Statistical estimation of diachronic stability from synchronic data

Gerhard Jäger

Tübingen University

Cape Town, July 6, 2018

Introduction

From the workshop description

"The workshop starts from the null hypothesis that diachronically stable properties are those that appear as the typologically most frequent ones, and that cross-linguistic rarity correlates with diachronic instability."

Inferring diachronic stability of a feature from its typological frequency is potentially fallacious for three reasons:

- 1. Processes of different rates may lead to identical equilibrium distributions.
- 2. Individual languages are not independent random samples, since genetically related languages are likely to have similar typological profiles.
- 3. The stability of a feature value might depend on the value of other, correlated features.

Frequency, stability, and Markov chains

Rainy days per year in Mumbay and Rome

source: https://weather-and-climate.com

Rainy days per year in Mumbay and Rome

source: https://weather-and-climate.com

Markov chains

Phylogenetic structure

Markov process

Phylogenetic structure

Markov process

 \bigwedge

Phylogeny

Phylogenetic structure

Markov process

Phylogeny

Branching process

Phylogenetic non-independence

- languages are phylogenetically structured
- if two closely related languages display the same pattern, these are not two independent data points
- $\Rightarrow\,$ we need to control for phylogenetic dependencies

Phylogenetic non-independence

Phylogenetic non-independence

Maslova (2000):

"If the A-distribution for a given typology cannot be assumed to be stationary, a distributional universal cannot be discovered on the basis of purely synchronic statistical data."

"In this case, the only way to discover a distributional universal is to **estimate transition probabilities** and as it were to 'predict' the stationary distribution on the basis of the equations in (1)."

The phylogenetic comparative method

Estimating rates of change

if phylogeny and states of extant languages are known...

Estimating rates of change

- if phylogeny and states of extant languages are known...
- ... transition rates and ancestral states can be estimated based on Markov model

Inferring a world tree of languages

concept	Latin	English
1	ego	Ei
you	tu	yu
we	nos	wi
one	unus	w3n
two	duo	tu
person	persona, homo	pers3n
fish	piskis	fiS
dog	kanis	dag
louse	pedikulus	laus
tree	arbor	tri
leaf	foly~u*	lif
skin	kutis	skin
blood	saNgw~is	bl3d
bone	os	bon
horn	kornu	horn
ear	auris	ir
eye	okulus	Ei

Language	fishiz	tongue: J	smoke:1
Abui-Atangmelang	-af-u		
Abui-Fuimelang	-af-u	tal-i-fi	
Adang	aab	tal-E-b	awaib-a-n-o-7o-
Blagar-Bakalang	-ab	j-e-bur-	adb-a-n-aNka-
Blagar-Bama	aab	teg-e-bur-	b-e-n-a-xa-
Blagar-Kulijahi	-ab	tej-e-bur-	b-e-n-aNka-
Blagar-Nule	aab	tej-e-bur-	adb-e-n-aNka-
Blagar-Tuntuli	aab	tej-e-bur-	a-adgeb-a-n-a-q
Blagar-Warsalelang	-ab	tel-e-bur-	a-adb-a-n-a-x
Bunaq			b-o-t-o-h
Deing	haf		buu-n
Hamap	7ab	nar-ø-buN-	b-a-n-o-7
Kabola	hab	tal-e-b	awalb-e-n-e-7o-
Kaera-Padangsul	-ab	talee-b	a-adb-e-naa-x
Kafoa	-afUi	tal-i-p	f-o-n-a
Kamang	-ap-i	nalpu	a-
Kiraman	-Eb	nal-i-bar-	arb-a-n-o-kan
Klon	-eb-i	gel-E-b	ed-ab-o-n
Kui	-eb	tal-i-ber-	arb-o-n-o-k
Kula	-ap-i	-il-I-p	pn-ekka-
Nedebang	aaf-i	gel-e-fu	ar-ab-u-n
Reta	aab	nal-e-bul-	a-adb-o-n-a
Sar-Adiabang	haf	p-e-fal-	arbuu-n
Sar-Nule	haf	nal-e-faj-	
Sawila	-ap-i	gal-impuru	p-u-n-a-ka-
Teiwa-Madar	xaf	gel-i-vi	buu-n
Wersing	-ap-i	nej-e-bur-	ad-ap-u-n-a-k
Wpantar	hap	nal-e-bu	b-unn-a

	English	Spanish	Modern Greek	Standard German
1	Ei:A	yo:B	exo:C	iX:D
you	ya:A	ustet:B, tu:C	esi:D	da:E
and .	W1:A	nosotros:B	emis:C	vir:A
0.000	w3m:A	uno:8	enas:C, ena:C	ains:D
faro	tu:A	dos:B	Sy~o:C, Sio:D	cvai:E
person	pers3s:A	persona:A	an8~ropos:B	mEnS:C
fish	f15:A	peskado:A, pes:A	psari:B	f15:A
dog	dag:A	pero:B	sTili:C, sTiles:C	hunt:D
097910	k3m:A	veni:B	erx~o:C	kh~on3n:A
8347	s3n:A	801:8	ily-cs:C, iLos:C	zon3:A
star	star:#	estreya:A	asteri:A, astro:A	StErn:A
water	wat3r:A	agy~a:B	zero:C	vas3r:A
stone	ston:A	piedra:B	petra:B	Stain:A
fire	fEir:A	fuego:B	foty~a:C	foia:D
path	pEB:A	sends:8	Sromos:C	pf~at:A, vek:D
niatawaan	naunt3n:A	sero:B, monta5a:A	wumo:C, oros:D	bErk : E
fall	ful:A	yeno:B	yenatos:C, pliris:D	fol:A
new	tra : A	mnevo : A	neos:A, Tenary-os:B	noi:A
1142TEC	DEN:A	nombre: A	cocea:A	nam3:A

TNG. ENGAN. MATBT TNG, ENGAN, POLE TNG. ENGAN, SAU TNG ENGAN YARTRA TNG, FASU, FASU TNG. FASU, NAMUMI TNG. FINISTERRE-HUON, AWARA TNG.FINISTERRE-HUON.BORONG TNG. ETNTSTERRE-HUON, BURUM TNG. EINTSTERRE-HUON, BURUM MIND TNG. FINISTERRE-HUON, DEDUA TNG, FINISTERRE-HUON, HUBE TNG.FINISTERRE-HUON.KATE TNG.FINISTERRE-HUON.KOMBA TNG, FINISTERRE-HUON, KOSORONG TNG.FINISTERRE-HUON.MAPE TNG ETNISTERRE-HUON MAPE 2 TNG. ETNTSTERRE-HUON. MTGARAC TNG, ETNISTERRE-HUON, MINDIK TNG, FINISTERRE-HUON, MOMOLILI TNG. FINISTERRE-HUON, NABAK TNG ETNISTERRE-HUON NANKINA TNG. ETNTSTERRE-HUON, NEK TNG, FINISTERRE-HUON, NUKNA TNG.FINISTERRE-HUON.ONO TNG. FINISTERRE-HUON. SELEPET TNG.FINISTERRE-HUON.TIMBE TNG, ETNISTERRE-HUON, TOBO TNG. FINISTERRE-HUON. WANTOAT TNG, FINISTERRE-HUON, YOPNO TNG.GOILALAN.AFOA TNG. GOTI ALAN, KUNTMATPA TNG. GOILALAN, MAFULU

- branch lengths within Glottolog families estimated from lexical data
- calibration: Proto-Austronesian \sim 5,000 years
- branches above family level effictively set to infinity

Case study 1: Rare consonants

Synchronic statistics

- data: ASJP word lists (word lists from ca. 6,000 living languages and dialects; Wichmann et al. 2016)
- variables:
 - voiceless and voiced dental fricative (transcribed as 8)
 - voiceless and voiced uvular fricative, voiceless and voiced pharyngeal fricative (transcribed as X)

	8	Х
raw numbers	334	378
average	5.7%	6.6%
weighted by family	14.6	22.2
average	4.6%	7.0%

Dental fricative

Uvular or pharyngeal fricative

	8	Х
equilibrium probability	5.5%	7.4%
half-life present (kyrs)	1.8	4.6
half-life absent (kyrs)	30.1	58.4

Case study 2: Major word orders

Statistics of major word order distribution

- data: WALS intersected with ASJP
- 1,045 languages, 211 lineages

Raw numbers

SOV	SVO	VSO	VOS	OVS	OSV
491	442	79	19	11	3
47.0%	42.3%	7.6%	1.8%	1.1%	0.3%

Weighted by lineages

SOV	SVO	VSO	VOS	OVS	OSV
139.1	49.3	11.8	4.7	4.5	0.8
00.3%	23.4%	5.0%	2.2%	2.1%	0.4%

Phylogenetically estimated Markov process

Case study 3: Word order and case

Statistics

- data: WALS intersected with ASJP
- 204 languages, 103 lineages

Raw numbers

no case/OV	no case/VO	case/OV	case/VO
17	64	94	29
8.3%	31.4%	46.1%	14.2%

Weighted by lineages

no case/OV	no case/VO $$	case/OV	case/VO
10.6	22.6	57.7	12.2
10.3%	21.9%	56.0%	11.8%

weighted by family

Case

case • no • yes

VO vs. OV

word order • OV • VO

• no case/OV • no case/VO • case/OV • case/VO

Phylogenetically estimated Markov process: features individually

26 / 29

Phylogenetically estimated Markov process: dependent features

27 / 29

Conclusion

Conclusion

- connection between cross-linguistic frequency and diachronic stability is loose at best
- ▶ to assess diachronic stability, we need information on
 - phylogenetic structure
 - branch lengths
- ► stability of feature values may depend on other features → potentially complex causal network between typological variables, waiting to be explored
- todo:
 - comparison to related but different approaches, such as Bickel's Family Bias Method (Bickel, 2013) or Greenhill et al.'s (2017) approach
 - factoring in language contact
 - non-homogeneous Markov chains?

- Balthasar Bickel. Distributional biases in language families. In Language Typology and Historical Contingency: In honor of Johanna Nichols, pages 415–444. John Benjamins, Amsterdam, 2013.
- Simon J Greenhill, Chieh-Hsi Wu, Xia Hua, Michael Dunn, Stephen C Levinson, and Russell D Gray. Evolutionary dynamics of language systems. Proceedings of the National Academy of Sciences, 114(42):E8822–E8829, 2017.
- Gerhard Jäger. Phylogenetic inference from word lists using weighted alignment with empirically determined weights. Language Dynamics and Change, 3(2):245–291, 2013.
- Gerhard Jäger. Support for linguistic macrofamilies from weighted sequence alignment. Proceedings of the National Academy of Sciences, 112(41):12752–12757, 2015. doi: 10.1073/pnas.1500331112.
- Gerhard Jäger. Global-scale phylogenetic linguistic inference from lexical resources. arXiv:1802.06079, 2018.
- Gerhard Jäger and Søren Wichmann. Inferring the world tree of languages from word lists. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn, O. Feher, and T. Verhoef, editors, *The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11)*, 2016. Available online: http://evolang.org/neworleans/papers/147.html.
- Elena Maslova. A dynamic approach to the verification of distributional universals. *Linguistic Typology*, 4(3): 307–333, 2000.
- Søren Wichmann, Eric W. Holman, and Cecil H. Brown. The ASJP database (version 17). http://asjp.clld.org/, 2016.