Deduction)

id
x : A⇒ x : A

X ⇒M : B/A Y ⇒ N : A
/E

X, Y ⇒ (MN) : B

X, x : A⇒M : B
/I

X ⇒ λx.M : B/A

X ⇒M : A Y ⇒ N : A \B
\E

X, Y ⇒ (NM) : B

x : A,X ⇒M : B
\I

X ⇒ λx.M : A \B

It is easy to show that the two inference formats are equivalent. Even stronger,
sequent derivations and ND derivations generate the same set of proof terms.

Since λ-terms record the structure of ND proofs, Curry-Howard labeling thus
gives us a compact representation of this proof format. However, due to the non-
commutativity of LL, we have to distinguish between rightward and leftward abstrac-
tion and application. To get a complete match between ND proofs and Curry-Howard
terms, this distinction has to be coded in the term language.

In [10], Wansing shows how this can be done. We write λlx.M in Curry-Howard
terms rather than λx.M if the main functor of the type of the whole term is “\”; oth-
erwise we write λrx.M . Furthermore, if M has type B\A and N has type B, we write
(NM) rather than (MN). If we talk about the rightmost or leftmost free variable
occurrence in a term, we assume the linearization induced by this modified notation.
This notation has the obvious advantage that the sequence of free variables in a deriv-
able proof term directly mirrors the sequence of premises of the corresponding proof
(a feature that is shared by the combinatory system).

Following these conventions, the labeled ND calculus for LL looks as follows.

Definition 1.3 (LL: Natural Deduction with directed terms)

id
x : A⇒ x : A

X ⇒M : B/A Y ⇒ N : A
/E

X, Y ⇒ (MN) : B

X, x : A⇒M : B
/I

X ⇒ λrx.M : B/A

X ⇒ N : A Y ⇒M : A \B
\E

X, Y ⇒ (NM) : B

x : A,X ⇒M : B
\I

X ⇒ λlx.M : A \B



Lambek Grammars as Combinatory Categorial Grammars 3

In [10], Wansing proves the following lemma.

Lemma 1.4

A term M is a proof term of an LL-proof iff

1. Every λ binds exactly one variable occurrence.

2. For every subterm λlx.N of M , x is the leftmost free variable occurrence in N .

3. For every subterm λrx.N of M , x is the rightmost free variable occurrence in N .

Figure 1 displays a sample derivation of the relative clause construction. For better
readability, the deduction is given in tree format rather than as a sequent derivation.

(1) book that John liked

book
lex

book : n

that
lex

that : n \ n/(s/np)

John
lex

john : np

liked
lex

like : np \ s/np
1

x : np
/E

(likex)
np \ s \E

(john(likex))
s /I, 1

λrx(john(likex))

s/np /E
(that(λrx(john(likex))))

n \ n \E
(book(that(λrx(john(likex)))))

n

Fig. 1. LL-derivation of book that john liked

Here both introduction rules and elimination rules are involved. As the example
illustrates, the directionalized Curry-Howard labels encode two kinds of linguistic
information: They may serve as input for the semantic component (by ignoring the
directional information), and they also record prosodic information (deleting all lamb-
das and variables results in a prosodic term).

2 Combinatory Categorial systems

The Combinatory branch of Categorial grammar was initiated by the work of Ades
and Steedman ([1]). As in Basic Categorial Grammars, CCG (Combinatory Catego-
rial Grammar) makes use of the identity axiom and the slash elimination rules [/E]
and [\E], but it does without the slash introduction rules [/I] and [\I]. The Basic
Categorial core is extended by other schemes of inference though. Most work in the
CCG tradition assumes some—possibly restricted—version of Type Raising T and
(generalized) Function Composition B (for ease of comparison, we employ a sequent
style notation here). As in the systems discussed above, the history of a derivation
can be recorded in a label in CCG; labels are terms in the closure of the set of typed
variables under the set of combinators.



4 Lambek Grammars as Combinatory Categorial Grammars

Definition 2.1 (Type Raising)

X ⇒M : A
T>

X ⇒ T>(M) : B/(A \B)

X ⇒M : A
T<

X ⇒ T<(M) : (B/A) \B

Definition 2.2 (Function Composition)

X ⇒M : A/B Y ⇒ N : Cnl \ · · · \ C1 \B/D1/ · · · /Dnr
B>

XY ⇒ B>(M,N) : Cnl \ · · · \ C1 \A/D1/ · · · /Dnr

X ⇒ N : Cnl \ · · · \ C1 \B/D1/ · · · /Dnr M : B \A⇒ Y
B<

XY ⇒ B<(N,M) : Cnl \ · · · \ C1 \A/D1/ · · · /Dnr

It is easy to see that the well-known schemes of ordinary function composition

A/B,B/C ⇒ A/C

and crossed composition
A/B,C \B ⇒ C \A

(and their mirror images) are special cases of the more general operations given above.
Next to these combinatory inference schemes, CCGs might contain empty cate-

gories, i.e. axioms of the form

⇒M : A

for some term M and type A. They may be considered as 0-place combinators.
CCG is a non-logical deductive system for two reasons. First, the categorial slashes

are not interpreted as implications or any other known logical connectives. Second
and more important, the applicability of combinators may be restricted to certain
type instances. To illustrate this point, in [9] Steedman restricts the applicability of
the type raising rule A ⇒ B/(A \ B) to those instances where A is an “argument
category”. The complex category np \ s for instance would be excluded there. Such
fine-grainedness is beyond the expressive capabilities of a logical approach like Lam-
bek’s, since there theorems are always closed under uniform substitution of atoms.
For the purposes of the present paper, we will not make use of this feature of CCG
and treat combinators as schemata over all their type instances.

Figure 2 gives a derivation of the linguistic example (1) in CCG.

3 Combinatory presentation of LL

Even though both branches of modern Categorial grammar are based on the same
basic intuitions, the formal properties of the the systems differ considerably. This
is most obvious when we consider issues of weak generative capacity: Since [8] it is
known that Lambek grammar recognize exactly the context free languages (and the



Lambek Grammars as Combinatory Categorial Grammars 5

book
lex

book

n

that
lex

that

(n \ n)/(s/np)

John
lex

john

np
T>

T>(john)
s/(np \ s)

liked
lex

like

(np \ s)/np
B>

B>(T>(john), like)
s/np

B>
B>(that,B>(T>(john), like))

n \ n
B<

B<(book,B>(that,B>(T>(john), like)))
n

Fig. 2. CCG-derivation of book that John liked

proof carries over directly to LL), while the generative capacity of CCGs is mildly
context sensitive (cf. [5]). So the two approaches seem to be irreconcilable.

Recent developments in type logical grammar have changed this rigid picture. The
most important new concept within this paradigm is the notion of multi-modality. The
idea is to use several families of type logical connectives that communicate with each
other via interaction postulates. This leads to hybrid logics where certain powerful
structural rules might be applicable under certain conditions but not in general. The
use of multi-modality (see for instance [7]) increases the generative capacity of type
logical grammars in principle to Turing completeness (cf. [4]), so there is no principal
obstacle to simulate CCGs in the type logical framework.

In this section, we will pursue the opposite strategy. It will be shown that under
a slight modifcation and generalization of the notion of function composition as it
is used in the CCG tradition, LL can equivalently be reformulated as a combinatory
system.

The route that we will pursue is as follows. In the first step we will design a
combinatory system, LLC , that can be seen as a version of CCG. Then we will develop
a hybrid system LLH that comprises both the inference rules of the ND presentation
of LL and the combinatory rules from LLC . Finally we will prove that the set of
theorems derivable LLH is identical both to the theorems of LL and the theorems
of LLC . In this way we indirectly establish the equivalence of LL with LLC . The
structure of the argument is schematically shown in figure 3.

Some terminology before we start in earnest: we will call the first operand of forward
function composition B> and the second operand of backward composition B< (“M”
in the schemes above) the functor and the other operand (“N”) the argument of the
composition operation. In the schemes given above, the argument is always matched
with an outermost argument place of of the functor (the rightmost one in the case of
B> and the leftmost one in the case of B<). The notion of function composition to be
employed here generalizes this aspect: B> can target any forward looking (and B<

any backward looking) argument slot of the functor. To keep track of the argument
slot to be addressed, we use a superscript notation.



6 Lambek Grammars as Combinatory Categorial Grammars

��� � ���
�

� �
	 � ��� �
� �
� �

Fig. 3. Relation between LL,LLC and LLH

Some instances of CCG’s notion of function composition are not theorems of LL, and
the same holds for the generalization to be presented below. Therefore Generalized
Function Composition is subject to certain constraints; certain instances are only
licit if one or both of the operands are closed, i.e. do not contain free variables. This
ensures that in fact all instances are admissible in LL—a fact that will be proved later
on.
Definition 3.1 (Generalized Function Composition)

X ⇒M : A/B1/ · · · /Bi Y ⇒ N : Cnl \ · · · \ C1 \B1/D1/ · · · /Dnr
Bi
>

XY ⇒ Bi
>(M,N) : Cnl \ · · · \ C1 \A/D1/ · · · /Dnr/B2/ · · · /Bi

(i = 1 ∨ nl = 0) ∧
(i > 1→ N is closed) ∧
(nl > 0→M is closed)

X ⇒ N : Cnl \ · · · \ C1 \B1/D1/ · · · /Dnr Y ⇒M : Bi \ · · · \B1 \A
Bi
<

XY ⇒ Bi
<(N,M) : Bi \ · · · \B2 \ Cnl \ · · · \ C1 \A/D1/ · · · /Dnr

(i = 1 ∨ nr = 0) ∧
(i > 1→ N is closed) ∧
(nr > 0→M is closed)

Furthermore we assume any type instance of the identity combinator I:

Definition 3.2 (Identity Combinator)

IA>⇒ IA> : A/A



Lambek Grammars as Combinatory Categorial Grammars 7

IA<⇒ IA< : A \A

Finally, an appropriate combinatory reformulation of LL would require generalizations
of the “swapping” rule A\(B/C)⇔ (A\B)/C. Since this rule is reversible, it induces
an equivalence relation on types. We thus suppress the swapping rule. Instead we
tacitly consider each type in a derivation as a representative of its equivalence class
induced by swapping.

Let us say that a sequent X ⇒ A is derivable in LLC iff it is derivable by using only
the identity axiom [id] and the combinatory schemes IA>, I

A
<,B

i
>, and Bi

< for arbitrary
types A and natural numbers i.

As indicated above, we will establish the equivalence between LL and LLC by em-
bedding both systems into a hybrid system that will be shown to be equivalent to
both original systems. This hybrid system, LLH , is simply the combination of LL and
LLC . So a sequent is derivable in LLH iff it is derivable from instances of the identity
axiom by means of the ND rules of LL and the combinatory rules of LLC .

The equivalence of LLH with LL is fairly easy to show.

Lemma 3.3

A sequent X ⇒ A is derivable in LLH iff it is derivable in LL.

Proof. The if direction is obvious since the axioms and rules of LL are also axioms
or rules of LLH . To prove the only if direction, we have to show that all rules of LLH
are admissible in LL. For the logical rules this is trivial; but we have to show it for
the combinatory rules B and I as well. As for B, six cases have to be distinguished,
depending on the directionality and the values of the parameters nl and nr. For
forward composition B> the three cases are 1. i = 1 and nl = 0, 2. i = 1 and nl > 0,
and i > 1 and nl = 0. For backward composition B< the three cases are analogous
except that nl is to be replaced by nr.

We prove the admissibility of B> for each of the three cases separately.

1. Bi
>, i = 1, nl = 0

X ⇒ A/B1

Y ⇒ B1/D1/ · · · /Dn
/E

...
/E

Y,Dn, · · · , D1 ⇒ B1
/E

X, Y,Dn, · · · , D1 ⇒ A
/I

...
/I

X, Y,⇒ A/D1/ · · · /Dn

2. Bi
>, i = 1, nl > 0, X = ε



8 Lambek Grammars as Combinatory Categorial Grammars

Y ⇒ Cnl \ · · · \ C1 \B1/D1/ · · · /Dnr \E
...

\E
C1, · · · , Cnl , Y ⇒ B1/D1/ · · · /Dnr

/E
...

/E
C1, · · · , Cnl , Y,Dnr , · · · , D1 ⇒ B1 ⇒ A/B1

/E
C1, · · · , Cnl , Y,Dnr , · · · , D1 ⇒ A

/I
...

/I
C1, · · · , Cnl , Y ⇒ A/D1/ · · · /Dnr \I

...
\I

Y ⇒ Cnl \ · · · \ C1 \A/D1/ · · · /Dnr

3. Bi
>, i > 1, nl = 0, Y = ε

X ⇒ A/B1/ · · · /Bi
/E

...
/E

X,Bi, · · · , B2 ⇒ A/B1

⇒ B1/D1/ · · · /Dnr
/E

...
/E

Dnr , · · · , D1 ⇒ B1
/E

X,Bi, · · · , B2, Dnr , · · · , D1 ⇒ A
/I

...
/I

X ⇒ A/D1/ · · · /Dnr/B2/ · · · /Bi
The three subcases of backward composition B< can be proved by mirror images of
the above proofs.

The identity combinators can be derived directly from the identity axioms:

A⇒ A
/I

⇒ A/A

A⇒ A
\I

⇒ A \A

It remains to be shown that LLH is also equivalent to LLC . Here we define a translation
between terms (and thus implicitly between proofs) to establish the result.

Lemma 3.4

A sequent is derivable in LLH iff it is derivable in LLC .

Proof. The if direction is obvious again. To prove the other direction, we define a
reduction relation on hybrid proof terms that eventually transforms every LLH -proof



Lambek Grammars as Combinatory Categorial Grammars 9

term into a purely combinatory term. We use the notation M [x] to indicate that the
term M contains a free occurrence of the variable x.

Definition 3.5 (Reduction)

(M : A/B,N : B) ; B1
>(M,N) (3.1)

(N : B,M : B \A) ; B1
<(N,M) (3.2)

λlx.x : A ; I< : A \A (3.3)
λlx.Bi

>(M [x], N) ; Bi
>(λlx.M,N) (3.4)

λlx.Bi
>(M,N [x]) ; Bi

>(M,λlx.N) (3.5)

λlx.Bi
<(N [x],M) ; Bi

<(λlx.N,M) (3.6)

λlx.Bi
<(N,M [x]) ; Bi+1

< (N,λlx.M) (3.7)
λrx.x : A ; I> : A/A (3.8)

λrx.Bi
>(M [x], N) ; Bi+1

> (λrx.M,N) (3.9)

λrx.Bi
>(M,N [x]) ; Bi

>(M,λrx.N) (3.10)

λrx.Bi
<(N [x],M) ; Bi

<(λrx.N,M) (3.11)

λrx.Bi
<(N,M [x]) ; Bi

<(N,λrx.M) (3.12)

The reduction relation is generalized to subterms in the obvious way: if M ; M ′,
then N [M/x] ; N [M ′/x].

Next it has to be shown that this reduction relation preserves the type of the term,
its sequence of premises, and derivability in LLH . In clause (3.1) this is obviously the
case since B1

> is applicable to any well-formed terms M : A/B,N : B, and the type of
the resulting term is A. The same holds likewise for clause (3.2). In clause (3.3) both
the redex and the resulting term are derivable, have type A \ A, and do not contain
FVOs. As for clause (3.4), note that as in pure labeled LL, every λl binds exactly
one FVO, and this is the leftmost FVO in its scope (and likewise for λr). Hence the
sequence of FVOs is identical in the redex and the result, and the only occurrence of
x is the leftmost FVO in M . Hence λlM is a derivable LLH -term. Furthermore, for
Bi
>(M [x], N) to be derivable, the type of M must be A/Bi/ · · · /B1, and the type of

N is Bi ~/D (there are no C since M [x] is not closed). Thus the type of Bi
>(M [x], N)

is A ~/D/B2/ · · · /B1. If x : E, the type of the redex is thus E \A ~/D/B2/ · · · /B1. The
type of λlxM is thus E\A/Bi/ · · · /B1. This means that Bi

>(λlx.M,N) is defined and
has the type E \A ~/D/B2/ · · · /B1 as well. The side condition i > 1→ FV O(N) = ∅
applies both to redex and result, so if it is fulfilled for the redex, it is also fulfilled for
the result.

Note that in clauses (3.5) – (3.7), λlx binds the leftmost FVO in its scope for the
redex to be a derivable proof term. Thus M in (3.5) and N in (3.7) must be closed,
λlx in the result term also binds the leftmost FVO in its scope, and the sequences
of FVO in the redex and in the result are identical in all three cases. As for (3.5),
type identity between redex and result is easy to check. The side conditions on the
applicability of Bi

> require M to be closed in the result, but this is guaranteed since
otherwise λlx would not bind the leftmost FVO in the redex.



10 Lambek Grammars as Combinatory Categorial Grammars

In (3.6), N [x] is not closed and thus i = 1 for the redex to be well-formed. Under
these conditions, type identity between redex and result is easy to check, and the side
condition nr > 0→ FV O(M) = ∅ is identical for redex and result.

In clause (3.7) N must be closed, since otherwise λlx would not bind the leftmost
FVO in the redex. Furthermore FV O(M [x]) 6= ∅, hence nr = 0 for the redex to be
well-formed. Thus the result is well-formed if the redex is, and type identity between
redex and result is easily checked.

Preservation of well-formedness, type, and sequence of FVO can be proved similarly
for the mirror images of (3.3) – (3.7), i.e. (3.8) – (3.12).

Next we show that every LLH -term is either a purely combinatory term, or it
contains a redex. By definition, every use of function application (/E or \E) creates
a redex according to clauses (3.1, 3.2), so a term in normal form does not contain
function application. So we have to show that every λ in a well-formed term creates
a redex. Suppose the scope of the λ is a variable. Since every λ binds exactly one
FVO, so such a configuration either matches clause (3.3) or (3.8). The scope of a λ
cannot be an identity combinator since then the λ would bind no FVO. The remaining
possibility is that the scope of a λ is a term headed by B. There are eight possible
sub-configurations, depending on whether the λ is λl or λr, whether B is B> or B>,
and whether the λ binds a FVO in the first or in the second operand of B. These
eight cases each correspond to one of the clauses (3.4) – (3.7) and (3.9) – (3.12).

Finally it remains to be shown that the reduction relation defined above strongly
normalizes. It is easy to see that this is in fact the case since each reduction step
either reduces the number of function applications, the number of λs, or it reduces
the number of symbols that intervene between a λ and the FVO that it binds. Since
these parameters are always natural numbers and none of them can ever be increased
by any reduction step, any sequence of reduction steps eventually terminates. So any
LLH -proofterm can effectively be transformed into an LLC-proofterm, and this means
that any proof in LLH can be translated into a proof in LLC .

This leads directly to the main result of this paper.

Theorem 3.6

A sequent is derivable in LL iff it is derivable in LLC .

Proof. Immediately from the two preceding lemmas.

We conclude this section with some examples for translations from LL-proofs into
LLC-proofs, using the construction from the proof of lemma 3.4. We start with the
type lifting theorem A⇒ (B/A) \B.

x : A ⇒ (λly.yx) : (B/A) \B
= λly.B1

>(y, x)
= B1

>(λly.y, x)
= B1

>(I<, x)

Note that the combinatory proof of this theorem makes use of the 0-place combinator
I, even though its proof in LL does without empty premises.

A somewhat more complex example is type lowering A/(B/(C \B))⇒ A/C, which
involves the management of several λs.



Lambek Grammars as Combinatory Categorial Grammars 11

x : A/(B/(C \B)) ⇒ λry.x(λrz.yz) : A/C
= λryB1

>(x, (λrzB1
<(y, z)))

= λryB1
>(x, (B1

<(y, λrzz)))
= λryB1

>(x,B1
<(y, I>))

= B1
>(x, λryB1

<(y, I>))
= B1

>(x,B1
<(λryy, I>))

= B1
>(x,B1

<(I>, I>))

Finally, in figure 4 we give the translation of the LL-derivation of the linguistic example
from the beginning.

book
lex

book

n

that
lex

that

n \ n/(s/n)

John
lex

john

np

liked
lex

like

np \ s/np

I>
I>

np/np
B1
>

B1
>(like, I>)
np \ s/np

B1
<

B1
<(john,B1

>(like, I>))
s/np

B1
>

B1
>(that,B1

<(john,B1
>(like, I>)))

n \ n
B1
<

B1
<(book,B1

>(that,B1
<(john,B1

>(like, I>))))
n

Fig. 4. LLC-derivation of book that John liked

4 Conclusion

The present paper presented a novel Combinatory Categorial system making use of
the identity combinator, a modified and generalized version of function composition
and—implicitly—swapping. As main result, it was proved that under the appropriate
restriction of generalized function composition, this combinatory system is equivalent
to the product free version of the calculus LL, the variant of the associative Lambek
calculus that does without the restriction to empty premises.

At the present point, the significance of the result lies in the fact that is makes a
connection between the two main branches of Categorial Grammar; it is thus a base
for transferring concrete analyses from the Lambek tradition into the Combinatory
tradition. Two directions for further research suggest themselves: Are there similar
constructions for other type logical calculi like full LL, L, the non-associative Lam-
bek calculus NL etc.? And, does the combinatory reformulation offer new insights
about the Lambek calculus as such? Especially investigations of the proof theoretic
complexity of type logical grammars might profit from the combinatory perspective.



12 Lambek Grammars as Combinatory Categorial Grammars

References

[1] Anthony E. Ades and Mark J. Steedman. On the order of words. Linguistics and Philosophy,

4:517–558, 1982.

[2] Kazimierz Ajdukiewicz. Die syntaktische Konnexität. Studia Philosophica, 1:1–27, 1935.

[3] Yehoshua Bar-Hillel. A quasi-arithmetical notation for syntactic description. Language, 29:47–
58, 1953.

[4] Bob Carpenter. The Turing-completeness of multimodal Categorial Grammars. unpublished

manuscript, 1995.

[5] Aravind Joshi, K. Vijay-Shanker, and David Weir. The convergence of mildly context-sensitive
grammar formalisms. In Tom Wasow and Peter Sells, editors, Processing of Linguistic Structure,

pages 31–81. MIT Press, Cambridge(Mass.), 1990.

[6] Joachim Lambek. The mathematics of sentence structure. American Mathematical Monthly,
65:154–170, 1958.

[7] Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter Meulen, editors,

Handbook of Logic and Language, chapter 2, pages 93–178. Elsevier, MIT Press, 1997.

[8] Martin Pentus. Lambek grammars are context-free. In Proceedings of the 8th Annual IEEE
Symposium on Logic in Computer Science. Montreal, 1993.

[9] Mark Steedman. Surface Structure and Interpretation. MIT Press, Cambridge (Mass.), 1996.

[10] Heinrich Theodor Wansing. The Logic of Information Structures. Springer Lecture Notes in

Artificial Intelligence 681. Springer Verlag, Berlin, 1993.


