Vagueness, Signaling & Bounded Rationality

Michael Franke, Gerhard Jäger & Robert van Rooij²

¹University of Tübingen

²University of Amsterdam

Logic and Engineering of Natural Language Semantics Tokyo, November 19, 2010

Overview

- Strategic communication
- Why vagueness is not rational
- Reinforcement learning with limited memory
- Quantal Best Response

Strategic communication: signaling games

- sequential game:
 - lacktriangle nature chooses a type T
 - ullet out of a pool of possible types T
 - ullet according to a certain probability distribution P
 - $oldsymbol{2}$ nature shows w to sender $oldsymbol{S}$
 - $oldsymbol{3}$ S chooses a message m out of a set of possible signals M
 - f Q S transmits m to the receiver $\bf R$
 - \odot R chooses an action a, based on the sent message.
- Both S and R have preferences regarding R's action, depending on t.
- S might also have preferences regarding the choice of m (to minimize signaling costs).

Basic example

Basic example: Equilibrium 1

Basic example: Equilibrium 2

 $\begin{array}{c|cc} & a_1 & a_2 \\ \hline w_1 & 1, 1 & 0, 0 \\ w_2 & 0, 0 & 1, 1 \\ \end{array}$

Equilibria

- two strict Nash equilibria
- these are the only 'reasonable' equilibria:
 - they are evolutionarily stable (self-reinforcing under iteration)
 - they are Pareto optimal (cannot be outperformed)

Euclidean meaning space

Utility function

General format

$$u_{s/r}(m, f, m') = \operatorname{sim}(m, m')$$

• sim(x, y) is strictly monotonically decreasing in Euclidean distance ||x - y||

In this talk, we assume a **Gaussian** similarity function

$$sim(x, y) \doteq exp(-\frac{\|x - y\|^2}{2\sigma}).$$

Euclidean meaning space: equilibrium

Simulations

(my LENLS talk 2007)

- two-dimensional circular meaning space
- finitely many pixels (meanings)
- uniform distribution over meanings

Vagueness

- many evolutionarily stable/Pareto optimal equilibria
- all are strict (except for a null set at category boundaries)
- a vague language would be one where the sender plays a mixed strategy

Vagueness is not rational

Rational players will never prefer a vague language over a precise one in a signaling game. (Lipman 2009)

• similar claim can be made with regard to evolutionary stability (as corollary to a more general theorem by Reinhard Selten)

Vagueness is not evolutionarily stable

In a signaling game, a vague language can never be evolutionarily stable.

Vagueness and bounded rationality

- Lipman's result depends on assumption of perfect rationality
- we present two deviations from perfect rationality that support vagueness:
 - Learning: players have to make decisions on basis of limited experience
 - Stochastic decision: players are imperfect/non-deterministic decision makers

Learning and vagueness

Fictitious play

- model of learning in games
- indefinitely iterated game
- player memorize game history
- decision rule:
 - assume that other player plays a stationary strategy
 - make a maximum likelihood estimate of this strategy
 - play a best response to this strategy
- always converges against some Nash equilibrium

Limited memory

- more realistic assumption: players only memorize last k rounds (for fixed, finite k)
- consequence: usually no convergence
- \bullet long-term behavior depends on number of states in relation to k

Formal definitions

$$\begin{split} \sigma(m|w) &= \begin{cases} \frac{|\{k|\bar{s}(k) = \langle w,m\rangle\}|}{|\{k|\exists m':\bar{s}(k) = \langle w,m'\rangle\}|} & \text{if divisor } \neq 0 \\ \frac{1}{|M|} & \text{otherwise} \end{cases} \\ \rho(w|m) &= \begin{cases} \frac{|\{k|\bar{r}(k) = \langle m,w\rangle\}|}{|\{k|\exists w':\bar{r}(k) = \langle m,w'\rangle\}|} & \text{if divisor } \neq 0 \\ \frac{1}{|W|} & \text{otherwise.} \end{cases} \end{split}$$

A simulation

Game

- signaling game
- ullet 500 possible worlds, evenly spaced in unit interval [0,1]
- 3 distinct messages
- Gaussian utility function ($\sigma = 0.1$)

Fictitious play with limited memory

- k = 200
- simulation ran over 20,000 rounds

▶ start simulation

stop simulation

A simulation

average over 10,000 rounds:

Intermediate summary

- Signaling games + fictitious play with limited memory:
 - predicts sharp category boundaries/unique prototypes for each agent at every point in time
 - strategies undergo minor changes over time tough
 - in multi-agent simulations, we also expect minor inter-speaker variation
 - vagueness emerges if we average over several interactions
- captures some aspect of vagueness (may provide solution for some instances Sorites paradox)
- still: even at this very moment, I do not know the exact boundary between red and orange ⇒ vagueness also applies to single agents

Stochastic choice

- real people are not perfect utility maximizers
- they make mistakes → sub-optimal choices
- still, high utility choices are more likely than low-utility ones

Rational choice: best response

$$P(a_i) = \begin{cases} \frac{1}{|\arg_j \max u_i|} & \text{if } u_i = \max_j u_j \\ 0 & \text{else} \end{cases}$$

Stochastic choice: (logit) quantal response

$$P(a_i) = \frac{\exp(\lambda u_i)}{\sum_j (\lambda \exp u_j)}$$

Quantal response

- ullet λ measures degree of rationality
- \bullet $\lambda = 0$:
 - completely irrational behavior
 - all actions are equally likely, regardless of expected utility
- $\lambda \to \infty$
 - convergence towards behavior of rational choice
 - probability mass of sub-optimal actions converges to 0
- if everybody plays a quantal response (for fixed λ), play is in **quantal response equilibrium** (QRE)
- asl $\lambda \to \infty$, QREs converge towards Nash equilibria

Quantal response

- Suppose there are two choices, a_1 and a_2 , with the utilities
 - $u_1 = 1$
 - $u_2 = 2$
- probabilities of a_1 and a_2 :

Quantal Response Equilibrium of 2×2 signaling game

- for $\lambda \leq 2$: only babbling equilibrium
- for $\lambda > 2$: three (quantal response) equilibria:
 - babbling
 - two informative equilibria

QRE and vagueness

- similarity game
- ullet 500 possible worlds, evenly spaced in unit interval [0,1]
- 3 distinct messages
- Gaussian utility function ($\sigma = 0.2$)

QRE and vagueness

$\lambda \leq 4$

only babbling equilibrium

QRE and vagueness

$\lambda > 4$

- separating equilibria
- smooth category boundaries
- prototype locations follow bell-shaped distribution

