Game theoretic pragmatics

Gerhard Jäger
gerhard.jaeger@uni-tuebingen.de
(based on joint work with Michael Franke)

February 18, 2011

MIT

Overview

Structure of the talk

- Signaling games
- Literal meaning and rationality
- Justification of pragmatic decisions
- Examples
- Conclusion

Signaling games

- sequential game:
(1) nature chooses a world w
- out of a pool of possible worlds W
- according to a certain probability distribution p^{*}
(2) nature shows w to sender \mathbf{S}
(3) S chooses a message m out of a set of possible signals M
(4) S transmits m to the receiver \mathbf{R}
(5) R chooses an action a, based on the sent message.
- Both S and R have preferences regarding R's action, depending on w.
- S might also have preferences regarding the choice of m (to minimize signaling costs).

Tea or coffee?

An example

- Sally either prefers tea $\left(w_{1}\right)$ or coffee $\left(w_{2}\right)$, with $p^{*}\left(w_{1}\right)=p^{*}\left(w_{2}\right)=\frac{1}{2}$.
- Robin either serves tea $\left(a_{1}\right)$ or coffee $\left(a_{2}\right)$.
- Sally can send either of two messages:
- m_{1} : I prefer tea.
- m_{2} : I prefer coffee.
- Both messages are costless.

Extensive form

Extensive form

Extensive form

A coordination problem

- two strict Nash equilibria
- S always says the truth and R always believes her.
- S always says the opposite of the truth and R interprets everything ironically.
- Both equilibria are equally rational.
- Still, first equilibrium is more reasonable because it employs exogenous meanings of messages for equilibrium selection.
- Criterion for equilibrium selection:

> Always say the truth, and always believe what you are told!

- What happens if it is not always rational to be honest/credulous?

Partially aligned interests

Rabin's (1990) example

- In w_{1} and $w_{2}, \mathrm{~S}$ and R have identical interests. ${ }^{a}$
- In w_{3}, S would prefer R to believe in w_{2}.
- The propositions $\left\{w_{1}\right\}$ and $\left\{w_{2}, w_{3}\right\}$ are credible.
- The propositions $\left\{w_{2}\right\}$ and $\left\{w_{3}\right\}$ are not credible.
${ }^{a}$ Unless mentioned otherwise, I always assume a uniform distribution p^{*} over W.

	a_{1}	a_{2}	a_{3}
w_{1}	10,10	0,0	0,0
w_{2}	0,0	10,10	5,7
w_{3}	0,0	10,0	5,7

Table: Partially aligned interests

Partially aligned interests

Rabin's (1990) example

- Suppose there are three messages:
- m_{1} : We are in w_{1}.
- m_{2} : We are in w_{2}.
- m_{3} : We are in w_{3}.
- reasonable S will send m_{1} if and only if w_{1}
- reasonable R will react to m_{1} with a_{1}

Table: Partially aligned interests

- nothing else can be inferred

Revised maxim

Always say the truth, and always believe what you are told, unless you have reasons to do otherwise!

But what does this mean?

Justification and best responses

Jusification of decisions

- decisions must be justifiable
- two kinds of justification:

I use/interpret a message the way I do because:

- this is what the literal meaning of the message dictates, or
- because this is the best I can do, given my justifiable belief about the decisions of the other player.

Justification and best responses

Sally's belief states

- (first order) belief of the sender:
- function ρ from messages to probability distribution of actions
- $\rho(a \mid m)$: S's subjective probability that R performs action a if S sends message m

Justification and best responses

Robin's belief states

- (first order) belief of the receiver has two components:
- function σ from worlds to probability distributions over messages
- $\sigma(m \mid w)$: R's subjective probability that S sends messages m if she is in world w
- function σ^{*} from messages to probability distributions over worlds
- $\sigma^{*}(w \mid m)$: R's posterior probability that w is the case after observing message m
- σ and σ^{*} are connected via Bayes' Rule

$$
\sigma^{*}(w \mid m)=\frac{\sigma(m \mid w) p^{*}(w)}{\sum_{w^{\prime}} \sigma\left(m \mid w^{\prime}\right) p^{*}\left(w^{\prime}\right)}
$$

Justification: Rabin's example again

Utility matrix

	a_{1}	a_{2}	a_{3}
w_{1}	10,10	0,0	0,0
w_{2}	0,0	10,10	5,7
w_{3}	0,0	10,0	5,7

literal meanings

$$
\begin{aligned}
\left\|m_{1}\right\| & =\left\{w_{1}\right\} \\
\left\|m_{2}\right\| & =\left\{w_{2}\right\} \\
\left\|m_{3}\right\| & =\left\{w_{3}\right\}
\end{aligned}
$$

Justification: Rabin's example again

The Honest Sender

- Suppose (Robin supposes that) Sally is simply honest, and non-deliberating.
- This means she sends a true message in each world.
- No further criteria about message selection are known.
- Best model σ_{0} of such a sender is the one that is consistent with the assumptions and maximizes entropy.
- This means that in each world $w, \sigma_{0}(\cdot \mid w)$ is a uniform distribution:

$$
\sigma_{0}(m \mid w)= \begin{cases}\frac{1}{|\{m \mid w \models m\}|} & \text { if } w \models m, \\ 0 & \text { else }\end{cases}
$$

Justification: Rabin's example again

Can be represented in a matrix with worlds as rows and messages as columns.

σ_{0}	m_{1}	m_{2}	m_{3}
w_{1}	1	0	0
w_{2}	0	1	0
w_{3}	0	0	1

This is justifiable by the literal meaning of the messages.

Justification: Rabin's example again

Bayesian reasoning

- Robin assumes σ_{0}.
- He actually needs σ_{0}^{*} (posterior probablities of worlds given messages)
- $\sigma_{0}^{*}(\cdot \mid m)$:
- take column m in σ_{0}
- multiply each entry with corresponding value of p^{*}
- normalize the column: divide it by its sum, such that it becomes a probability distribution
- if m is a zero-column (i.e. m is a surprise message): assume uniform distribution over $\|m\|$
- result is the row in σ^{*}

Justification: Rabin's example again

Expected utility

- Robin's utility depends on w and a
- σ_{0}^{*} gives him a probability distribution over W
- this enables him to assess the exected utility for each action, conditional on each message:

$$
E U(a \mid m)=\sum_{w} \sigma_{0}^{*}(w \mid m) u_{r}(w, a)
$$

- comes down to matrix multiplication:

$$
E U_{r}=\sigma_{0}^{*} \cdot u_{r}
$$

Justification: Rabin's example again

$$
\begin{aligned}
E U_{r} & =\sigma_{0}^{*} \cdot u_{r} \\
& =\left(\begin{array}{cccc}
\sigma_{0}^{*} & w_{1} & w_{2} & w_{3} \\
\hline \hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & 1 & 0 \\
m_{3} & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
\hline a_{1} & a_{2} & a_{3} \\
\hline w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 7 \\
w_{3} & 0 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{cccc}
& a_{1} & a_{2} & a_{3} \\
\hline m_{1} & 10 & 0 & 0 \\
m_{2} & 0 & 10 & 7 \\
m_{3} & 0 & 0 & 7
\end{array}\right)
\end{aligned}
$$

Justification: Rabin's example again

Best response

- If Robin is rational he will maximize his expected utility after each message
- If he believs in σ_{0}, he will - for each message m - pick an action that is maximal within m's row in $E U_{r}$
- If Sally assumes that this is how Robin thinks, and if she has no further information, her model ρ_{0} of Robin's behavior will the conditional probability distribution that is consistent with these assumptions and maximizes entropy
- Hence: ρ_{0} puts equal probability on each action that maximizes $E U_{r}$, and 0 probability elsewhere
- ρ_{0} is the best response to σ_{0} :

$$
\rho_{0}=B R_{r}\left(\sigma_{0}\right)
$$

Justification: Rabin's example again

Expected utility

	a_{1}	a_{2}	a_{3}
m_{1}	10	0	0
m_{2}	0	10	7
m_{3}	0	0	7

Best response

ρ_{0}	a_{1}	a_{2}	a_{3}
m_{1}	1	0	0
m_{2}	0	1	0
m_{3}	0	0	1

Justification: Rabin's example again

Iterated Best Response

- Suppose Sally believes that Robin plays according to ρ_{0}.
- Then Sally (if she is rational) will play the best response $\sigma_{1}=B R_{s}\left(\rho_{0}\right)$ to ρ_{0}.
- Calculation goes as follows:
- Sally's Expected Utility:

$$
E U_{s}(m \mid w)=\sum_{a} \rho_{0}(a \mid m) u_{s}(w, a)
$$

- boils down to matrix multiplication:

$$
E U_{s}=u_{s} \cdot \rho_{0}^{T}
$$

- σ_{1} places row-wise equal probability on each row-maximal value in $E U_{s}$, and 0 elsewhere

Justification: Rabin's example again

$$
\begin{aligned}
& E U_{s}=u_{s} \cdot \rho_{0}^{T} \\
& =\left(\begin{array}{cccc}
& a_{1} & a_{2} & a_{3} \\
\hline \hline w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 5 \\
w_{3} & 0 & 10 & 5
\end{array}\right) \cdot\left(\begin{array}{cccc}
\rho_{0} & a_{1} & a_{2} & a_{3} \\
\hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & 1 & 0 \\
m_{3} & 0 & 0 & 1
\end{array}\right)^{T} \\
& =\left(\begin{array}{cccc}
& m_{1} & m_{2} & m_{3} \\
\hline \hline w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 5 \\
w_{3} & 0 & 10 & 5
\end{array}\right) \\
& B R\left(\rho_{0}\right)=\left(\begin{array}{cccc}
\sigma_{1} & m_{1} & m_{2} & m_{3} \\
\hline w_{1} & 1 & 0 & 0 \\
w_{2} & 0 & 1 & 0 \\
w_{3} & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Justification: Rabin's example again

Iterated Best Response

- If Robin anticipates this, he will play according to $\rho_{1}=B R_{r}\left(\sigma_{1}\right)$.
- Computation is exactly as for ρ_{0}, but using σ_{1} instead of σ_{0}.
- As the third column of σ_{1} only contains 0 s , the principle
Truth Ceteris Paribus
applies: assume a uniform distribution over $\left\|m_{3}\right\|$ in σ_{1}^{*}.

$$
\sigma_{1}^{*}=\begin{array}{cccc}
& w_{1} & w_{2} & w_{3} \\
\hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
m_{3} & 0 & 0 & 1
\end{array}
$$

Justification: Rabin's example again

$$
\begin{aligned}
E U_{r} & =\sigma_{1}^{*} \cdot u_{r} \\
& =\left(\begin{array}{cccc}
\sigma_{1}^{*} & w_{1} & w_{2} & w_{3} \\
\hline \hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
m_{3} & 0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{cccc}
\hline a_{1} & a_{2} & a_{3} \\
w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 7 \\
w_{3} & 0 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\overline{m_{1}} & 10 & 0 & 0 \\
m_{2} & 0 & 5 & 7 \\
m_{3} & 0 & 0 & 7
\end{array}\right) \\
B R_{r}\left(\sigma_{1}\right) & =\left(\begin{array}{cccc}
\rho_{1} & a_{1} & a_{2} & a_{3} \\
\hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & 0 & 1 \\
m_{3} & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Justification: Rabin's example again

Iterated Best Response

- This procedure can be iterated indefinitely.
- General pattern:

$$
\begin{aligned}
\rho_{n} & =B R_{r}\left(\sigma_{n}\right) \\
\sigma_{n+1} & =B R_{s}\left(\rho_{n}\right)
\end{aligned}
$$

Justification: Rabin's example again

$$
\begin{aligned}
E U_{s} & =u_{s} \cdot \rho_{1}^{T} \\
& =\left(\begin{array}{cccc}
& a_{1} & a_{2} & a_{3} \\
\hline w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 5 \\
w_{3} & 0 & 10 & 5
\end{array}\right) \cdot\left(\begin{array}{cccc}
\rho_{1} & a_{1} & a_{2} & a_{3} \\
\hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & 0 & 1 \\
m_{3} & 0 & 0 & 1
\end{array}\right)^{T} \\
& =\left(\begin{array}{cccc}
& m_{1} & m_{2} & m_{3} \\
\hline w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 5 & 5 \\
w_{3} & 0 & 5 & 5
\end{array}\right) \\
\operatorname{BR}\left(\rho_{1}\right) & =\left(\begin{array}{cccc}
\sigma_{2} & m_{1} & m_{2} & m_{3} \\
\hline w_{1} & 1 & 0 & 0 \\
w_{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
w_{3} & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

Justification: Rabin's example again

$$
\begin{aligned}
E U_{r} & =\sigma_{2}^{*} \cdot u_{r} \\
& =\left(\begin{array}{cccc}
\sigma_{2}^{*} & w_{1} & w_{2} & w_{3} \\
\hline \hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & \frac{1}{2} & \frac{1}{2} \\
m_{3} & 0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right) \cdot\left(\begin{array}{cccc}
\hline a_{1} & a_{2} & a_{3} \\
w_{1} & 10 & 0 & 0 \\
w_{2} & 0 & 10 & 7 \\
w_{3} & 0 & 0 & 7
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\hline \overline{m_{1}} & 10 & 0 & 0 \\
m_{2} & 0 & 5 & 7 \\
m_{3} & 0 & 5 & 7
\end{array}\right) \\
B R_{r}\left(\sigma_{2}\right) & =\left(\begin{array}{cccc}
\rho_{2} & a_{1} & a_{2} & a_{3} \\
\hline m_{1} & 1 & 0 & 0 \\
m_{2} & 0 & 0 & 1 \\
m_{3} & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Justification: Rabin's example again

Fixed point of IBR sequence

- $\rho_{2}=\rho_{1}$
- Hence for all $n>2$:

$$
\begin{aligned}
\sigma_{n} & =\sigma_{2} \\
\rho_{n} & =\rho_{2}
\end{aligned}
$$

- $\left(\sigma_{2}, \rho_{1}\right)$ is a fixed point for best response calculation
- If Sally and Robin only consider justifiable strategies and are both sufficiently sophisticated - and these facts are common knowledge
- they will play according to these fixed point strategies

IBR sequence for Rabin's example

σ_{0}	m_{1}	m_{2}	m_{3}
w_{1}	1	0	0
w_{2}	0	1	0
w_{3}	0	0	1

σ_{1}	m_{1}	m_{2}	m_{3}
w_{1}	1	0	0
w_{2}	0	1	0
w_{3}	0	1	0

ρ_{2}	a_{1}	a_{2}	a_{3}
m_{1}	1	0	0
m_{2}	0	0	1
m_{3}	0	0	1

σ_{2}	m_{1}	m_{2}	m_{3}
w_{1}	1	0	0
w_{2}	0	$\frac{1}{2}$	$\frac{1}{2}$
w_{3}	0	$\frac{1}{2}$	$\frac{1}{2}$

ρ_{1}	a_{1}	a_{2}	a_{3}
m_{1}	1	0	0
m_{2}	0	0	1
m_{3}	0	0	1

$$
F=\left(\sigma_{2}, \rho_{1}\right)
$$

Interpretation games

- How does this relate to linguistic examples?
- There is a quasi-algorithmic procedure (due to Franke 2009) how to construct a game from an example sentence.

What is given?

- example sentence
- set of expression alternatives
- jointly form set of messages
- question under discussion QUD
- set of complete answers

What do we need?

- interpretation function || \|
- prior probability distribution p^{*}
- set of actions
- utility functions to QUD is the set of possible worlds

Interpretation games

QUD

- often QUD is not given explicitly
- procedure to construct QUD from expression m and its alternatives ALT (m):
- Let $c t$ be the context of utterances, i.e. the maximal set of statements that is common knowledge between Sally and Robin.
- any subset w of $A L T(m) \cup\left\{\neg m^{\prime} \mid m^{\prime} \in A L T(m)\right\}$ is a possible world iff
- w and $c t$ are consistent, i.e. $w \cup c t \nvdash \perp$
- for any set $X: w \subset X \subseteq A L T(m) \cup\left\{\neg m^{\prime} \mid m^{\prime} \in A L T(m)\right\}$, ct $\cup X$ is inconsistent

Interpretation games

Game construction

- interpretation function:

$$
\left\|m^{\prime}\right\|=\{w \mid w \vdash m\}
$$

- p^{*} is uniform distribution over W
- justified by principle of insufficient reason
- set of actions is W
- intuitive idea: Robin's task is to figure out which world Sally is in
- utility functions:

$$
u_{s / r}(w, a)= \begin{cases}1 & \text { iff } w=a \\ 0 & \text { else }\end{cases}
$$

- both players want Robin to succeed

Example: Quantity implicatures

(1) a. Who came to the party?
b. SOME: Some boys came to the party.
c. NO: No boys came to the party.
d. ALL: All boys came to the party.

Game construction

- $c t=\emptyset$
- $W=\left\{w_{\neg \exists}, w_{\exists \neg \forall}, w_{\forall}\right\}$
- $w_{\neg ヨ}=\{\mathrm{NO}\}, w_{\exists \neg \forall}=$ $\{$ SOME $\}, w_{\forall}=\{$ SOME, ALL $\}$
- $p^{*}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- interpretation function:

$$
\begin{aligned}
\|\mathrm{SOME}\| & =\left\{w_{\exists \neg \forall}, w_{\forall}\right\} \\
\|\mathrm{NO}\| & =\left\{w_{\neg \exists}\right\} \\
\|\mathrm{ALL}\| & =\left\{w_{\forall}\right\}
\end{aligned}
$$

- utilities:

$$
\begin{array}{cccc}
& a_{\neg \exists} & a_{\exists \neg \forall} & a_{\forall} \\
\hline w_{\neg \exists} & 1,1 & 0,0 & 0,0 \\
w_{\exists \neg \forall} & 0,0 & 1,1 & 0,0 \\
w_{\forall} & 0,0 & 0,0 & 1,1
\end{array}
$$

Interpretation games

- utility functions are identity matrices
- therefore the step multiply with utility matrix can be omitted in best response computation
- also, restriction to uniform priors makes simplifies computation of posterior distribution
- simplified IBR computation:

Interpretation games

Sally

(1) flip ρ along diagonal
(2) place a 0 in each cell that is non-maximal within its row
(3) normalize each row

Robin

(1) flip σ along diagonal
(2) if a row contains only 0 s, fill in a 1 in each cell corresponding to a true world-message association
(3) place a 0 in each cell that is non-maximal within its row
(4) normalize each row

Example: Quantity implicatures

σ_{0}	NO	SOME	ALL
$w_{\neg \exists}$	1	0	0
$w_{\exists \neg \forall}$	0	1	0
w_{\forall}	0	$\frac{1}{2}$	$\frac{1}{2}$
σ_{1}	NO	SOME	ALL
$w_{\neg \exists}$	1	0	0
$w_{\exists \neg \forall}$	0	1	0
w_{\forall}	0	0	1

ρ_{0}	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
NO	1	0	0
SOME	0	1	0
ALL	0	0	1
ρ_{1}	$w_{\neg \exists}$	$w_{\exists \neg \forall}$	w_{\forall}
NO	1	0	0
SOME	0	1	0
ALL	0	0	1

$$
F=\left(\rho_{0}, \sigma_{1}\right)
$$

In the fixed point, SOME is interpreted as entailing \neg ALL, i.e. exhaustively.

Lifted games

- So far, it is hard-wired in the model that Sally has complete knowledge (or, rather, complete belief - whether or not she is right is inessential for IBR) about the world she is in.
- corresponds to strong version of competence assumption
- Sometimes this assumption is too strong:

Lifted games

(1) a. Ann or Bert showed up. $(=\mathrm{OR})$
b. Ann showed up. $(=A)$
c. Bert showed up. $(=B)$
d. Ann and Bert showed up. (= AND)

Utility matrix

- w_{a} : Only Ann showed up.
- w_{b} : Only Bert showed up.
- $w_{a b}$: Both showed up.

	a_{a}	a_{b}	$a_{a b}$
w_{a}	1	0	0
w_{b}	0	1	0
$w_{a b}$	0	0	1

Lifted games

IBR sequence

σ_{0}	OR	A	B	AND
w_{a}	$\frac{1}{2}$	$\frac{1}{2}$	0	0
w_{b}	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$w_{a b}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
σ_{1}	OR	A	B	AND
w_{a}	0	1	0	0
w_{b}	0	0	1	0
$w_{a b}$	0	0	0	1

ρ_{0}	w_{a}	w_{b}	$w_{a b}$
OR	$\frac{1}{2}$	$\frac{1}{2}$	0
A	1	0	0
B	0	1	0
AND	0	0	1
ρ_{1}	w_{a}	w_{b}	$w_{a b}$
OR	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
A	1	0	0
B	0	1	0
AND	0	0	1

OR comes out as a message that would never be used!

Lifted games

- full competence assumption is arguably too strong
- weaker assumption (Franke 2009):
- Sally's information states are partial answers to QUD, ie. sets of possible worlds
- Robin's task is to figure out which information state Sally is in.
- ceteris paribus, Robin receives slightly higher utility for smaller (more informative) states

Costs

- Preferences that are independent from correct information transmission are captured via cost functions for sender and receiver.
- For the sender this might be, inter alia, a preference for simpler expressions.
- For the receiver, the Strongest Meaning Hypothesis is a good candiate.

Lifted games

Formally

- cost functions $c_{s}, c_{r}: c_{s}:(P O W(W)-\{\emptyset\}) \times M \mapsto \mathbb{R}^{+}$
- costs are nominal:

$$
0 \leq c_{s}(i, m), c_{r}(i, m)<\min \left(\frac{1}{|P O W(W)-\emptyset|^{2}}, \frac{1}{|A L T(m)|^{2}}\right)
$$

- guarantees that cost considerations never get in the way of information transmission considerations
- new utility functions:

$$
\begin{aligned}
& u_{s}(i, m, a)=-c_{s}(i, m)+ \begin{cases}1 & \text { if } i=a, \\
0 & \text { else },\end{cases} \\
& u_{r}(i, m, a)=-c_{r}(a, m)+ \begin{cases}1 & \text { if } i=a, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Modified IBR procecure

Sally

- flip ρ along the diagonal
- subtract c_{s}
- place a 0 in each cell that is non-maximal within its row
- normalize each row

Robin

- flip σ along diagonal
- if a row contains only 0s,
- fill in a 1 in each cell corresponding to a true world-message association
- else
- subtract c_{r}^{T}
- place a 0 in each cell that is non-maximal within its row
- normalize each row

The Strongest Meaning Hypothesis

- if in doubt, Robin will assume that Sally is competent
- captured in following cost function:

$$
\begin{array}{lll}
& c_{r}(a, m)=\frac{|a|}{\max \left(|M|, 2^{|W|}\right)^{2}} & \\
c_{r}\left(\left\{w_{a}\right\}, \cdot\right) & =\frac{1}{49} & c_{r}\left(\left\{w_{a}, w_{a b}\right\}, \cdot\right) \\
c_{r}\left(\left\{w_{b}\right\}, \cdot\right) & =\frac{2}{49} \\
c_{r}\left(\left\{w_{a b}\right\}, \cdot\right) & =\frac{1}{49} & c_{r}\left(\left\{w_{b}, w_{a b}\right\}, \cdot\right) \\
c_{r}\left(\left\{w_{a}, w_{b}\right\}, \cdot\right)=\frac{1}{49} & c_{r}\left(\left\{w_{a}, w_{b}, w_{a b}\right\}, \cdot\right) & =\frac{2}{49} \\
\frac{2}{49} & &
\end{array}
$$

Lifted games

IBR sequence: 1

σ_{0}	OR	A	B	AND
$\left\{w_{a}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a b}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
$\left\{w_{a}, w_{b}\right\}$	1	0	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0

Lifted games

IBR sequence: flipping and subtracting costs

ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
OR	0.48	0.48	0.23	$\mathbf{0 . 9 6}$	0.46	0.46	0.94
A	$\mathbf{0 . 4 8}$	-0.02	0.23	-0.04	0.46	-0.04	-0.06
B	-0.02	$\mathbf{0 . 4 8}$	0.23	-0.04	-0.04	0.46	-0.06
AND	-0.02	-0.02	$\mathbf{0 . 2 3}$	-0.04	-0.04	-0.04	-0.06

Lifted games

IBR sequence: 2

ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0

Lifted games

IBR sequence: 3

σ_{1}	OR	A	B	AND
$\left\{w_{a}\right\}$	0	1	0	0
$\left\{w_{b}\right\}$	0	0	1	0
$\left\{w_{a b}\right\}$	0	0	0	1
$\left\{w_{a}, w_{b}\right\}$	1	0	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0

Lifted games

- OR is only used in $\left\{w_{a}, w_{b}\right\}$ in the fixed point
- this means that it carries two implicatures:
- exhaustivity: Ann and Bert did not both show up
- ignorance: Sally does not know which one of the two disjuncts is true

Sender costs

(2) a. Ann or Bert or both showed up. ($=\mathrm{AB}-\mathrm{OR}$)
b. Ann showed up. $(=A)$
c. Bert showed up. $(=B)$
d. Ann and Bert showed up. (=AND)
e. Ann or Bert showed up. (=OR)
f. Ann or both showed up. $(=\mathrm{A}-\mathrm{OR})$
g. Bert or both showed up. (=B-OR)

- Message (e) is arguably more efficient for Sally than (a)
- Let us say that $c_{s}(\cdot, \mathrm{AB}-\mathrm{OR})=\frac{1}{50}, c_{s}(\cdot, \mathrm{~A}-\mathrm{OR})=c_{s}(\cdot, \mathrm{~B}-\mathrm{OR})=$ $\left.\frac{1}{75}, c_{s}(\cdot, \mathrm{OR})=c_{s}(\cdot, \mathrm{AND})=\frac{1}{100}\right)$, and $c_{s}(\cdot, \mathrm{~A})=c_{s}(\cdot, \mathrm{~B})=0$.

More ignorance implicatures

IBR sequence: 1

σ_{0}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\left\{w_{b}\right\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\left\{w_{a b}\right\}$	$\frac{1}{7}$						
$\left\{w_{a}, w_{b}\right\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0
$\left\{w_{a}, w_{a b}\right\}$	$\frac{1}{4}$	$\frac{1}{4}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0
$\left\{w_{b}, w_{a b}\right\}$	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$	0	$\frac{1}{4}$
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0

More ignorance implicatures

IBR sequence: $\mathbf{1}$							
ρ_{0}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
AB-OR	0	0	0	1	0	0	0
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	1	0	0	0	0	0	0
B-OR	0	1	0	0	0	0	0

More ignorance implicatures

IBR sequence: 2

σ_{1}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a b}\right\}$	0	0	0	1	0	0	0
$\left\{w_{a}, w_{b}\right\}$	0	0	0	0	1	0	0
$\left\{w_{a}, w_{a b}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}, w_{a b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	0	0	0	0	1	0	0

More ignorance implicatures

IBR sequence: 2							
ρ_{1}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
ORBOTH	$\frac{1}{7}$						
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	$\frac{1}{3}$	0	$\frac{1}{3}$	0	$\frac{1}{3}$	0	0
B-OR	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	$\frac{1}{3}$	0

More ignorance implicatures

IBR sequence: 3

σ_{2}	AB-OR	A	B	AND	OR	A-OR	B-OR
$\left\{w_{a}\right\}$	0	1	0	0	0	0	0
$\left\{w_{b}\right\}$	0	0	1	0	0	0	0
$\left\{w_{a b}\right\}$	0	0	0	1	0	0	0
$\left\{w_{a}, w_{b}\right\}$	0	0	0	0	1	0	0
$\left\{w_{a}, w_{a b}\right\}$	0	0	0	0	0	1	0
$\left\{w_{b}, w_{a b}\right\}$	0	0	0	0	0	0	1
$\left\{w_{a}, w_{b}, w_{a b}\right\}$	1	0	0	0	0	0	0

More ignorance implicatures

IBR sequence: 3							
ρ_{2}	$\left\{w_{a}\right\}$	$\left\{w_{b}\right\}$	$\left\{w_{a b}\right\}$	$\left\{w_{a}, w_{b}\right\}$	$\left\{w_{a}, w_{a b}\right\}$	$\left\{w_{b}, w_{a b}\right\}$	$\left\{w_{a}, w_{b}, w_{a b}\right\}$
ORBOTH	0	0	0	0	0	0	1
A	1	0	0	0	0	0	0
B	0	1	0	0	0	0	0
AND	0	0	1	0	0	0	0
OR	0	0	0	1	0	0	0
A-OR	0	0	0	0	1	0	0
B-OR	0	0	0	0	0	1	0

Conclusion

- IBR model formalizes neo-Gricean program
- Principle of cooperativity: identical preferences of sender and receiver
- Quality: Honesty is default strategy
- Quantity, Relevance: captured in utility function
- Manner: captured in cost function
- further applications
- free choice implicatures
- conditional perfection
- I-implicatures, M-implicatures
- pragmatics of measure terms
- next project: presuppositions

I-implicatures

(2) a. John opened the door. (= OPEN)
b. John opened the door using the handle. (= OPEN-H)
c. John opened the door with an axe. (= OPEN-A)

formally

- $W=\left\{w_{h}, w_{a}\right\}$
- $p^{*}\left(w_{1}\right)=\frac{2}{3}, p^{*}\left(w_{2}\right)=\frac{1}{3}$
- $\|$ OPEN-H $\left\|=\left\{w_{h}\right\},\right\|$ OPEN-A $\|=\left\{w_{a}\right\}$, and $\|$ OPEN $\|=\left\{w_{h}, w_{a}\right\}$
- $c\left(m_{1}\right)=c\left(m_{2}\right) \in \frac{1}{20}, c\left(m_{3}\right)=0$

I-implicatures

σ_{0}	OPEN	OPEN-H	OPEN-A	ρ_{0}	w_{h}	w_{a}
$\begin{aligned} & w_{h} \\ & w_{a} \end{aligned}$	$\frac{1}{2}$	$\frac{1}{2}$	0	OPEN OPEN-H OPEN-A	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$
	2	2				
	$\frac{1}{2}$	0	$\frac{1}{2}$			
σ_{1}	OPEN	OPEN-H	OPEN-A	ρ_{1}	w_{h}	w_{a}
$\begin{aligned} & w_{h} \\ & w_{a} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	OPEN OPEN-H OPEN-A	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$
		0				

Measure terms

Krifka $(2002,2007)$ notes that measure terms can be used in a precise or in a vague way, and that more complex expressions are less likely to be used in a vague way. Here is a schematic analysis:

- w_{1}, w_{3} : 100 meter, $w_{2}, w_{4}: 101$ meter
- m_{100} : "one hundred meter" m_{101} : "one hundred and one meter" $m_{e x 100}$: "exactly one hundred meter"
- $\left\|m_{100}\right\|=\left\|m_{e x 100}\right\|=\left\{w_{1}, w_{3}\right\}$, $\left\|m_{101}\right\|=\left\{w_{2}, w_{4}\right\}$
- $c\left(m_{100}\right)=0$, $c\left(m_{101}\right)=c\left(m_{e x 100}\right)=0.15$
- $a_{1}, a_{3}: 100, a_{2}, a_{4}: 101$
- in w_{1}, w_{2} precision is important
- in w_{3}, w_{4} precision is not important

a_{1}	a_{2}	a_{3}	a_{4}

w_{1}	1	0.5	1	0.5
w_{2}	0.5	1	0.5	1
w_{3}	1	0.9	1	0.9
w_{4}	0.9	1	0.9	1

Measure terms

σ_{0}	m_{100}	m_{101}	$m_{e x 100}$
w_{1}	$\frac{1}{2}$	0	$\frac{1}{2}$
w_{2}	0	1	0
w_{3}	$\frac{1}{2}$	0	$\frac{1}{2}$
w_{4}	0	1	0

ρ_{0}	a_{1}	a_{2}	a_{3}	a_{4}
m_{100}	$\frac{1}{2}$	0	$\frac{1}{2}$	0
m_{101}	0	$\frac{1}{2}$	0	$\frac{1}{2}$
$m_{\text {ex } 100}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0

σ_{1}	m_{100}	m_{101}	$m_{e x 100}$
w_{1}	1	0	0
w_{2}	0	1	0
w_{3}	1	0	0
w_{4}	1	0	0

ρ_{1}	a_{1}	a_{2}	a_{3}	a_{4}
m_{100}	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$
m_{101}	0	1	0	0
$m_{\text {ex } 100}$	$\frac{1}{2}$	0	$\frac{1}{2}$	0

σ_{2}	m_{100}	m_{101}	$m_{e x 100}$
w_{1}	0	0	1
w_{2}	0	1	0
w_{3}	1	0	0
w_{4}	1	0	0

ρ_{2}	a_{1}	$w a_{2}$	a_{3}	a_{4}
m_{100}	0	0	$\frac{1}{2}$	$\frac{1}{2}$
m_{101}	0	1	0	0
$m_{\text {ex } 100}$	1	0	0	0

M-implicatures

(3) a. John stopped the car. (= STOP)
b. John made the car stop. (= MAKE-STOP)

- w_{1} : John used the foot brake.
- w_{2} : John drove the car against a wall.
- \|stop $\|=$
$\|$ MAKE-STOP $\|=$
$\left\{w_{1}, w_{2}\right\}$
- $c($ STOP $)=0$;
$c($ MAKE-STOP $=0.1$
- $p^{*}\left(w_{1}\right)=.8$;
$p^{*}\left(w_{2}\right)=.2$.

Utility matrix

	a_{1}	a_{2}
w_{1}	1	0
w_{2}	0	1

M-implicatures

IBR sequence

σ_{0}	STOP	MAKE-STOP
w_{1}	$\frac{1}{2}$	$\frac{1}{2}$
w_{2}	$\frac{1}{2}$	$\frac{1}{2}$
σ_{1}	STOP	MAKE-STOP
w_{1}	1	0
w_{2}	1	0
σ_{2}	STOP	MAKE-STOP
w_{1}	1	0
w_{2}	0	1

ρ_{0}	a_{1}	a_{2}
STOP	1	0
MAKE-STOP	1	0

ρ_{1}	a_{1}	a_{2}
STOP	1	0
MAKE-STOP	$\frac{1}{2}$	$\frac{1}{2}$

ρ_{2}	a_{1}	a_{2}
STOP	1	0
MAKE-STOP	0	1

