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1 Introduction
One crucial intuition behind the enterprise of model theoretic semantics can be
summarized by the slogan “Language is one thing, and meanings are something
different”. In more technical terms, interpretation is seen as a mapping from an
algebra of syntactic forms to an algebra of meanings, and these two algebras are
sharply distinguished conceptually. (This does not entail that they are disjoint—
expressions may refer to other expressions or even to themselves.) Variables, as
they are commonly used, do not fit into this picture. On the one hand, variables
are expressions, i.e. atomic elements of the syntactic algebra. On the other hand,
under a Fregean conception of interpretation, meanings are functions from variable
assignments to other objects. So variables are set-theoretic building blocks of the
semantic algebra as well. Thus a variable free approach to the syntax/semantics
interface has an a priori conceptual appeal.
At a first glance, the greatest obstacle to a variable free semantics for natural
language is the phenomenon of anaphora. The Categorial literature contains a series
of proposals to overcome this problem. Generally there are two possible routes here.
By definition, anaphoric expressions re-use the meaning of another expression, their
antecedent. So the interpretation of anaphors involves a multiplication of semantic
resources. So it has to be decided whether this is due to the lexical meaning of
the anaphoric expression or whether meaning multiplication is done in syntax. The
former route is taken by Szabolcsi 1989 and Moortgat 1996a, while Hepple 1990,
Jacobson 1999 and Jäger 1998 opt for the latter alternative.
The present paper offers a unifying perspective. Working within the framework of
multi-modal Type Logical Grammar (cf. Kurtonina and Moortgat 1995; Moortgat
1997), anaphora resolution is broken into two aspects. Duplication of meaning
is due to the lexical meaning of anaphors, while the non-local character of this
process is taken care of in syntax and controlled by multi-modal techniques. So the
present approach falls into the first group of theories mentioned above. However,
it is shown that Jacobson’s 1999 and Jäger’s 1998 system each can be embedded
into one version of the multimodal system. So the two approaches ‘resolution in
lexicon’ and ‘resolution in syntax’ should be regarded as complementary rather than
mutually exclusive.

2 Jacobson 1999

2.1 Combinatory presentation

According to Jacobson, the meaning of an anaphoric expression is a function from
the meaning of its antecedent to its meaning in context. Applied to anaphoric
pronouns, this comes down to the claim that they denote the identity function over
individuals. Anaphoric expressions are coded as such in their syntactic category
too. To this end, Jacobson introduces a novel type-forming connective. A sign of
category AB is an anaphoric expression which may be transformed into a sign of
category B provided it finds a suitable antecedent of category B. For typographic
reasons and to stress the similarity with the other two categorial slashes we use the
notation A|B instead of AB . So an anaphoric pronoun receives category N |N . The
semantic impact of “|” is similar to the other slashes; it creates a functor category.
Jacobson’s proposal is framed in the general setup of Combinatory Categorial Gram-
mar. The behavior of the third slash is governed by two combinatory schemata.



First, an anaphoric “gap” may percolate upward in complex structures. This is
formalized by a mixed version of the Geach rule plus a monotonicity scheme.1 (The
arrows “→ is used as a meta-variable over “\” and /.)

G
x : A → B ⇒ λyz.x(yz) : (A|C) → (B|C)

x : A ⇒ M : B
M

y : A|C ⇒ λz.M [(yz)/x] : B|C

Second, anaphoric dependencies are established by means of the scheme Z.2

x : A → B1 → · · · → Bn → C → D ⇒
λyz1 · · · znw.xwzn · · · z1(yw) : (A|C) → B1 → · · · → Bn → C → D (Z)

2.2 Multimodal decomposition

In this subsection, I will present an embedding of Jacobson’s system into the general
theory of structural control proposed in Kurtonina and Moortgat 1995. For reasons
of space, a presentation of this framework has to be left out here. The interested
reader is referred to the cited work and Moortgat 1997.
We assume the base logic to be NL, the non-associative Lambek Calculus. To start
with, it is easy to see that in the presence of the residuation laws, the combinator
G and Jacobson’s monotonicity rule are jointly equivalent to the following inference
rule:

X[x : A] ⇒ M : B
G’

X[y : A|C] ⇒ λz.M [(yz)/x] : B|C

Likewise, Z is equivalent to the combination of the following rules:

X[x : A ◦ Y [y : B]] ⇒ M : C
Z’1

X[x : A ◦ Y [z : B|A]] ⇒ M [(zx)/y] : C

X[Y [y : B] ◦ x : A] ⇒ M : C
Z’2

X[Y [z : B|A] ◦ x : A] ⇒ M [(zx)/y] : C

In words, an anaphoric slot can travel up in a resource tree, and an anaphora-slash
can be introduced on the right hand side of a sequent if it is c-commanded by an
antecedent of the appropriate category.
Let us suppose for a moment that our base logic is not NL but LP, i.e. we have
unlimited access to associativity and permutation. Then—as the reader may check
herself—all three rules become derivable iff we expand A|B to B\(B•A). This makes
sense intuitively; if we ignore linear order and hierarchical structure, a pronoun
may be considered as something which consumes it antecedent, makes a copy of
it, and returns it to its original position.3 Under the strict resource management
regime of NL, such a treatment fails due to the non-local character of the rules
given above. To make it work, we have to add structural rules which give access
to associativity and permutation, and we have to restrict these rules by means of
modal control devices to avoid a collapse of the base logic into LP. This is achieved
by the interaction postulates given in figure 1.

1Jacobson’s original formulation is somewhat more restrictive, limiting the premise to results
of the application of G.

2Jacobson limits the type C to N , but there doesn’t seem to be a special motivation for this
restriction.

3This intuition is at the bottom of the Linear treatment of anaphora in Dalrymple et al. 1997,
who assign a pronoun the lexical entry λx.〈x, x〉 : N −◦(N ⊗N).



3A ←→ t •1 A (P0)
A • (B •1 C) ←→ 〈↖〉(A •B) •1 C (P1)
(A •1 B) • C ←→ 〈↗〉(A • C) •1 B (P2)
A • (B •1 C) ←→ 〈←〉((A •2 C) •B) (P3)
(A •1 B) • C ←→ 〈→〉(A • (C •2 B)) (P4)

A •2 (B •1 C) ←→ (A •2 C) •2 B (P5)
A •2 3B ←→ 31(A •2 B) (P6)

Figure 1: Interaction postulates

Let us look at each postulate
separately. We assume that
all anaphoric expressions are
lexically locked by some unary
modality 3. Postulate (P0) re-
places such a modally marked
resource by a place holder con-
stant t, while the unlocked
anaphoric resource is attached
to t by a binary product •1.4
The postulates (P1) and (P2) move the second argument of •1 up in the tree,
marking the nodes on its path with the unary modalities 〈↗〉 and 〈↖〉, depending
on whether the movement originated from the left or the right daughter. (P3) and
(P4) move the second argument of •1 to the left (right) sister-node, changing the
mode of combination from •1 to •2 and marking the path with 〈←〉 (〈→〉). Thus
(P0)–(P4) enable any resource marked with 3 to enter a local •2-configuration with
any c-commanding node, while its place of origin is marked with t and the path
with appropriate arrow modalities. So an anaphor can approach any c-commanding
antecedent. After resolution, this process can be reversed since all postulates work
in both directions.

id
A ⇒ A

X[A ◦ Y [B]] ⇒ C
2↓L

X[A ◦ Y [〈2↓B〉]] ⇒ C
P0

X[A ◦ Y [t ◦1 2↓B]] ⇒ C
P1/2

· · ·
P1/2

X[A ◦ (Y ′[t] ◦1 2↓B)] ⇒ C
P3

X[〈←〉((A ◦2 2↓B) ◦ Y ′[t])] ⇒ C
•2L

X[〈←〉(A •2 2↓B ◦ Y ′[t])] ⇒ C
\2L

X[〈←〉((A ◦2 A \2 (A •2 2↓B)) ◦ Y ′[t])] ⇒ C
P3

X[A ◦ (Y ′[t] ◦1 A \2 (A •2 2↓B))] ⇒ C
P1/2

· · ·
P1/2

X[A ◦ Y [t ◦1 A \2 (A •2 2↓B)]] ⇒ C
P0

X[A ◦ Y [3(A \2 (A •2 2↓B))]] ⇒ C

Figure 2: Derivation of Z’

Anaphora resolution as such is
modeled by Modus Ponens plus
•2 elimination as in the LP-
treatment sketched above. Af-
ter putting back the resolved
anaphor to its original loca-
tion, the anaphora-modality 3
is matched by a corresponding
2↓ and thus cancelled. So the
anaphora type A|B is to be de-
constructed as 3(B \2 (B •2
2↓A)). A Curry-Howard term
M with type A|B is translated
as λx.〈x,Mx〉. So under the
present perspective, the mean-
ing of a pronoun is λx.〈x, x〉, as
in Dalrymple et al. 1997.
These postulates are already
sufficient to make both in-
stances of Z’ derivable. The
derivation of Z’1 is given in fig-
ure 2. There Y ′[t] is used as shorthand for the structure that is exactly like Y except
that all nodes dominating t are marked either with 〈↗〉 or with 〈↖〉, depending on
whether its left or its right daughter contains t.
The derivation of Z’2 is analogous except that we use (P4) instead of (P3).
To deconstruct the G’, a qualification concerning modal decoration is necessary.
It was mentioned above that the unary modality 3 serves to mark lexical types
as being anaphoric. Anaphoric types that are constructed during derivation come
without this kind of decoration. More generally, we assume that all negative oc-
currences of a type A|B (in the sense of van Benthem 1991:75) are translated as
3(B \2 (B •2 2↓A))—i.e. with modal marking—while positive occurrences of A|B
are mapped just to B \2 (B •2 A). Since Z’ only involved negative occurrences, the

4This device is taken from Moortgat 1996b.



derivation given above is not affected by this.

id
C ⇒ C

C ⇒ C X[A] ⇒ B
•2R

C ◦2 X[A] ⇒ C •2 B
P0 · · · 5

· · ·
P0 · · · 5

(C ◦2 2↓A) ◦2 X ′[t] ⇒ C •2 B
\2L, •2L

(C ◦2 C \2 (C •2 2↓A)) ◦2 X ′[t] ⇒ C •2 B
P5

C ◦2 (X ′[t] ◦1 C \2 (C •2 2↓A)) ⇒ C •2 B
P0/1/2

C ◦2 X[3(C \2 (C •2 2↓A))] ⇒ C •2 B
\2R

X[3(C \2 (C •2 2↓A))] ⇒ C \2 (C •2 B)

Figure 3: Derivation of G’

This taken in to account,
G’ is derivable as well pro-
vided anaphora resolution
is able to deal with hypo-
thetical antecedents. This
is ensured by (P5). In
the derivation in figure 3,
we use the same notational
convention as above and
leave out obvious steps.
Since positive and nega-
tive occurrences of A|B are
translated differently, we
have to make sure that the
identity axiom for A|B re-
mains derivable. This is where postulate (P6) comes in (cf. figure 4).

3 Jäger 1998

In Jäger 1998 I followed Jacobson in extending the inventory of type forming con-
nectives with | and assigning pronouns the lexical entry λx.x : N |N . The system is

id
A ⇒ A

id
A ⇒ A

id
B ⇒ B

2↓L, •2R
A ◦2 〈2↓B〉 ⇒ A •2 B

P6
〈1A ◦2 2↓B〉1 ⇒ A •2 B

\2L, •2L
〈1A ◦2 A \2 (A •2 2↓B)〉1 ⇒ A •2 B

P6
A ◦2 〈A \2 (A •2 2↓B)〉 ⇒ A •2 B

\2R, 3L
3(A \2 (A •2 2↓B)) ⇒ A \2 (A •2 B)

Figure 4: Derivation of the identity axiom

formulated in the type logi-
cal version of Categorial Gram-
mar while Jacobson is work-
ing in the Combinatory tradi-
tion. Besides, Jäger 1998 dif-
fers from Jacobson’s proposal
in assuming that precedence
rather than c-command is the
necessary and sufficient to li-
cense anaphoric relationships.
This is motivated by considera-
tions concerning inverse linking
constructions, weak crossover,
VP ellipsis and cross-sentential anaphora.
Accordingly, the counterpart of Jacobson’s Z—the rule of use for |—is (equivalent
to) the following (where X[A][B] is a structure containing the substructures A and
B in that order):

X[x : A][y : B] ⇒ M : C
|L

X[x : A][z : B|A] ⇒ M [(zx)/y] : C

Jacobson’s G and the monotonicity rule are both covered by the rule of proof

x : A ◦ y : p ◦X ⇒ 〈x, y, M〉 : A • p •B
|R

X ⇒ λx.M : B|A

The resulting logic is called L|.
The rule of proof is not without problems. To start with, it imposes a restriction
on the form of the Curry-Howard term of the premise. In other words, the Curry-
Howard labeling is not just a book keeping device here but an intrinsic part of the
proof theory. As a consequence, it proved to be difficult to develop an appropri-
ate model theory for this logic. Furthermore, the system crucially relies on the
unrestricted availability of associativity.



One might wonder whether these limitations are really unavoidable. A careful
examination of the linguistic applications reveals that the rule of proof for | can be
replaced by the weaker rule G’ given above without changing the linguistic impact
in any way.
Given this, an suitable deconstruction of the the Jäger 1998 version of A|B should
make |L and G’ admissible rules. This can be done in a way very similar to the
multimodal system given in the previous section. The only adjustment needed is to
replace (P4), which admits forward binding, by the two postulates given in figure 5.

(A •B) •2 C ←→ 〈↙〉((A •2 C) •B (P4.1)
(A •B) •2 C ←→ 〈↘〉(A • (B •2 C)) (P4.2)

Figure 5: Revised Interaction postulates

id
A ⇒ A

X[A][B] ⇒ C
2↓L

X[A][〈2↓B〉] ⇒ C
P0

X[A][t ◦1 2↓B] ⇒ C
P1/2/3/4.1/4.2

· · ·
P1/2/3/4.1/4.2

X ′[A ◦2 2↓B][t] ⇒ C
\2L, •2L

X ′[A ◦2 A \ (A •2 2↓B)][t] ⇒ C
P1/2/3/4.1/4.2

· · ·
P1/2/3/4.1/4.2

X[A][t ◦1 A \ (A •2 2↓B)] ⇒ C
P0

X[A][3(A \ (A •2 2↓B))] ⇒ C

Figure 6: Derivation of |L

The derivation of G’ given
in figure 3 does not make
reference to (P4), so it re-
mains valid in the revised
system. As for Z, observe
that now, due to the ab-
sence of (P4), an anaphoric re-
source can only move up the c-
commanding nodes that pre-
cede it. The extension with
(P4.1) and (P4.2) furthermore
admits to move this resource
down to any node dominated
by this c-commanding node
(again accompanied by mark-
ing all traversed nodes with
and arrow modality). This
amounts to saying that an
anaphoric resource may travel
to any node that precedes its
base position. Thus |L be-
comes a derivable rule. The
proof is schematically given in
figure 6. There I adopt the notational convention that X ′[A][B] is exactly like
X[A][B] except that every node at the shortest path leading from A to B is marked
by the appropriate arrow modality.
While all relevant sequents that are derivable in L| remain derivable under the
translation given above, the multimodal system is more liberal. Notably, it inter-
acts with quantification in an interesting way. The interaction postulates closely
resemble (and are inspired by) the ones used in Moortgat 1996b to deal with quan-
tifier scope. We can in fact replace Moortgat’s deconstruction of the in situ binder
q(A, B,C) by 3((B/12↓

A) \1 C) in the present system.
Moortgat 1996a proposes to assign pronouns the type q(N, N \S, N \S. Under the
deconstruction of | and q assumed here, the translation of the following sequent is
derivable:

N |N ⇒ q(N, N \ S,N \ S)

So the present treatment of pronouns is not just a generalization of Jacobson’s,
but also of Moortgat’s proposal. Likewise, the types ((N \ S)/N) \ (N \ S) and
(((N \ S)/S) \ (N \ S))/(N \ S), which are assigned to reflexives and pronouns
respectively in Szabolcsi 1989, are derivable from the translation of N |N .
The multimodal reformulation of L| presented in this section avoids all three short-
comings mentioned above. First, none of the logical rules or interaction postulates
imposes any constraints on the Curry-Howard terms of the premises. So the applica-
bility of sequent rules solely depends on the types. Second, no special requirements



on the structural properties of •, the default mode of combination, are made. No
special reference to associativity or other structural rules are made.
Finally, the multimodal system, as well as the one presented in the previous section,
is easily supplied with a sound and complete model theory. An obvious candidate
is interpretation of binary operators in ternary frames in the sense of Došen 1992
that was extended to unary modalities in Moortgat 1995 and to 0-ary modalities
as the constant t in Moortgat 1996b. Interaction postulates are compiled into
frame conditions using the algorithm given in Kurtonina 1995. The soundness
and completeness proofs are entirely standard; the latter is done by constructing
canonical models from the set of types.

4 Conclusion

To sum up, the multimodal treatment of anaphora proposed here offers a unifying
perspective on previous proposals in two respects. First, the two non-local phenom-
ena of quantifier scope and anaphora are treated by means of the very same modal
licensing and control devices. Second, it generalizes several seemingly incompatible
categorial treatments of anaphora from the literature. In particular, even though
the binding force of anaphors is essentially due to their lexical meaning there, it
also covers accounts like Jacobson’s where binding is done in syntax.
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