### Searching for patterns in the World Color Survey

#### Gerhard Jäger gerhard.jaeger@uni-tuebingen.de

July 2, 2009

#### University of Frankfurt





#### Overview

#### Structure of the talk

- the psychological color space
- Berlin and Kay's 1969 study
- the World Color Survey
- the distribution of focal colors
- categorization
- Principal Component Analysis
- clustering
- color categories are (more or less) convex





#### The psychological color space

- physical color space has infinite dimensionality every wavelength within the visible spectrum is one dimension
- psychological color space is only 3-dimensional
- this fact is employed in technical devices like computer screens (additive color space) or color printers (subtractive color space)



ERERHARD KARLS





### The psychological color space

- psychologically correct color space should not only correctly represent the topology of, but also the distances between colors
- distance is inverse function of perceived similarity
- L\*a\*b\* color space has this property
- three axes:
  - black white
  - red green
  - blue yellow
- irregularly shaped 3d color solid





#### The color solid







#### The Munsell chart

- for psychological investigations, the *Munsell chart* is being used
- 2d-rendering of the surface of the color solid
  - 8 levels of lightness
  - 40 hues
- plus: black-white axis with 8 shaded of grey in between
- neighboring chips differ in the minimally perceivable way







- pilot study how different languages carve up the color space into categories
- informants: speakers of 20 typologically distant languages (who happened to be around the Bay area at the time)
- questions (using the Munsell chart):
  - What are the basic color terms of your native language?
  - What is the extension of these terms?
  - What are the prototypical instances of these terms?
- results are not random
- indicate that there are universal tendencies in color naming systems



distribution of focal colors:



 essentially correspond to the centers of the English categories black, white, red, green, yellow, blue, purple, orange, brown, grey, pink





extensions



Arabic







extensions



Bahasa Indonesia







10/115

extensions



Bulgarian







extensions



Cantonese





























extensions



Hungarian













extensions



Japanese













extensions



Mandarin





extensions



Mexican Spanish



















extensions









sfs























extensions



Vietnamese





- identification of absolute and implicational universals, like
  - all languages have words for black and white
  - if a language has a word for *yellow*, it has a word for *red*
  - if a language has a word for *pink*, it has a word for *blue*
  - ...



### The World Color Survey

- B&K was criticized for methodological reasons
- in response, in 1976 Kay and co-workers launched the world color survey
- investigation of 110 non-written languages from around the world
- around 25 informants per language
- two tasks:
  - the 330 Munsell chips were presented to each test person one after the other in random order; they had to assign each chip to basic some color term from their native language
  - for each native basic color term, each informant identified the prototypical instance(s)
- data are publicly available under http://www.icsi.berkeley.edu/wcs/



#### distribution of focal colors across all informants:







Eberhard Karls Universitä Tübingen

distribution of focal colors across all informants:



seminar für sprachwissenschaft

EBERHARD KARLS

partition of a randomly chosen informant from a randomly chosen language







partition of a randomly chosen informant from a randomly chosen language







EBERHARD KARLS

partition of a randomly chosen informant from a randomly chosen language







EBERHARD KARLS

partition of a randomly chosen informant from a randomly chosen language






partition of a randomly chosen informant from a randomly chosen language





partition of a randomly chosen informant from a randomly chosen language







EBERHARD KARLS

partition of a randomly chosen informant from a randomly chosen language







39/115

partition of a randomly chosen informant from a randomly chosen language







EBERHARD KARLS

partition of a randomly chosen informant from a randomly chosen language







partition of a randomly chosen informant from a randomly chosen language







ERERHARD KARLS







ERERHARD KARLS







ERERHARD KARLS

TÜBINGEN







ERERHARD KARLS







ERERHARD KARLS

TÜBINGEN







ERERHARD KARLS

TÜBINGEN







ERERHARD KARLS

TÜBINGEN







ERERHARD KARLS







ERERHARD KARLS

TÜBINGEN







ERERHARD KARLS





- data from individual informants are extremely noisy
- averaging over all informants from a language helps, but there is still noise, plus dialectal variation
- desirable: distinction between "genuine" variation and noise





### Principal Component Analysis

- technique to reduce dimensionality of data
- input: set of vectors in an *n*-dimensional space
- first step: rotate the coordinate system, such that
  - $\hfill\blacksquare$  the new n coordinates are orthogonal to each other
  - the variations of the data along the new coordinates are stochastically independent
- second step:
  - $\blacksquare$  choose a suitable m < n
  - project the data on those m new coordinates where the data have the highest variance



### Principal Component Analysis

#### alternative formulation:

- choose an *m*-dimensional linear sub-manifold of your *n*-dimensional space
- project your data onto this manifold
- when doing so, pick your sub-manifold such that the average squared distance of the data points from the sub-manifold is minimized
- intuition behind this formulation:
  - data are "actually" generated in an *m*-dimensional space
  - observations are disturbed by n-dimensional noise
  - PCA is a way to reconstruct the underlying data distribution
- applications: picture recognition, latent semantic analysis, statistical data analysis in general, data visualization, ...





# Applying PCA to WCS-categories

- data: informant-category pairs
- 330 dimensions (each Munsell color is one dimension)
- each informant-category pair assigns 1 to the colors that belong to that category, and 0 else



- first seven principal components jointly explain 60% of the variance in the data
- each PC after PC10 only marginally increases proportion of variance explained
- so let's say m=10





#### ■ green/blue vs. white/red/yellow









white vs. red







58/115



### black vs. red/white







### yellow vs. black/white/blue/red







60/115



### black vs. red/green/blue









### blue/yellow vs. red/green









### purple vs. red/blue/black









### pink vs. red/yellow/white





seminar für sprachwissenschaft



### brown vs. black/pink









#### brown vs. light blue/yellow/black







- noise removal: project observed data onto the lower-dimensional submanifold that was obtained via PCA
- in our case: noisy binary categories are mapped to smoothed fuzzy categories (= probability distributions over Munsell chips)
- some examples:




























































































































- vocabulary of a given language does not always form a partition
- many cases of (near) synonymy, hyponymy, and overlap
- for instance language 1 (Abidjy, Ivory Coast):











- if two categories of one language have a correlation of at least .5, they are treated as synonyms
- process is repeated if remaining categories are independent or negatively correlated
- after this process, each Munsell chip c is assigned to the category that assigns the highest probability to c
- for Abidji, we get



some more examples: Waorani (Ecuador)







some more examples: Arabela (Peru)







some more examples: Camsa (Colombia)







#### some more examples: Candoshi (Peru)







#### ■ some more examples: Chinanteco (Mexico)







■ some more examples: Guarijio (Mexico)







#### ■ some more examples: Gunu (Cameroon)







#### some more examples: Kalam (Papua New Guinea)







#### some more examples: Menye (Papua New Guinea)







#### some more examples: Tifal (Papua New Guinea)







- note: so far, we only used information from the WCS
- the location of the 330 Munsell chips in L\*a\*b\* space played no role so far
- still, apparently partition cells always form continuous clusters in L\*a\*b\* space
- Hypothesis (Gärdenfors): extension of color terms always form convex regions of L\*a\*b\* space



# Support Vector Machines

- supervised learning technique
- smart algorithm to classify data in a high-dimensional space by a (for instance) linear boundary
- minimizes number of mis-classifications if the training data are not linearly separable









### Convex partitions

- a binary linear classifier divides an *n*-dimensional space into two convex half-spaces
- intersection of two convex set is itself convex
- hence: intersection of k binary classifications leads to convex sets
- procedure: if a language partitions the Munsell space into m categories, train <sup>m(m-1)</sup>/<sub>2</sub> many binary SVMs, one for each pair of categories in L\*a\*b\* space
- leads to m convex sets (which need not split the L\*a\*b\* space exhaustively)



Waorani (Ecuador)







Arabela (Peru)







Camsa (Colombia)







Candoshi (Peru)







#### Chinanteco (Mexico)






Guarijio (Mexico)







#### Gunu (Cameroon)







#### Kalam (Papua New Guinea)







#### Menye (Papua New Guinea)







#### Tifal (Papua New Guinea)







 on average, 93.7% of all Munsell chips are correctly classified by convex approximation







• compare to the outcome of the same procedure without PCA:







### Conclusion

- empirical support for G\u00e4rdenfors' thesis that natural properties are convex sets
- quantitative data analysis reveals robust universal tendencies
- techniques from statistical pattern recognition are useful for typological studies
- R is a great tool



