Searching for patterns in the World Color Survey

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

July 2, 2009
University of Frankfurt

Overview

Structure of the talk

- the psychological color space
- Berlin and Kay's 1969 study
- the World Color Survey
- the distribution of focal colors
- categorization
- Principal Component Analysis
- clustering
- color categories are (more or less) convex

The psychological color space

■ physical color space has infinite dimensionality - every wavelength within the visible spectrum is one dimension

- psychological color space is only 3-dimensional
- this fact is employed in technical devices like computer screens (additive color space) or color printers (subtractive color space)

additive color space

yellow
subtractive color space

The psychological color space

■ psychologically correct color space should not only correctly represent the topology of, but also the distances between colors

- distance is inverse function of perceived similarity

■ L*a*b* color space has this property

- three axes:
- black - white
- red - green
- blue - yellow

■ irregularly shaped 3d color solid

The color solid

The Munsell chart

■ for psychological investigations, the Munsell chart is being used

- 2d-rendering of the surface of the color solid
- 8 levels of lightness
- 40 hues
- plus: black-white axis with 8 shaded of grey in between
- neighboring chips differ in the minimally perceivable way

Berlin and Kay 1969

- pilot study how different languages carve up the color space into categories
■ informants: speakers of 20 typologically distant languages (who happened to be around the Bay area at the time)
- questions (using the Munsell chart):
- What are the basic color terms of your native language?
- What is the extension of these terms?
- What are the prototypical instances of these terms?

■ results are not random

- indicate that there are universal tendencies in color naming systems

Berlin and Kay 1969

- distribution of focal colors:

- essentially correspond to the centers of the English categories black, white, red, green, yellow, blue, purple, orange, brown, grey, pink

Berlin and Kay 1969

■ extensions
Arabic

$9 / 115$

Berlin and Kay 1969

■ extensions
Bahasa Indonesia

Berlin and Kay 1969

■ extensions

Bulgarian

Berlin and Kay 1969

■ extensions

Cantonese

Berlin and Kay 1969

■ extensions
Catalan

Berlin and Kay 1969

■ extensions
English

Berlin and Kay 1969

■ extensions

Hebrew

Berlin and Kay 1969

■ extensions

Hungarian

Berlin and Kay 1969

■ extensions

Ibibo

Berlin and Kay 1969

■ extensions

Japanese

Berlin and Kay 1969

■ extensions

Korean

Berlin and Kay 1969

■ extensions

Mandarin

Berlin and Kay 1969

■ extensions

Mexican Spanish

Berlin and Kay 1969

■ extensions
Pomo

Berlin and Kay 1969

■ extensions
Swahili

Berlin and Kay 1969

■ extensions

Tagalog

Berlin and Kay 1969

■ extensions
Thai

Berlin and Kay 1969

■ extensions
Tzeltal

Berlin and Kay 1969

■ extensions

Berlin and Kay 1969

■ extensions

Vietnamese

Berlin and Kay 1969

■ identification of absolute and implicational universals, like

- all languages have words for black and white
- if a language has a word for yellow, it has a word for red
- if a language has a word for pink, it has a word for blue

■ ...

The World Color Survey

■ B\&K was criticized for methodological reasons
■ in response, in 1976 Kay and co-workers launched the world color survey

- investigation of 110 non-written languages from around the world
- around 25 informants per language

■ two tasks:
■ the 330 Munsell chips were presented to each test person one after the other in random order; they had to assign each chip to basic some color term from their native language

- for each native basic color term, each informant identified the prototypical instance(s)
■ data are publicly available under http://www.icsi.berkeley.edu/wcs/

Data digging in the WCS

- distribution of focal colors across all informants:

Munsell chips

Data digging in the WCS

- distribution of focal colors across all informants:

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language
Firtity

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language
Fix

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

- partition of a randomly chosen informant from a randomly chosen language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

Data digging in the WCS

■ extension of a randomly chosen term from a randomly chosen language, averaged over all informants from that language

What is the extension of categories?

- data from individual informants are extremely noisy
- averaging over all informants from a language helps, but there is still noise, plus dialectal variation
■ desirable: distinction between "genuine" variation and noise

Principal Component Analysis

- technique to reduce dimensionality of data
- input: set of vectors in an n-dimensional space
- first step: rotate the coordinate system, such that
- the new n coordinates are orthogonal to each other
- the variations of the data along the new coordinates are stochastically independent
■ second step:
■ choose a suitable $m<n$
■ project the data on those m new coordinates where the data have the highest variance

Principal Component Analysis

- alternative formulation:

■ choose an m-dimensional linear sub-manifold of your n-dimensional space

- project your data onto this manifold

■ when doing so, pick your sub-manifold such that the average squared distance of the data points from the sub-manifold is minimized

- intuition behind this formulation:

■ data are "actually" generated in an m-dimensional space
■ observations are disturbed by n-dimensional noise

- PCA is a way to reconstruct the underlying data distribution

■ applications: picture recognition, latent semantic analysis, statistical data analysis in general, data visualization, ...

Applying PCA to WCS-categories

■ data: informant-category pairs
■ 330 dimensions (each Munsell color is one dimension)
■ each informant-category pair assigns 1 to the colors that belong to that category, and 0 else

- first seven principal components jointly explain 60% of the variance in the data
- each PC after PC10 only marginally increases proportion of variance explained
- so let's say $m=10$

PC1

- green/blue vs. white/red/yellow

PC2

■ white vs. red

PC3

■ black vs. red/white

■ yellow vs. black/white/blue/red

PC5

■ black vs. red/green/blue

$61 / 115$

PC6

■ blue/yellow vs. red/green

PC7

■ purple vs. red/blue/black

PC8

■ pink vs. red/yellow/white

PC9

- brown vs. black/pink

PC10

■ brown vs. light blue/yellow/black

Projecting observed data on 10d-manifold

- noise removal: project observed data onto the lower-dimensional submanifold that was obtained via PCA
- in our case: noisy binary categories are mapped to smoothed fuzzy categories (= probability distributions over Munsell chips)
- some examples:

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Projecting observed data on 10d-manifold

Smoothed partitions of the color space

- vocabulary of a given language does not always form a partition
- many cases of (near) synonymy, hyponymy, and overlap

■ for instance language 1 (Abidjy, Ivory Coast):

Smoothed partitions of the color space

Smoothed partitions of the color space

- if two categories of one language have a correlation of at least .5 , they are treated as synonyms
- process is repeated if remaining categories are independent or negatively correlated
- after this process, each Munsell chip c is assigned to the category that assigns the highest probability to c
■ for Abidji, we get

Smoothed partitions of the color space

- some more examples: Waorani (Ecuador)

Smoothed partitions of the color space

- some more examples: Arabela (Peru)

Smoothed partitions of the color space

■ some more examples: Camsa (Colombia)

Smoothed partitions of the color space

- some more examples: Candoshi (Peru)

Smoothed partitions of the color space

■ some more examples: Chinanteco (Mexico)

Smoothed partitions of the color space

■ some more examples: Guarijio (Mexico)

Smoothed partitions of the color space

- some more examples: Gunu (Cameroon)

Smoothed partitions of the color space

■ some more examples: Kalam (Papua New Guinea)

Smoothed partitions of the color space

■ some more examples: Menye (Papua New Guinea)

Smoothed partitions of the color space

■ some more examples: Tifal (Papua New Guinea)

Convexity

- note: so far, we only used information from the WCS

■ the location of the 330 Munsell chips in L*a*b* space played no role so far

■ still, apparently partition cells always form continuous clusters in L*a*b* space

- Hypothesis (Gärdenfors): extension of color terms always form convex regions of L*a*b* space

Support Vector Machines

- supervised learning technique
- smart algorithm to classify data in a high-dimensional space by a (for instance) linear boundary
- minimizes number of mis-classifications if the training data are not linearly separable

Convex partitions

- a binary linear classifier divides an n-dimensional space into two convex half-spaces
- intersection of two convex set is itself convex

■ hence: intersection of k binary classifications leads to convex sets

- procedure: if a language partitions the Munsell space into m categories, train $\frac{m(m-1)}{2}$ many binary SVMs, one for each pair of categories in L*a*b* space
■ leads to m convex sets (which need not split the L*a*b* space exhaustively)

Convex approximation

- Waorani (Ecuador)

Convex approximation

- Arabela (Peru)

Convex approximation

- Camsa (Colombia)

Convex approximation

- Candoshi (Peru)

Convex approximation

■ Chinanteco (Mexico)

Convex approximation

- Guarijio (Mexico)

Convex approximation

- Gunu (Cameroon)

Convex approximation

■ Kalam (Papua New Guinea)

Convex approximation

■ Menye (Papua New Guinea)

Convex approximation

- Tifal (Papua New Guinea)

Convex approximation

■ on average, 93.7% of all Munsell chips are correctly classified by convex approximation

Convex approximation

- compare to the outcome of the same procedure without PCA:

Conclusion

■ empirical support for Gärdenfors' thesis that natural properties are convex sets

- quantitative data analysis reveals robust universal tendencies
- techniques from statistical pattern recognition are useful for typological studies

■ R is a great tool

