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Signaling games

sequential game:
1 nature chooses a world w

out of a pool of possible worlds W
according to a certain probability distribution p∗

2 nature shows w to sender S
3 S chooses a message m out of a set of possible signals M
4 S transmits m to the receiver R
5 R chooses an action a, based on the sent message.

Both S and R have preferences regarding R’s action, depending on w.

S might also have preferences regarding the choice of m (to minimize
signaling costs).
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Tea or coffee?

An example

Sally either prefers tea (w1) or coffee
(w2), with p∗(w1) = p∗(w2) =

1
2 .

Robin either serves tea (a1) or coffee
(a2).

Sally can send either of two messages:

m1: I prefer tea.
m2: I prefer coffee.

Both messages are costless.

a1 a2
w1 1, 1 0, 0
w2 0, 0 1, 1

Table: utility matrix
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Extensive form

C:1

S wants tea

1/2 1:1

"I want tea!"

2:1

R serves tea
1 1

R serves coffee
0 0

"I want coffee!"

2:2

R serves tea
1 1

R serves coffee
0 0

S wants coffee

1/2 1:2

"I want tea!"

2:1

R serves tea
0 0

R serves coffee
1 1

"I want coffee!"

2:2

R serves tea
0 0

R serves coffee
1 1
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Extensive form

C:1

S wants tea

1/2 1:1

"I want tea!"

1 2:1

R serves tea

1
1 1

R serves coffee

0
0 0

"I want coffee!"

0 2:2

R serves tea

0
1 1

R serves coffee

1
0 0

S wants coffee

1/2 1:2

"I want tea!"

0 2:1

R serves tea

1
0 0

R serves coffee

0
1 1

"I want coffee!"

1 2:2

R serves tea

0
0 0

R serves coffee

1
1 1
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Extensive form

C:1

S wants tea

1/2 1:1

"I want tea!"

0 2:1

R serves tea

0
1 1

R serves coffee

1
0 0

"I want coffee!"

1 2:2

R serves tea

1
1 1

R serves coffee

0
0 0

S wants coffee

1/2 1:2

"I want tea!"

1 2:1

R serves tea

0
0 0

R serves coffee

1
1 1

"I want coffee!"

0 2:2

R serves tea

1
0 0

R serves coffee

0
1 1
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A coordination problem

two strict Nash equilibria

S always says the truth and R always believes her.
S always says the opposite of the truth and R interprets everything
ironically.

Both equilibria are equally rational.

Still, first equilibrium is more reasonable because it employs
exogenous meanings of messages for equilibrium selection.

Criterion for equilibrium selection:

Always say the truth, and always believe what you
are told!

What happens if it is not always rational to be honest/credulous?
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Partially aligned interests

Rabin’s (1990) example

In w1 and w2, S and R have identical
interests.a

In w3, S would prefer R to believe in w2.

The propositions {w1} and {w2, w3}
are credible.

The propositions {w2} and {w3} are
not credible.

aUnless mentioned otherwise, I always assume a
uniform distribution p∗ over W .

a1 a2 a3
w1 10, 10 0, 0 0, 0
w2 0, 0 10, 10 5, 7
w3 0, 0 10, 0 5, 7

Table: Partially aligned
interests
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Partially aligned interests

Rabin’s (1990) example

Suppose there are three messages:

m1: We are in w1.
m2: We are in w2.
m3: We are in w3.

reasonable S will send m1 if and only if
w1

reasonable R will react to m1 with a1

nothing else can be inferred

a1 a2 a3
w1 10, 10 0, 0 0, 0
w2 0, 0 10, 10 5, 7
w3 0, 0 10, 0 5, 7

Table: Partially aligned interests
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Revised maxim

Always say the truth,
and always believe what you are told,

unless you have reasons to do otherwise!

But what does this mean?
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Justification and best responses

Jusification of decisions

decisions must be justifiable

two kinds of justification:

I use/interpret a message the way I do because:

this is what the literal meaning of the message dictates,
or
because this is the best I can do, given my justifiable belief about the
decisions of the other player.
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Justification and best responses

Sally’s belief states

(first order) belief of the sender:

function ρ from messages to probability distribution of actions
ρ(a|m): S’s subjective probability that R performs action a if S sends
message m

Gerhard Jäger (February 18, 2011) Game theoretic pragmatics MIT 13 / 64



Justification and best responses

Robin’s belief states

(first order) belief of the receiver has two components:

function σ from worlds to probability distributions over messages
σ(m|w): R’s subjective probability that S sends messages m if she is in
world w
function σ∗ from messages to probability distributions over worlds
σ∗(w|m): R’s posterior probability that w is the case after observing
message m
σ and σ∗ are connected via Bayes’ Rule

σ∗(w|m) =
σ(m|w)p∗(w)∑
w′ σ(m|w′)p∗(w′)
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Justification: Rabin’s example again

Utility matrix

a1 a2 a3
w1 10, 10 0, 0 0, 0
w2 0, 0 10, 10 5, 7
w3 0, 0 10, 0 5, 7

literal meanings

‖m1‖ = {w1}
‖m2‖ = {w2}
‖m3‖ = {w3}
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Justification: Rabin’s example again

The Honest Sender

Suppose (Robin supposes that) Sally is simply honest, and
non-deliberating.

This means she sends a true message in each world.

No further criteria about message selection are known.

Best model σ0 of such a sender is the one that is consistent with the
assumptions and maximizes entropy.

This means that in each world w, σ0(·|w) is a uniform distribution:

σ0(m|w) =

{
1

|{m|w|=m}| if w |= m,

0 else.
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Justification: Rabin’s example again

Can be represented in a matrix with worlds as rows and messages as
columns.

σ0 m1 m2 m3

w1 1 0 0
w2 0 1 0
w3 0 0 1

This is justifiable by the literal meaning of the messages.

Gerhard Jäger (February 18, 2011) Game theoretic pragmatics MIT 17 / 64



Justification: Rabin’s example again

Bayesian reasoning

Robin assumes σ0.

He actually needs σ∗0 (posterior
probablities of worlds given messages)

σ∗0(·|m):

take column m in σ0
multiply each entry with
corresponding value of p∗

normalize the column: divide it by its
sum, such that it becomes a
probability distribution
if m is a zero-column (i.e. m is a
surprise message): assume uniform
distribution over ‖m‖
result is the row in σ∗

σ∗0 w1 w2 w3

m1 1 0 0
m2 0 1 0
m3 0 0 1
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Justification: Rabin’s example again

Expected utility

Robin’s utility depends on w and a

σ∗0 gives him a probability distribution over W

this enables him to assess the exected utility for each action,
conditional on each message:

EU(a|m) =
∑
w

σ∗0(w|m)ur(w, a)

comes down to matrix multiplication:

EUr = σ∗0 · ur
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Justification: Rabin’s example again

EUr = σ∗0 · ur

=


σ∗0 w1 w2 w3

m1 1 0 0
m2 0 1 0
m3 0 0 1

 ·


a1 a2 a3

w1 10 0 0
w2 0 10 7
w3 0 0 7



=


a1 a2 a3

m1 10 0 0
m2 0 10 7
m3 0 0 7
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Justification: Rabin’s example again

Best response

If Robin is rational he will maximize his expected utility after each
message

If he believs in σ0, he will — for each message m — pick an action
that is maximal within m’s row in EUr

If Sally assumes that this is how Robin thinks, and if she has no
further information, her model ρ0 of Robin’s behavior will the
conditional probability distribution that is consistent with these
assumptions and maximizes entropy

Hence: ρ0 puts equal probability on each action that maximizes EUr,
and 0 probability elsewhere

ρ0 is the best response to σ0:

ρ0 = BRr(σ0)
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Justification: Rabin’s example again

Expected utility

a1 a2 a3

m1 10 0 0
m2 0 10 7
m3 0 0 7

Best response

ρ0 a1 a2 a3

m1 1 0 0
m2 0 1 0
m3 0 0 1
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Justification: Rabin’s example again

Iterated Best Response

Suppose Sally believes that Robin plays according to ρ0.

Then Sally (if she is rational) will play the best response
σ1 = BRs(ρ0) to ρ0.

Calculation goes as follows:

Sally’s Expected Utility:

EUs(m|w) =
∑
a

ρ0(a|m)us(w, a)

boils down to matrix multiplication:

EUs = us · ρT0

σ1 places row-wise equal probability on each row-maximal value in
EUs, and 0 elsewhere
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Justification: Rabin’s example again

EUs = us · ρT0

=


a1 a2 a3

w1 10 0 0
w2 0 10 5
w3 0 10 5

 ·


ρ0 a1 a2 a3

m1 1 0 0
m2 0 1 0
m3 0 0 1


T

=


m1 m2 m3

w1 10 0 0
w2 0 10 5
w3 0 10 5



BR(ρ0) =


σ1 m1 m2 m3

w1 1 0 0
w2 0 1 0
w3 0 1 0
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Justification: Rabin’s example again

Iterated Best Response

If Robin anticipates this, he will play according to ρ1 = BRr(σ1).

Computation is exactly as for ρ0, but using σ1 instead of σ0.

As the third column of σ1 only contains 0s, the principle

Truth Ceteris Paribus

applies: assume a uniform distribution over ‖m3‖ in σ∗1.

σ∗1 =

w1 w2 w3

m1 1 0 0
m2 0 1

2
1
2

m3 0 0 1
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Justification: Rabin’s example again

EUr = σ∗1 · ur

=


σ∗1 w1 w2 w3

m1 1 0 0
m2 0 1

2
1
2

m3 0 0 1

 ·


a1 a2 a3

w1 10 0 0
w2 0 10 7
w3 0 0 7



=


a1 a2 a3

m1 10 0 0
m2 0 5 7
m3 0 0 7



BRr(σ1) =


ρ1 a1 a2 a3

m1 1 0 0
m2 0 0 1
m3 0 0 1
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Justification: Rabin’s example again

Iterated Best Response

This procedure can be iterated indefinitely.

General pattern:

ρn = BRr(σn)

σn+1 = BRs(ρn)
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Justification: Rabin’s example again

EUs = us · ρT1

=


a1 a2 a3

w1 10 0 0
w2 0 10 5
w3 0 10 5

 ·


ρ1 a1 a2 a3

m1 1 0 0
m2 0 0 1
m3 0 0 1


T

=


m1 m2 m3

w1 10 0 0
w2 0 5 5
w3 0 5 5



BR(ρ1) =


σ2 m1 m2 m3

w1 1 0 0
w2 0 1

2
1
2

w3 0 1
2

1
2
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Justification: Rabin’s example again

EUr = σ∗2 · ur

=


σ∗2 w1 w2 w3

m1 1 0 0
m2 0 1

2
1
2

m3 0 1
2

1
2

 ·


a1 a2 a3

w1 10 0 0
w2 0 10 7
w3 0 0 7



=


a1 a2 a3

m1 10 0 0
m2 0 5 7
m3 0 5 7



BRr(σ2) =


ρ2 a1 a2 a3

m1 1 0 0
m2 0 0 1
m3 0 0 1
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Justification: Rabin’s example again

Fixed point of IBR sequence

ρ2 = ρ1

Hence for all n > 2:

σn = σ2

ρn = ρ2

(σ2, ρ1) is a fixed point for best response calculation

If Sally and Robin only consider justifiable strategies and are both
sufficiently sophisticated — and these facts are common knowledge
— they will play according to these fixed point strategies
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IBR sequence for Rabin’s example

σ0 m1 m2 m3

w1 1 0 0
w2 0 1 0
w3 0 0 1

ρ0 a1 a2 a3

m1 1 0 0
m2 0 1 0
m3 0 0 1

σ1 m1 m2 m3

w1 1 0 0
w2 0 1 0
w3 0 1 0

ρ2 a1 a2 a3

m1 1 0 0
m2 0 0 1
m3 0 0 1

σ2 m1 m2 m3

w1 1 0 0
w2 0 1

2
1
2

w3 0 1
2

1
2

ρ1 a1 a2 a3

m1 1 0 0
m2 0 0 1
m3 0 0 1

F = (σ2, ρ1)

Gerhard Jäger (February 18, 2011) Game theoretic pragmatics MIT 31 / 64



Interpretation games

How does this relate to linguistic examples?
There is a quasi-algorithmic procedure (due to Franke 2009) how to
construct a game from an example sentence.

What is given?

example sentence

set of expression
alternatives

jointly form set of
messages

question under
discussion QUD

set of complete answers
to QUD is the set of
possible worlds

What do we need?

interpretation function
‖ · ‖
prior probability
distribution p∗

set of actions

utility functions
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Interpretation games

QUD

often QUD is not given explicitly

procedure to construct QUD from expression m and its alternatives
ALT (m):

Let ct be the context of utterances, i.e. the maximal set of statements
that is common knowledge between Sally and Robin.
any subset w of ALT (m) ∪ {¬m′|m′ ∈ ALT (m)} is a possible world
iff

w and ct are consistent, i.e. w ∪ ct 6` ⊥
for any set X : w ⊂ X ⊆ ALT (m) ∪ {¬m′|m′ ∈ ALT (m)}, ct ∪X is
inconsistent
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Interpretation games

Game construction

interpretation function:

‖m′‖ = {w|w ` m}

p∗ is uniform distribution over W

justified by principle of insufficient reason

set of actions is W

intuitive idea: Robin’s task is to figure out which world Sally is in

utility functions:

us/r(w, a) =

{
1 iff w = a

0 else

both players want Robin to succeed
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Example: Quantity implicatures

(1) a. Who came to the party?
b. some: Some boys came to

the party.
c. no: No boys came to the

party.
d. all: All boys came to the

party.

Game construction

ct = ∅
W = {w¬∃, w∃¬∀, w∀}
w¬∃ = {no}, w∃¬∀ =
{some}, w∀ = {some,all}
p∗ = (13 ,

1
3 ,

1
3)

interpretation function:

‖some‖ = {w∃¬∀, w∀}
‖no‖ = {w¬∃}
‖all‖ = {w∀}

utilities:

a¬∃ a∃¬∀ a∀
w¬∃ 1, 1 0, 0 0, 0
w∃¬∀ 0, 0 1, 1 0, 0
w∀ 0, 0 0, 0 1, 1
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Interpretation games

utility functions are identity matrices

therefore the step multiply with utility matrix can be omitted in best
response computation

also, restriction to uniform priors makes simplifies computation of
posterior distribution

simplified IBR computation:
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Interpretation games

Sally

1 flip ρ along diagonal

2 place a 0 in each cell that is non-maximal within its row

3 normalize each row

Robin

1 flip σ along diagonal

2 if a row contains only 0s, fill in a 1 in each cell corresponding to a
true world-message association

3 place a 0 in each cell that is non-maximal within its row

4 normalize each row
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Example: Quantity implicatures

σ0 no some all

w¬∃ 1 0 0

w∃¬∀ 0 1 0

w∀ 0 1
2

1
2

ρ0 w¬∃ w∃¬∀ w∀

no 1 0 0

some 0 1 0

all 0 0 1

σ1 no some all

w¬∃ 1 0 0

w∃¬∀ 0 1 0

w∀ 0 0 1

ρ1 w¬∃ w∃¬∀ w∀

no 1 0 0

some 0 1 0

all 0 0 1

F = (ρ0, σ1)

In the fixed point, some is interpreted as entailing ¬all, i.e. exhaustively.
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Lifted games

So far, it is hard-wired in the model that Sally has complete
knowledge (or, rather, complete belief — whether or not she is right
is inessential for IBR) about the world she is in.

corresponds to strong version of competence assumption

Sometimes this assumption is too strong:
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Lifted games

1 a. Ann or Bert showed up. (= or)
b. Ann showed up. (= a)
c. Bert showed up. (= b)
d. Ann and Bert showed up. (= and)

wa: Only Ann showed up.

wb: Only Bert showed up.

wab: Both showed up.

Utility matrix

aa ab aab

wa 1 0 0
wb 0 1 0
wab 0 0 1
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Lifted games

IBR sequence

σ0 or a b and

wa
1
2

1
2 0 0

wb
1
2 0 1

2 0

wab
1
4

1
4

1
4

1
4

ρ0 wa wb wab

or 1
2

1
2 0

a 1 0 0

b 0 1 0

and 0 0 1

σ1 or a b and

wa 0 1 0 0

wb 0 0 1 0

wab 0 0 0 1

ρ1 wa wb wab

or 1
3

1
3

1
3

a 1 0 0

b 0 1 0

and 0 0 1

OR comes out as a message that would never be used!
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Lifted games

full competence assumption is arguably too strong

weaker assumption (Franke 2009):

Sally’s information states are partial answers to QUD, ie. sets of
possible worlds
Robin’s task is to figure out which information state Sally is in.
ceteris paribus, Robin receives slightly higher utility for smaller (more
informative) states

Costs

Preferences that are independent from correct information
transmission are captured via cost functions for sender and receiver.

For the sender this might be, inter alia, a preference for simpler
expressions.

For the receiver, the Strongest Meaning Hypothesis is a good
candiate.
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Lifted games

Formally

cost functions cs, cr: cs : (POW (W )− {∅})×M 7→ R+

costs are nominal:

0 ≤ cs(i,m), cr(i,m) < min(
1

|POW (W )− ∅|2
,

1

|ALT (m)|2
)

guarantees that cost considerations never get in the way of information
transmission considerations

new utility functions:

us(i,m, a) = −cs(i,m) +

{
1 if i = a,

0 else,

ur(i,m, a) = −cr(a,m) +

{
1 if i = a,

0 else.
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Modified IBR procecure

Sally

flip ρ along the diagonal

subtract cs

place a 0 in each cell that is non-maximal within its row

normalize each row

Robin

flip σ along diagonal

if a row contains only 0s,

fill in a 1 in each cell corresponding to a true world-message association

else

subtract cTr

place a 0 in each cell that is non-maximal within its row

normalize each row
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The Strongest Meaning Hypothesis

if in doubt, Robin will assume that Sally is competent

captured in following cost function:

cr(a,m) =
|a|

max(|M |, 2|W |)2

cr({wa}, ·) = 1
49 cr({wa, wab}, ·) = 2

49

cr({wb}, ·) = 1
49 cr({wb, wab}, ·) = 2

49

cr({wab}, ·) = 1
49 cr({wa, wb, wab}, ·) = 3

49

cr({wa, wb}, ·) = 2
49
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Lifted games

IBR sequence: 1

σ0 or a b and

{wa} 1
2

1
2 0 0

{wb} 1
2 0 1

2 0

{wab} 1
4

1
4

1
4

1
4

{wa, wb} 1 0 0 0

{wa, wab} 1
2

1
2 0 0

{wb, wab} 1
2 0 1

2 0

{wa, wb, wab} 1 0 0 0
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Lifted games

IBR sequence: flipping and subtracting costs

ρ0 {wa} {wb} {wab} {wa, wb} {wa, wab} {wb, wab} {wa, wb, wab}

or 0.48 0.48 0.23 0.96 0.46 0.46 0.94

a 0.48 −0.02 0.23 −0.04 0.46 −0.04 −0.06
b −0.02 0.48 0.23 −0.04 −0.04 0.46 −0.06
and −0.02 −0.02 0.23 −0.04 −0.04 −0.04 −0.06
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Lifted games

IBR sequence: 2

ρ0 {wa} {wb} {wab} {wa, wb} {wa, wab} {wb, wab} {wa, wb, wab}

or 0 0 0 1 0 0 0

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

and 0 0 1 0 0 0 0
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Lifted games

IBR sequence: 3

σ1 or a b and

{wa} 0 1 0 0

{wb} 0 0 1 0

{wab} 0 0 0 1

{wa, wb} 1 0 0 0

{wa, wab} 1
2

1
2 0 0

{wb, wab} 1
2 0 1

2 0

{wa, wb, wab} 1 0 0 0
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Lifted games

or is only used in {wa, wb} in the fixed point

this means that it carries two implicatures:

exhaustivity: Ann and Bert did not both show up
ignorance: Sally does not know which one of the two disjuncts is true
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Sender costs

2 a. Ann or Bert or both showed up. (= ab-or)
b. Ann showed up. (= a)
c. Bert showed up. (= b)
d. Ann and Bert showed up. (= and)
e. Ann or Bert showed up. (= or)
f. Ann or both showed up. (= a-or)
g. Bert or both showed up. (= b-or)

Message (e) is arguably more efficient for Sally than (a)

Let us say that cs(·,ab-or) = 1
50 , cs(·,a-or) = cs(·,b-or) =

1
75 , cs(·,or) = cs(·,and) = 1

100), and cs(·,a) = cs(·,b) = 0.
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More ignorance implicatures

IBR sequence: 1

σ0 ab-or a b and or a-or b-or

{wa} 1
4

1
4 0 0 1

4
1
4 0

{wb} 1
4 0 1

4 0 1
4 0 1

4

{wab} 1
7

1
7

1
7

1
7

1
7

1
7

1
7

{wa, wb} 1
2 0 0 0 1

2 0 0

{wa, wab} 1
4

1
4 0 0 1

4
1
4 0

{wb, wab} 1
4 0 1

4 0 1
4 0 1

4

{wa, wb, wab} 1
2 0 0 0 1

2 0 0
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More ignorance implicatures

IBR sequence: 1

ρ0 {wa} {wb} {wab} {wa, wb} {wa, wab} {wb, wab} {wa, wb, wab}

ab-or 0 0 0 1 0 0 0

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

and 0 0 1 0 0 0 0

or 0 0 0 1 0 0 0

a-or 1 0 0 0 0 0 0

b-or 0 1 0 0 0 0 0
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More ignorance implicatures

IBR sequence: 2

σ1 ab-or a b and or a-or b-or

{wa} 0 1 0 0 0 0 0

{wb} 0 0 1 0 0 0 0

{wab} 0 0 0 1 0 0 0

{wa, wb} 0 0 0 0 1 0 0

{wa, wab} 0 1 0 0 0 0 0

{wb, wab} 0 0 1 0 0 0 0

{wa, wb, wab} 0 0 0 0 1 0 0
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More ignorance implicatures

IBR sequence: 2

ρ1 {wa} {wb} {wab} {wa, wb} {wa, wab} {wb, wab} {wa, wb, wab}

orboth 1
7

1
7

1
7

1
7

1
7

1
7

1
7

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

and 0 0 1 0 0 0 0

or 0 0 0 1 0 0 0

a-or 1
3 0 1

3 0 1
3 0 0

b-or 0 1
3

1
3 0 0 1

3 0

Gerhard Jäger (February 18, 2011) Game theoretic pragmatics MIT 55 / 64



More ignorance implicatures

IBR sequence: 3

σ2 ab-or a b and or a-or b-or

{wa} 0 1 0 0 0 0 0

{wb} 0 0 1 0 0 0 0

{wab} 0 0 0 1 0 0 0

{wa, wb} 0 0 0 0 1 0 0

{wa, wab} 0 0 0 0 0 1 0

{wb, wab} 0 0 0 0 0 0 1

{wa, wb, wab} 1 0 0 0 0 0 0
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More ignorance implicatures

IBR sequence: 3

ρ2 {wa} {wb} {wab} {wa, wb} {wa, wab} {wb, wab} {wa, wb, wab}

orboth 0 0 0 0 0 0 1

a 1 0 0 0 0 0 0

b 0 1 0 0 0 0 0

and 0 0 1 0 0 0 0

or 0 0 0 1 0 0 0

a-or 0 0 0 0 1 0 0

b-or 0 0 0 0 0 1 0
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Conclusion

IBR model formalizes neo-Gricean program

Principle of cooperativity: identical preferences of sender and receiver

Quality: Honesty is default strategy

Quantity, Relevance: captured in utility function

Manner: captured in cost function

further applications

free choice implicatures
conditional perfection
I-implicatures, M-implicatures
pragmatics of measure terms

next project: presuppositions
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I-implicatures

(2) a. John opened the door. (= open)
b. John opened the door using the handle. (= open-h)
c. John opened the door with an axe. (= open-a)

formally

W = {wh, wa}
p∗(w1) =

2
3 , p
∗(w2) =

1
3

‖open-h‖ = {wh}, ‖open-a‖ = {wa},
and ‖open‖ = {wh, wa}
c(m1) = c(m2) ∈ 1

20 , c(m3) = 0

ah aa
wh 1, 1 0, 0
wa 0, 0 1, 1
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I-implicatures

σ0 open open-h open-a

wh
1
2

1
2 0

wa
1
2 0 1

2

ρ0 wh wa

open 1 0
open-h 1 0
open-a 0 1

σ1 open open-h open-a

wh 1 0 0
wa 0 0 1

ρ1 wh wa

open 1 0
open-h 1 0
open-a 0 1

F = (σ1, ρ0)
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Measure terms

Krifka (2002,2007) notes that measure terms can be used in a precise or in
a vague way, and that more complex expressions are less likely to be used
in a vague way. Here is a schematic analysis:

w1, w3: 100 meter, w2, w4: 101 meter

m100: “one hundred meter”
m101: “one hundred and one meter”
mex100: “exactly one hundred meter”

‖m100‖ = ‖mex100‖ = {w1, w3},
‖m101‖ = {w2, w4}
c(m100) = 0,
c(m101) = c(mex100) = 0.15

a1, a3: 100, a2, a4: 101

in w1, w2 precision is
important

in w3, w4 precision is not
important

a1 a2 a3 a4

w1 1 0.5 1 0.5
w2 0.5 1 0.5 1
w3 1 0.9 1 0.9
w4 0.9 1 0.9 1
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Measure terms

σ0 m100 m101 mex100

w1
1
2 0 1

2
w2 0 1 0
w3

1
2 0 1

2
w4 0 1 0

ρ0 a1 a2 a3 a4

m100
1
2 0 1

2 0
m101 0 1

2 0 1
2

mex100
1
2 0 1

2 0

σ1 m100 m101 mex100

w1 1 0 0
w2 0 1 0
w3 1 0 0
w4 1 0 0

ρ1 a1 a2 a3 a4

m100
1
3 0 1

3
1
3

m101 0 1 0 0
mex100

1
2 0 1

2 0

σ2 m100 m101 mex100

w1 0 0 1
w2 0 1 0
w3 1 0 0
w4 1 0 0

ρ2 a1 wa2 a3 a4

m100 0 0 1
2

1
2

m101 0 1 0 0
mex100 1 0 0 0
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M-implicatures

3 a. John stopped the car. (= stop)
b. John made the car stop. (= make-stop)

w1: John used the foot
brake.

w2: John drove the car
against a wall.

‖stop‖ =
‖make-stop‖ =
{w1, w2}
c(stop) = 0;
c(make-stop = 0.1

p∗(w1) = .8;
p∗(w2) = .2.

Utility matrix

a1 a2

w1 1 0
w2 0 1
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M-implicatures

IBR sequence

σ0 stop make-stop

w1
1
2

1
2

w2
1
2

1
2

ρ0 a1 a2

stop 1 0
make-stop 1 0

σ1 stop make-stop

w1 1 0

w2 1 0

ρ1 a1 a2

stop 1 0
make-stop 1

2
1
2

σ2 stop make-stop

w1 1 0

w2 0 1

ρ2 a1 a2

stop 1 0
make-stop 0 1
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