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Introduction

From the workshop description
“The workshop starts from the null hypothesis that diachronically
stable properties are those that appear as the typologically most
frequent ones, and that cross-linguistic rarity correlates with
diachronic instability.”

Inferring diachronic stability of a feature from its typological
frequency is potentially fallacious for three reasons:

1. Processes of different rates may lead to identical equilibrium
distributions.

2. Individual languages are not independent random samples,
since genetically related languages are likely to have similar
typological profiles.

3. The stability of a feature value might depend on the value of
other, correlated features.
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Frequency, stability, and Markov
chains
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Rainy days per year in Mumbay and Rome

78 days

83 days

source: https://weather-and-climate.com
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Markov chains
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Phylogenetic structure

Markov process
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Phylogenetic structure

Markov process Phylogeny
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Phylogenetic structure

Markov process Phylogeny

Branching process
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Phylogenetic non-independence

▶ languages are phylogenetically structured
▶ if two closely related languages display the same pattern,

these are not two independent data points
⇒ we need to control for phylogenetic dependencies
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Phylogenetic non-independence
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Phylogenetic non-independence

Maslova (2000):
“If the A-distribution for a given
typology cannot be assumed to be
stationary, a distributional univer-
sal cannot be discovered on the
basis of purely synchronic statis-
tical data.”

“In this case, the only way to dis-
cover a distributional universal is
to estimate transition probabil-
ities and as it were to ‘predict’ the
stationary distribution on the ba-
sis of the equations in (1).”
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The phylogenetic comparative
method
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Estimating rates of change

▶ if phylogeny and states of extant languages are known...

▶ ... transition rates and ancestral states can be estimated
based on Markov model

11 / 29



Estimating rates of change

▶ if phylogeny and states of extant languages are known...
▶ ... transition rates and ancestral states can be estimated

based on Markov model

11 / 29



Inferring a world tree of languages
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From tree to forest

▶ branch lengths within Glottolog families estimated from lexical
data

▶ calibration: Proto-Austronesian ∼ 5,000 years
▶ branches above family level effictively set to infinity
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Case study 1: Rare consonants
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Synchronic statistics

▶ data: ASJP word lists (word lists from ca. 6,000 living
languages and dialects; Wichmann et al. 2016)

▶ variables:
▶ voiceless and voiced dental fricative (transcribed as 8)
▶ voiceless and voiced uvular fricative, voiceless and voiced

pharyngeal fricative (transcribed as X)

8 X
raw numbers 334 378
average 5.7% 6.6%
weighted by family 14.6 22.2
average 4.6% 7.0%
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Phylogenetic estimates

8 X
equilibrium probability 5.5% 7.4%
half-life present (kyrs) 1.8 4.6
half-life absent (kyrs) 30.1 58.4
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Case study 2: Major word orders
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Statistics of major word order distribution

▶ data: WALS intersected with ASJP
▶ 1,045 languages, 211 lineages

Raw numbers
SOV SVO VSO VOS OVS OSV
491 442 79 19 11 3

47.0% 42.3% 7.6% 1.8% 1.1% 0.3%
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Phylogenetically estimated Markov process
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Case study 3: Word order and case
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Statistics

▶ data: WALS intersected with ASJP
▶ 204 languages, 103 lineages

Raw numbers
no case/OV no case/VO case/OV case/VO

17 64 94 29
8.3% 31.4% 46.1% 14.2%

Weighted by lineages

no case/OV no case/VO case/OV case/VO
10.6 22.6 57.7 12.2

10.3% 21.9% 56.0% 11.8%
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Phylogenetically estimated Markov process: features
individually

case

no case OV

VO
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Phylogenetically estimated Markov process: dependent
features

no case
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Conclusion
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Conclusion

▶ connection between cross-linguistic frequency and diachronic
stability is loose at best

▶ to assess diachronic stability, we need information on
▶ phylogenetic structure
▶ branch lengths

▶ stability of feature values may depend on other features →
potentially complex causal network between typological
variables, waiting to be explored

▶ todo:
▶ comparison to related but different approaches, such as

Bickel’s Family Bias Method (Bickel, 2013) or Greenhill et al.’s
(2017) approach

▶ factoring in language contact
▶ non-homogeneous Markov chains?
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