# Game theoretic pragmatics

### Gerhard Jäger

### gerhard.jaeger@uni-tuebingen.de

### (based on joint work with Michael Franke)

February 18, 2011

MIT





# **Overview**

### Structure of the talk

- Signaling games
- Literal meaning and rationality
- Justification of pragmatic decisions
- Examples
- Conclusion

# Signaling games

#### sequential game:

- **1** nature chooses a world w
  - $\bullet\,$  out of a pool of possible worlds W
  - ${\ensuremath{\, \bullet }}$  according to a certain probability distribution  $p^*$
- **2** nature shows w to sender **S**
- ${f 0}$  S chooses a message m out of a set of possible signals M
- S transmits m to the receiver R
- S R chooses an action *a*, based on the sent message.
- Both S and R have preferences regarding R's action, depending on w.
- S might also have preferences regarding the choice of *m* (to minimize signaling costs).

#### An example

- Sally either prefers tea (w<sub>1</sub>) or coffee (w<sub>2</sub>), with p\*(w<sub>1</sub>) = p\*(w<sub>2</sub>) = <sup>1</sup>/<sub>2</sub>.
- Robin either serves tea (a<sub>1</sub>) or coffee (a<sub>2</sub>).
- Sally can send either of two messages:
  - $m_1$ : I prefer tea.
  - $m_2$ : I prefer coffee.
- Both messages are costless.

 $\begin{array}{cccc} & a_1 & a_2 \\ \hline w_1 & 1, 1 & 0, 0 \\ w_2 & 0, 0 & 1, 1 \end{array}$ 

Table: utility matrix

### **Extensive form**



Gerhard Jäger (February 18, 2011)

Game theoretic pragmatics

MIT 5 / 64

### **Extensive form**



Gerhard Jäger (February 18, 2011)

6 / 64

### **Extensive form**



# A coordination problem

- two strict Nash equilibria
  - S always says the truth and R always believes her.
  - S always says the opposite of the truth and R interprets everything ironically.
- Both equilibria are equally rational.
- Still, first equilibrium is more reasonable because it employs exogenous meanings of messages for equilibrium selection.
- Criterion for equilibrium selection:

Always say the truth, and always believe what you are told!

• What happens if it is not always rational to be honest/credulous?

# Partially aligned interests

### Rabin's (1990) example

- In  $w_1$  and  $w_2$ , S and R have identical interests.<sup>a</sup>
- In  $w_3$ , S would prefer R to believe in  $w_2$ .
- The propositions  $\{w_1\}$  and  $\{w_2, w_3\}$  are *credible*.
- The propositions  $\{w_2\}$  and  $\{w_3\}$  are *not credible*.

<sup>a</sup>Unless mentioned otherwise, I always assume a uniform distribution  $p^*$  over W.

|       | $a_1$  | $a_2$  | $a_3$ |
|-------|--------|--------|-------|
| $w_1$ | 10, 10 | 0, 0   | 0, 0  |
| $w_2$ | 0, 0   | 10, 10 | 5,7   |
| $w_3$ | 0, 0   | 10, 0  | 5,7   |

**Table:** Partially aligned interests

# Partially aligned interests

### Rabin's (1990) example

- Suppose there are three messages:
  - $m_1$ : We are in  $w_1$ .
  - $m_2$ : We are in  $w_2$ .
  - *m*<sub>3</sub>: We are in *w*<sub>3</sub>.
- reasonable S will send  $m_1$  if and only if  $w_1$
- reasonable R will react to  $m_1$  with  $a_1$
- nothing else can be inferred

|       | $a_1$  | $a_2$  | $a_3$ |
|-------|--------|--------|-------|
| $w_1$ | 10, 10 | 0, 0   | 0, 0  |
| $w_2$ | 0, 0   | 10, 10 | 5,7   |
| $w_3$ | 0, 0   | 10, 0  | 5,7   |

Table: Partially aligned interests

MIT 10 / 64

### Always say the truth, and always believe what you are told, unless you have reasons to do otherwise!

But what does this mean?

# Justification and best responses

### Jusification of decisions

- decisions must be justifiable
- two kinds of justification:
  - I use/interpret a message the way I do because:
    - this is what the literal meaning of the message dictates, or
    - because this is the best I can do, given my justifiable belief about the decisions of the other player.

# Justification and best responses

#### Sally's belief states

- (first order) belief of the sender:
  - $\bullet\,$  function  $\rho$  from messages to probability distribution of actions
  - $\rho(a|m) {:}\ {\rm S}{\,}{\rm s}{\rm subjective}$  probability that R performs action a if S sends message m

## Justification and best responses

### Robin's belief states

- (first order) belief of the receiver has two components:
  - $\bullet\,$  function  $\sigma$  from worlds to probability distributions over messages
  - $\sigma(m|w):$  R's subjective probability that S sends messages m if she is in world w
  - $\bullet\,$  function  $\sigma^*$  from messages to probability distributions over worlds
  - $\sigma^*(w|m) {:}$  R's posterior probability that w is the case after observing message m
  - $\sigma$  and  $\sigma^*$  are connected via **Bayes' Rule**

$$\sigma^*(w|m) = \frac{\sigma(m|w)p^*(w)}{\sum_{w'} \sigma(m|w')p^*(w')}$$

| U | tility | matrix |        |       |  |
|---|--------|--------|--------|-------|--|
|   |        |        |        |       |  |
|   |        | $a_1$  | $a_2$  | $a_3$ |  |
|   | $w_1$  | 10, 10 | 0, 0   | 0, 0  |  |
|   | $w_2$  | 0,0    | 10, 10 | 5,7   |  |
|   | $w_3$  | 0, 0   | 10, 0  | 5,7   |  |

literal meanings

$$||m_1|| = \{w_1\} ||m_2|| = \{w_2\} ||m_3|| = \{w_3\}$$

#### The Honest Sender

- Suppose (Robin supposes that) Sally is simply honest, and non-deliberating.
- This means she sends a true message in each world.
- No further criteria about message selection are known.
- Best model σ<sub>0</sub> of such a sender is the one that is consistent with the assumptions and maximizes entropy.
- This means that in each world w,  $\sigma_0(\cdot|w)$  is a uniform distribution:

$$\sigma_0(m|w) = \begin{cases} \frac{1}{|\{m|w\models m\}|} & \text{if } w \models m, \\ 0 & \text{else.} \end{cases}$$

Can be represented in a matrix with worlds as rows and messages as columns.

| $\sigma_0$ | $m_1$ | $m_2$ | $m_3$ |
|------------|-------|-------|-------|
| $w_1$      | 1     | 0     | 0     |
| $w_2$      | 0     | 1     | 0     |
| $w_3$      | 0     | 0     | 1     |

This is justifiable by the literal meaning of the messages.

### Bayesian reasoning

- Robin assumes  $\sigma_0$ .
- He actually needs σ<sub>0</sub><sup>\*</sup> (posterior probablities of worlds given messages)
- $\sigma_0^*(\cdot|m)$ :
  - take column m in  $\sigma_0$
  - multiply each entry with corresponding value of  $p^*$
  - normalize the column: divide it by its sum, such that it becomes a probability distribution
  - if *m* is a zero-column (i.e. *m* is a surprise message): assume uniform distribution over ||m||
  - $\bullet\,$  result is the row in  $\sigma^*$

| $\sigma_0^*$ | $w_1$ | $w_2$ | $w_3$ |
|--------------|-------|-------|-------|
| $m_1$        | 1     | 0     | 0     |
| $m_2$        | 0     | 1     | 0     |
| $m_3$        | 0     | 0     | 1     |

### Expected utility

- $\bullet\,$  Robin's utility depends on w and a
- $\sigma_0^*$  gives him a probability distribution over W
- this enables him to assess the exected utility for each action, conditional on each message:

$$EU(a|m) = \sum_{w} \sigma_0^*(w|m)u_r(w,a)$$

comes down to matrix multiplication:

$$EU_r = \sigma_0^* \cdot u_r$$

$$EU_r = \sigma_0^* \cdot u_r$$

$$= \begin{pmatrix} \frac{\sigma_0^* & w_1 & w_2 & w_3}{m_1 & 1 & 0 & 0} \\ m_2 & 0 & 1 & 0 \\ m_3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{a_1 & a_2 & a_3}{w_1 & 10 & 0 & 0} \\ w_2 & 0 & 10 & 7 \\ w_3 & 0 & 0 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a_1 & a_2 & a_3}{m_1 & 10 & 0 & 0} \\ m_2 & 0 & 10 & 7 \\ m_3 & 0 & 0 & 7 \end{pmatrix}$$

#### Best response

- If Robin is rational he will maximize his expected utility after each message
- If he believs in  $\sigma_0$ , he will for each message m pick an action that is maximal within  $m{\rm 's}$  row in  $EU_r$
- If Sally assumes that this is how Robin thinks, and if she has no further information, her model  $\rho_0$  of Robin's behavior will the conditional probability distribution that is consistent with these assumptions and maximizes entropy
- Hence:  $\rho_0$  puts equal probability on each action that maximizes  $EU_r$ , and 0 probability elsewhere
- $\rho_0$  is the **best response** to  $\sigma_0$ :

$$\rho_0 = BR_r(\sigma_0)$$

| Expe | cted             | utili | ty    |                |   |
|------|------------------|-------|-------|----------------|---|
|      |                  | $a_1$ | $a_2$ | $a_3$          |   |
|      | $\overline{m_1}$ | 10    | 0     | 0              | : |
|      | $m_2$            | 0     | 10    | $\overline{7}$ |   |
|      | $m_3$            | 0     | 0     | 7              |   |

| Best response |                  |       |       |       |  |  |  |
|---------------|------------------|-------|-------|-------|--|--|--|
|               | $ ho_0$          | $a_1$ | $a_2$ | $a_3$ |  |  |  |
|               | $\overline{m_1}$ | 1     | 0     | 0     |  |  |  |
|               | $m_2$            | 0     | 1     | 0     |  |  |  |
|               | $m_3$            | 0     | 0     | 1     |  |  |  |

#### **Iterated Best Response**

- Suppose Sally believes that Robin plays according to  $\rho_0$ .
- Then Sally (if she is rational) will play the best response  $\sigma_1 = BR_s(\rho_0)$  to  $\rho_0$ .
- Calculation goes as follows:
  - Sally's Expected Utility:

$$EU_s(m|w) = \sum_{a} \rho_0(a|m)u_s(w,a)$$

boils down to matrix multiplication:

$$EU_s = u_s \cdot \rho_0^T$$

•  $\sigma_1$  places row-wise equal probability on each row-maximal value in  $EU_s$ , and 0 elsewhere

$$EU_{s} = u_{s} \cdot \rho_{0}^{T}$$

$$= \begin{pmatrix} \frac{a_{1} & a_{2} & a_{3}}{w_{1} & 10 & 0 & 0} \\ w_{2} & 0 & 10 & 5 \\ w_{3} & 0 & 10 & 5 \end{pmatrix} \cdot \begin{pmatrix} \frac{\rho_{0} & a_{1} & a_{2} & a_{3}}{m_{1} & 1 & 0 & 0} \\ m_{2} & 0 & 1 & 0 \\ m_{3} & 0 & 0 & 1 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} \frac{m_{1} & m_{2} & m_{3}}{w_{1} & 10 & 0 & 0} \\ w_{2} & 0 & 10 & 5 \\ w_{3} & 0 & 10 & 5 \end{pmatrix}$$

$$BR(\rho_{0}) = \begin{pmatrix} \frac{\sigma_{1} & m_{1} & m_{2} & m_{3}}{w_{1} & 1 & 0 & 0} \\ w_{2} & 0 & 1 & 0 \\ w_{3} & 0 & 1 & 0 \end{pmatrix}$$

Gerhard Jäger (February 18, 2011)

Game theoretic pragmatics

#### **Iterated Best Response**

- If Robin anticipates this, he will play according to  $\rho_1 = BR_r(\sigma_1)$ .
- Computation is exactly as for  $\rho_0$ , but using  $\sigma_1$  instead of  $\sigma_0$ .
- As the third column of  $\sigma_1$  only contains 0s, the principle TRUTH CETERIS PARIBUS

applies: assume a uniform distribution over  $||m_3||$  in  $\sigma_1^*$ .

$$\sigma_1^* = \frac{\begin{array}{cccc} w_1 & w_2 & w_3 \\ \hline m_1 & 1 & 0 & 0 \\ m_2 & 0 & \frac{1}{2} & \frac{1}{2} \\ m_3 & 0 & 0 & 1 \end{array}$$

$$EU_r = \sigma_1^* \cdot u_r$$

$$= \begin{pmatrix} \frac{\sigma_1^* & w_1 & w_2 & w_3}{m_1 & 1 & 0 & 0} \\ m_2 & 0 & \frac{1}{2} & \frac{1}{2} \\ m_3 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \frac{a_1 & a_2 & a_3}{w_1 & 10 & 0 & 0} \\ w_2 & 0 & 10 & 7 \\ w_3 & 0 & 0 & 7 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a_1 & a_2 & a_3}{m_1 & 10 & 0 & 0} \\ m_2 & 0 & 5 & 7 \\ m_3 & 0 & 0 & 7 \end{pmatrix}$$

$$BR_r(\sigma_1) = \begin{pmatrix} \frac{\rho_1 & a_1 & a_2 & a_3}{m_1 & 1 & 0 & 0} \\ m_2 & 0 & 0 & 1 \\ m_3 & 0 & 0 & 1 \end{pmatrix}$$

Gerhard Jäger (February 18, 2011)

### **Iterated Best Response**

- This procedure can be iterated indefinitely.
- General pattern:

$$\rho_n = BR_r(\sigma_n)$$
  
$$\sigma_{n+1} = BR_s(\rho_n)$$

$$EU_{s} = u_{s} \cdot \rho_{1}^{T}$$

$$= \begin{pmatrix} \frac{a_{1} & a_{2} & a_{3}}{w_{1} & 10 & 0 & 0} \\ w_{2} & 0 & 10 & 5 \\ w_{3} & 0 & 10 & 5 \end{pmatrix} \cdot \begin{pmatrix} \frac{\rho_{1} & a_{1} & a_{2} & a_{3}}{m_{1} & 1 & 0 & 0} \\ m_{2} & 0 & 0 & 1 \\ m_{3} & 0 & 0 & 1 \end{pmatrix}^{T}$$

$$= \begin{pmatrix} \frac{m_{1} & m_{2} & m_{3}}{w_{1} & 10 & 0 & 0} \\ w_{2} & 0 & 5 & 5 \\ w_{3} & 0 & 5 & 5 \end{pmatrix}$$

$$BR(\rho_{1}) = \begin{pmatrix} \frac{\sigma_{2} & m_{1} & m_{2} & m_{3}}{w_{1} & 1 & 0 & 0} \\ \frac{\sigma_{2} & 0 & \frac{1}{2} & \frac{1}{2}}{w_{3} & 0 & \frac{1}{2} & \frac{1}{2}} \end{pmatrix}$$

Gerhard Jäger (February 18, 2011)

$$EU_r = \sigma_2^* \cdot u_r$$

$$= \begin{pmatrix} \frac{\sigma_2^* \cdot w_1 \cdot w_2 \cdot w_3}{m_1 \cdot 1 \cdot 0 \cdot 0} \\ m_2 \cdot 0 & \frac{1}{2} & \frac{1}{2} \\ m_3 \cdot 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{a_1 \cdot a_2 \cdot a_3}{w_1 \cdot 10 \cdot 0 \cdot 0} \\ w_2 \cdot 0 \cdot 10 \cdot 7 \\ w_3 \cdot 0 & 0 \cdot 7 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{a_1 \cdot a_2 \cdot a_3}{m_1 \cdot 10 \cdot 0 \cdot 0} \\ m_2 \cdot 0 \cdot 5 \cdot 7 \\ m_3 \cdot 0 \cdot 5 \cdot 7 \end{pmatrix}$$

$$BR_r(\sigma_2) = \begin{pmatrix} \frac{\rho_2 \cdot a_1 \cdot a_2 \cdot a_3}{m_1 \cdot 1 \cdot 0 \cdot 0} \\ m_2 \cdot 0 \cdot 0 \cdot 1 \\ m_3 \cdot 0 \cdot 0 \cdot 1 \end{pmatrix}$$

Gerhard Jäger (February 18, 2011)

#### Fixed point of IBR sequence

- $\rho_2 = \rho_1$
- Hence for all n > 2:

 $\sigma_n = \sigma_2$  $\rho_n = \rho_2$ 

- $(\sigma_2, \rho_1)$  is a fixed point for best response calculation
- If Sally and Robin only consider justifiable strategies and are both sufficiently sophisticated — and these facts are common knowledge — they will play according to these fixed point strategies

### IBR sequence for Rabin's example

| $\sigma_0$ | $m_1$ | $m_2$                             | $m_3$                             | _ | $ ho_0$  | $a_1$ | $a_2$ | $a_{z}$ |
|------------|-------|-----------------------------------|-----------------------------------|---|----------|-------|-------|---------|
| $w_1$      | 1     | 0                                 | 0                                 |   | $m_1$    | 1     | 0     | 0       |
| $w_2$      | 0     | 1                                 | 0                                 |   | $m_2$    | 0     | 1     | 0       |
| $w_3$      | 0     | 0                                 | 1                                 |   | $m_3$    | 0     | 0     | 1       |
| $\sigma_1$ | $m_1$ | $m_2$                             | $m_3$                             |   | $\rho_2$ | $a_1$ | $a_2$ | $a_{z}$ |
| $w_1$      | 1     | 0                                 | 0                                 |   | $m_1$    | 1     | 0     | 0       |
| $w_2$      | 0     | 1                                 | 0                                 |   | $m_2$    | 0     | 0     | 1       |
| $w_3$      | 0     | 1                                 | 0                                 |   | $m_3$    | 0     | 0     | 1       |
|            |       |                                   |                                   |   |          |       |       |         |
| $\sigma_2$ | $m_1$ | $m_2$                             | $m_3$                             |   | $\rho_1$ | $a_1$ | $a_2$ | $a_{z}$ |
| $w_1$      | 1     | 0                                 | 0                                 |   | $m_1$    | 1     | 0     | 0       |
| $w_2$      | 0     | $\frac{1}{2}$                     | $\frac{1}{2}$                     |   | $m_2$    | 0     | 0     | 1       |
| $w_3$      | 0     | $\frac{\frac{1}{2}}{\frac{1}{2}}$ | $\frac{\frac{1}{2}}{\frac{1}{2}}$ |   | $m_3$    | 0     | 0     | 1       |

 $F = (\sigma_2, \rho_1)$ 

- How does this relate to linguistic examples?
- There is a quasi-algorithmic procedure (due to Franke 2009) how to construct a game from an example sentence.

### What is given?

- example sentence
- set of expression alternatives
- jointly form set of messages
- question under discussion QUD
- set of complete answers to QUD is the set of possible worlds

### What do we need?

- interpretation function  $\|\cdot\|$
- prior probability distribution  $p^*$
- set of actions
- utility functions

### QUD

- often QUD is not given explicitly
- procedure to construct QUD from expression *m* and its alternatives ALT(m):
  - Let ct be the context of utterances, i.e. the maximal set of statements that is common knowledge between Sally and Robin.
  - any subset w of  $ALT(m) \cup \{\neg m' | m' \in ALT(m)\}$  is a possible world iff
    - w and ct are consistent, i.e.  $w \cup ct \not\vdash \bot$
    - for any set  $X:w\subset X\subseteq ALT(m)\cup\{\neg m'|m'\in ALT(m)\},\,ct\cup X$  is inconsistent

Game construction

• interpretation function:

$$||m'|| = \{w|w \vdash m\}$$

- $p^*$  is uniform distribution over W
- justified by principle of insufficient reason
- $\bullet\,$  set of actions is W
- intuitive idea: Robin's task is to figure out which world Sally is in
- utility functions:

$$u_{s/r}(w,a) = \begin{cases} 1 & \text{iff } w = a \\ 0 & \text{else} \end{cases}$$

both players want Robin to succeed

# **Example: Quantity implicatures**

- (1) a. Who came to the party?
  - **b.** SOME: Some boys came to the party.
  - **c.** NO: No boys came to the party.
  - **d.** ALL: All boys came to the party.

### Game construction

- $\bullet \ ct = \emptyset$
- $W = \{w_{\neg \exists}, w_{\exists \neg \forall}, w_{\forall}\}$
- $w_{\neg\exists} = \{\text{NO}\}, w_{\exists \neg\forall} = \{\text{SOME}\}, w_{\forall} = \{\text{SOME}, \text{ALL}\}$
- $p^* = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

• interpretation function:

 $\begin{aligned} \|\text{SOME}\| &= \{w_{\exists \neg \forall}, w_{\forall}\} \\ \|\text{NO}\| &= \{w_{\neg \exists}\} \\ \|\text{ALL}\| &= \{w_{\forall}\} \end{aligned}$ 

• utilities:

- utility functions are identity matrices
- therefore the step *multiply with utility matrix* can be omitted in best response computation
- also, restriction to uniform priors makes simplifies computation of posterior distribution
- simplified IBR computation:

### Interpretation games

#### Sally

- $\textbf{0} \quad \mathsf{flip} \ \rho \ \mathsf{along} \ \mathsf{diagonal}$
- I place a 0 in each cell that is non-maximal within its row
- Inormalize each row

#### Robin

- $\textbf{0} \ \text{flip} \ \sigma \ \text{along} \ \text{diagonal}$
- If a row contains only 0s, fill in a 1 in each cell corresponding to a true world-message association
- I place a 0 in each cell that is non-maximal within its row
- Inormalize each row

### **Example: Quantity implicatures**

| $\sigma_0$                         | NO           | SOME          | ALL           | $ ho_0$             | $w_{\neg \exists}$          | $w_{\exists \neg \forall}$           | $w_{\forall}$           |
|------------------------------------|--------------|---------------|---------------|---------------------|-----------------------------|--------------------------------------|-------------------------|
| $w_{\neg\exists}$                  | 1            | 0             | 0             | NO                  | 1                           | 0                                    | 0                       |
| $w_{\exists\neg\forall}$           | 0            | 1             | 0             | SOME                | 0                           | 1                                    | 0                       |
| $w_{\forall}$                      | 0            | $\frac{1}{2}$ | $\frac{1}{2}$ | ALL                 | 0                           | 0                                    | 1                       |
|                                    |              |               |               |                     |                             |                                      |                         |
| $\sigma_1$                         | NO           | SOME          | ALL           | $\rho_1$            | $w_{\neg\exists}$           | $w_{\exists\neg\forall}$             | $w_{\forall}$           |
| $\frac{\sigma_1}{w_{\neg\exists}}$ | NO<br>1      | SOME 0        | ALL           | $\frac{\rho_1}{NO}$ | $\frac{w_{\neg\exists}}{1}$ | $\frac{w_{\exists \neg \forall}}{0}$ | $\frac{w_{\forall}}{0}$ |
|                                    | NO<br>1<br>0 |               |               |                     | 1                           |                                      | <u> </u>                |

 $F = (\rho_0, \sigma_1)$ 

In the fixed point, SOME is interpreted as entailing  $\neg$ ALL, i.e. exhaustively.

- So far, it is hard-wired in the model that Sally has complete knowledge (or, rather, complete belief — whether or not she is right is inessential for IBR) about the world she is in.
- corresponds to strong version of competence assumption
- Sometimes this assumption is too strong:

# a. Ann or Bert showed up. (= OR) b. Ann showed up. (= A)

- **c.** Bert showed up. (= B)
- **d.** Ann and Bert showed up. (= AND)

- $w_a$ : Only Ann showed up.
- $w_b$ : Only Bert showed up.
- $w_{ab}$ : Both showed up.

| Utili | ty ma    | trix  |       |          |  |
|-------|----------|-------|-------|----------|--|
|       |          | $a_a$ | $a_b$ | $a_{ab}$ |  |
|       | $w_a$    | 1     | 0     | 0        |  |
|       | $w_b$    | 0     | 1     | 0        |  |
|       | $w_{ab}$ | 0     | 0     | 1        |  |

#### **IBR** sequence

|                      | 0.0           |               | Б             |               |   | $ ho_0$     | $w_a$                     | $w_b$                     | $w_{ab}$                     |
|----------------------|---------------|---------------|---------------|---------------|---|-------------|---------------------------|---------------------------|------------------------------|
|                      | OR            | A             | В             | AND           |   |             | 1                         | 1                         | 0                            |
| $v_a$                | $\frac{1}{2}$ | $\frac{1}{2}$ | 0             | 0             |   | OR          | $\frac{1}{2}$             | $\frac{1}{2}$             | 0                            |
|                      |               | -             |               |               |   | А           | 1                         | 0                         | 0                            |
| $v_b$                | $\frac{1}{2}$ | 0             | $\frac{1}{2}$ | 0             |   | В           | 0                         | 1                         | 0                            |
| $v_{ab}$             | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |   | Б           | 0                         |                           | -                            |
|                      | т             | т             | т             | -             |   | AND         | 0                         | 0                         | 1                            |
|                      |               |               |               |               |   |             |                           |                           |                              |
|                      |               |               |               |               |   | $\rho_1$    | $w_a$                     | $w_b$                     | $w_{ab}$                     |
| $\tau_1$             | OR            | А             | В             | AND           | : | $\rho_1$    |                           |                           |                              |
| -                    |               |               |               |               | : | $\rho_1$ OR | $\frac{w_a}{\frac{1}{3}}$ | $\frac{w_b}{\frac{1}{3}}$ | $\frac{w_{ab}}{\frac{1}{3}}$ |
| $v_1$                |               | A<br>1        |               | AND<br>0      | : | OR          | $\frac{1}{3}$             | $\frac{1}{3}$             | $\frac{1}{3}$                |
| -                    |               | 1             |               |               | : | OR<br>A     | $\frac{1}{3}$ 1           | $\frac{1}{3}$ 0           | $\frac{1}{3}$ 0              |
| V <sub>a</sub><br>Vb | 0<br>0        | 1<br>0        | 0<br>1        | 0<br>0        | : | OR          | $\frac{1}{3}$             | $\frac{1}{3}$             | $\frac{1}{3}$                |
| $v_a$                | 0             | 1<br>0        | 0             | 0             | : | OR<br>A     | $\frac{1}{3}$ 1           | $\frac{1}{3}$ 0           | $\frac{1}{3}$ 0              |

 $\operatorname{OR}$  comes out as a message that would never be used!

Gerhard Jäger (February 18, 2011)

#### Game theoretic pragmatics

- full competence assumption is arguably too strong
- weaker assumption (Franke 2009):
  - Sally's information states are partial answers to QUD, ie. sets of possible worlds
  - Robin's task is to figure out which information state Sally is in.
  - *ceteris paribus*, Robin receives slightly higher utility for smaller (more informative) states

#### Costs

- Preferences that are independent from correct information transmission are captured via cost functions for sender and receiver.
- For the sender this might be, *inter alia*, a preference for simpler expressions.
- For the receiver, the *Strongest Meaning Hypothesis* is a good candiate.

Gerhard Jäger (February 18, 2011)

#### Formally

- cost functions  $c_s, c_r: c_s: (POW(W) \{\emptyset\}) \times M \mapsto \mathbb{R}^+$
- costs are nominal:

$$0 \le c_s(i,m), c_r(i,m) < \min(\frac{1}{|POW(W) - \emptyset|^2}, \frac{1}{|ALT(m)|^2})$$

- guarantees that cost considerations never get in the way of information transmission considerations
- new utility functions:

$$\begin{aligned} u_s(i,m,a) &= -c_s(i,m) + \begin{cases} 1 & \text{if } i = a, \\ 0 & \text{else}, \end{cases} \\ u_r(i,m,a) &= -c_r(a,m) + \begin{cases} 1 & \text{if } i = a, \\ 0 & \text{else}. \end{cases} \end{aligned}$$

Gerhard Jäger (February 18, 2011)

Game theoretic pragmatics

### **Modified IBR procecure**

#### Sally

- flip  $\rho$  along the diagonal
- subtract  $c_s$
- place a 0 in each cell that is non-maximal within its row
- normalize each row

#### Robin

- flip  $\sigma$  along diagonal
- if a row contains only 0s,
  - fill in a 1 in each cell corresponding to a true world-message association
- else
  - subtract  $\boldsymbol{c}_r^T$
- place a 0 in each cell that is non-maximal within its row
- normalize each row

### The Strongest Meaning Hypothesis

- if in doubt, Robin will assume that Sally is competent
- captured in following cost function:

$$c_r(a,m) = \frac{|a|}{\max(|M|, 2^{|W|})^2}$$

$$c_r(\{w_a\}, \cdot) = \frac{1}{49} \qquad c_r(\{w_a, w_{ab}\}, \cdot) = \frac{2}{49}$$

$$c_r(\{w_b\}, \cdot) = \frac{1}{49} \qquad c_r(\{w_b, w_{ab}\}, \cdot) = \frac{2}{49}$$

$$c_r(\{w_{ab}\}, \cdot) = \frac{1}{49} \qquad c_r(\{w_a, w_b, w_{ab}\}, \cdot) = \frac{3}{49}$$

$$c_r(\{w_a, w_b\}, \cdot) = \frac{2}{49}$$

| IBR sequence: 1        |               |               |               |               |
|------------------------|---------------|---------------|---------------|---------------|
| $\sigma_0$             | OR            | А             | В             | AND           |
| $\{w_a\}$              | $\frac{1}{2}$ | $\frac{1}{2}$ | 0             | 0             |
| $\{w_b\}$              | $\frac{1}{2}$ | 0             | $\frac{1}{2}$ | 0             |
| $\{w_{ab}\}$           | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ | $\frac{1}{4}$ |
| $\{w_a, w_b\}$         | 1             | 0             | 0             | 0             |
| $\{w_a, w_{ab}\}$      | $\frac{1}{2}$ | $\frac{1}{2}$ | 0             | 0             |
| $\{w_b, w_{ab}\}$      | $\frac{1}{2}$ | 0             | $\frac{1}{2}$ | 0             |
| $\{w_a, w_b, w_{ab}\}$ | } 1           | 0             | 0             | 0             |

| IBR | sequ                                                                                                                 | ence: fli | pping a | nd subt | racting co | sts   |       |       |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|------------|-------|-------|-------|--|--|--|--|--|
|     | $ \rho_0 \qquad \{w_a\}  \{w_b\}  \{w_{ab}\}  \{w_a, w_b\}  \{w_a, w_{ab}\}  \{w_b, w_{ab}\}  \{w_a, w_b, w_{ab}\} $ |           |         |         |            |       |       |       |  |  |  |  |  |
|     | OR                                                                                                                   | 0.48      | 0.48    | 0.23    | 0.96       | 0.46  | 0.46  | 0.94  |  |  |  |  |  |
|     | А                                                                                                                    | 0.48      | -0.02   | 0.23    | -0.04      | 0.46  | -0.04 | -0.06 |  |  |  |  |  |
|     | В                                                                                                                    | -0.02     | 0.48    | 0.23    | -0.04      | -0.04 | 0.46  | -0.06 |  |  |  |  |  |
|     | AND                                                                                                                  | -0.02     | -0.02   | 0.23    | -0.04      | -0.04 | -0.04 | -0.06 |  |  |  |  |  |

| IBR | seque    | nce: 2    |           |              |                |                   |                   |                        |
|-----|----------|-----------|-----------|--------------|----------------|-------------------|-------------------|------------------------|
|     | $\rho_0$ | $\{w_a\}$ | $\{w_b\}$ | $\{w_{ab}\}$ | $\{w_a, w_b\}$ | $\{w_a, w_{ab}\}$ | $\{w_b, w_{ab}\}$ | $\{w_a, w_b, w_{ab}\}$ |
|     | OR       | 0         | 0         | 0            | 1              | 0                 | 0                 | 0                      |
|     | А        | 1         | 0         | 0            | 0              | 0                 | 0                 | 0                      |
|     | В        | 0         | 1         | 0            | 0              | 0                 | 0                 | 0                      |
|     | AND      | 0         | 0         | 1            | 0              | 0                 | 0                 | 0                      |

| IBR sequence: 3        |               |               |               |     |
|------------------------|---------------|---------------|---------------|-----|
| $\sigma_1$             | OR            | А             | В             | AND |
| $\{w_a\}$              | 0             | 1             | 0             | 0   |
| $\{w_b\}$              | 0             | 0             | 1             | 0   |
| $\{w_{ab}\}$           | 0             | 0             | 0             | 1   |
| $\{w_a, w_b\}$         | 1             | 0             | 0             | 0   |
| $\{w_a, w_{ab}\}$      | $\frac{1}{2}$ | $\frac{1}{2}$ | 0             | 0   |
| $\{w_b, w_{ab}\}$      | $\frac{1}{2}$ | 0             | $\frac{1}{2}$ | 0   |
| $\{w_a, w_b, w_{ab}\}$ | 1             | 0             | 0             | 0   |

- OR is only used in  $\{w_a, w_b\}$  in the fixed point
- this means that it carries two implicatures:
  - exhaustivity: Ann and Bert did not both show up
  - ignorance: Sally does not know which one of the two disjuncts is true

### Sender costs

**a.** Ann or Bert or both showed up. (= AB-OR)

- **b.** Ann showed up. (= A)
- **c.** Bert showed up. (= B)
- **d.** Ann and Bert showed up. (= AND)
- e. Ann or Bert showed up. (= OR)
- **f.** Ann or both showed up. (= A-OR)
- g. Bert or both showed up. (= B-OR)
- Message (e) is arguably more efficient for Sally than (a)
- Let us say that  $c_s(\cdot, AB-OR) = \frac{1}{50}, c_s(\cdot, A-OR) = c_s(\cdot, B-OR) = \frac{1}{75}, c_s(\cdot, OR) = c_s(\cdot, AND) = \frac{1}{100}$ , and  $c_s(\cdot, A) = c_s(\cdot, B) = 0$ .

#### **IBR** sequence: 1

| $\sigma_0$             | AB-OR         | Α             | в             | AND           | OR            | A-OR          | B-OR          |  |
|------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| $\{w_a\}$              | $\frac{1}{4}$ | $\frac{1}{4}$ | 0             | 0             | $\frac{1}{4}$ | $\frac{1}{4}$ | 0             |  |
| $\{w_b\}$              | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ |  |
| $\{w_{ab}\}$           | $\frac{1}{7}$ |  |
| $\{w_a, w_b\}$         | $\frac{1}{2}$ | 0             | 0             | 0             | $\frac{1}{2}$ | 0             | 0             |  |
| $\{w_a, w_{ab}\}$      | $\frac{1}{4}$ | $\frac{1}{4}$ | 0             | 0             | $\frac{1}{4}$ | $\frac{1}{4}$ | 0             |  |
| $\{w_b, w_{ab}\}$      | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ | 0             | $\frac{1}{4}$ |  |
| $\{w_a, w_b, w_{ab}\}$ | $\frac{1}{2}$ | 0             | 0             | 0             | $\frac{1}{2}$ | 0             | 0             |  |

| R sequence: 1 |           |           |              |                |                   |                   |                        |  |  |  |  |  |
|---------------|-----------|-----------|--------------|----------------|-------------------|-------------------|------------------------|--|--|--|--|--|
| $\rho_0$      | $\{w_a\}$ | $\{w_b\}$ | $\{w_{ab}\}$ | $\{w_a, w_b\}$ | $\{w_a, w_{ab}\}$ | $\{w_b, w_{ab}\}$ | $\{w_a, w_b, w_{ab}\}$ |  |  |  |  |  |
| AB-OR         | 0         | 0         | 0            | 1              | 0                 | 0                 | 0                      |  |  |  |  |  |
| А             | 1         | 0         | 0            | 0              | 0                 | 0                 | 0                      |  |  |  |  |  |
| В             | 0         | 1         | 0            | 0              | 0                 | 0                 | 0                      |  |  |  |  |  |
| AND           | 0         | 0         | 1            | 0              | 0                 | 0                 | 0                      |  |  |  |  |  |
| OR            | 0         | 0         | 0            | 1              | 0                 | 0                 | 0                      |  |  |  |  |  |
| A-OR          | 1         | 0         | 0            | 0              | 0                 | 0                 | 0                      |  |  |  |  |  |
| B-OR          | 0         | 1         | 0            | 0              | 0                 | 0                 | 0                      |  |  |  |  |  |

#### IBR sequence: 2

| $\sigma_1$             | AB-OR | Α | В | AND | OR | A-OR | B-OR |
|------------------------|-------|---|---|-----|----|------|------|
| $\{w_a\}$              | 0     | 1 | 0 | 0   | 0  | 0    | 0    |
| $\{w_b\}$              | 0     | 0 | 1 | 0   | 0  | 0    | 0    |
| $\{w_{ab}\}$           | 0     | 0 | 0 | 1   | 0  | 0    | 0    |
| $\{w_a, w_b\}$         | 0     | 0 | 0 | 0   | 1  | 0    | 0    |
| $\{w_a, w_{ab}\}$      | 0     | 1 | 0 | 0   | 0  | 0    | 0    |
| $\{w_b, w_{ab}\}$      | 0     | 0 | 1 | 0   | 0  | 0    | 0    |
| $\{w_a, w_b, w_{ab}\}$ | 0     | 0 | 0 | 0   | 1  | 0    | 0    |

| IBR sequence | e: 2          |               |               |                |                   |                   |                        |
|--------------|---------------|---------------|---------------|----------------|-------------------|-------------------|------------------------|
| $\rho_1$     | $\{w_a\}$     | $\{w_b\}$     | $\{w_{ab}\}$  | $\{w_a, w_b\}$ | $\{w_a, w_{ab}\}$ | $\{w_b, w_{ab}\}$ | $\{w_a, w_b, w_{ab}\}$ |
| ORBOTH       | $\frac{1}{7}$ | $\frac{1}{7}$ | $\frac{1}{7}$ | $\frac{1}{7}$  | $\frac{1}{7}$     | $\frac{1}{7}$     | $\frac{1}{7}$          |
| А            | 1             | 0             | 0             | 0              | 0                 | 0                 | 0                      |
| В            | 0             | 1             | 0             | 0              | 0                 | 0                 | 0                      |
| AND          | 0             | 0             | 1             | 0              | 0                 | 0                 | 0                      |
| OR           | 0             | 0             | 0             | 1              | 0                 | 0                 | 0                      |
| A-OR         | $\frac{1}{3}$ | 0             | $\frac{1}{3}$ | 0              | $\frac{1}{3}$     | 0                 | 0                      |
| B-OR         | 0             | $\frac{1}{3}$ | $\frac{1}{3}$ | 0              | 0                 | $\frac{1}{3}$     | 0                      |

#### IBR sequence: 3

| $\sigma_2$             | AB-OR | А | в | AND | OR | A-OR | B-OR |
|------------------------|-------|---|---|-----|----|------|------|
| $\{w_a\}$              | 0     | 1 | 0 | 0   | 0  | 0    | 0    |
| $\{w_b\}$              | 0     | 0 | 1 | 0   | 0  | 0    | 0    |
| $\{w_{ab}\}$           | 0     | 0 | 0 | 1   | 0  | 0    | 0    |
| $\{w_a, w_b\}$         | 0     | 0 | 0 | 0   | 1  | 0    | 0    |
| $\{w_a, w_{ab}\}$      | 0     | 0 | 0 | 0   | 0  | 1    | 0    |
| $\{w_b, w_{ab}\}$      | 0     | 0 | 0 | 0   | 0  | 0    | 1    |
| $\{w_a, w_b, w_{ab}\}$ | 1     | 0 | 0 | 0   | 0  | 0    | 0    |

| BR sequence: 3 |                                              |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                        |                                                        |
|----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| $\{w_a\}$      | $\{w_b\}$                                    | $\{w_{ab}\}$                                                                                                    | $\{w_a, w_b\}$                                                                                                                                                                                                                                                                                                                                                         | $\{w_a, w_{ab}\}$                                      | $\{w_b, w_{ab}\}$                                      | $\{w_a, w_b, w_{ab}\}$                                 |
| 0              | 0                                            | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 0                                                      | 1                                                      |
| 1              | 0                                            | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 0                                                      | 0                                                      |
| 0              | 1                                            | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 0                                                      | 0                                                      |
| 0              | 0                                            | 1                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 0                                                      | 0                                                      |
| 0              | 0                                            | 0                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 0                                                      | 0                                                      |
| 0              | 0                                            | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 1                                                      | 0                                                      | 0                                                      |
| 0              | 0                                            | 0                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                      | 0                                                      | 1                                                      | 0                                                      |
|                | $\{w_a\}$<br>0<br>1<br>0<br>0<br>0<br>0<br>0 | {wa}     {wb}       0     0       1     0       0     1       0     0       0     0       0     0       0     0 | {w <sub>a</sub> }         {w <sub>b</sub> }         {w <sub>ab</sub> }           0         0         0           1         0         0           0         1         0           0         0         1           0         0         1           0         0         1           0         0         0           0         0         0           0         0         0 | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

### Conclusion

- IBR model formalizes neo-Gricean program
- Principle of cooperativity: identical preferences of sender and receiver
- Quality: Honesty is default strategy
- Quantity, Relevance: captured in utility function
- Manner: captured in cost function
- further applications
  - free choice implicatures
  - conditional perfection
  - I-implicatures, M-implicatures
  - pragmatics of measure terms
- next project: presuppositions

### **I-implicatures**

- (2) a. John opened the door. (= OPEN)
  - **b.** John opened the door using the handle. (= OPEN-H)
  - c. John opened the door with an axe. (= OPEN-A)

#### formally

•  $W = \{w_h, w_a\}$ 

• 
$$p^*(w_1) = \frac{2}{3}, p^*(w_2) = \frac{1}{3}$$

•  $\|\text{OPEN-H}\| = \{w_h\}, \|\text{OPEN-A}\| = \{w_a\},\$ and  $\|\text{OPEN}\| = \{w_h, w_a\}$ 

• 
$$c(m_1) = c(m_2) \in \frac{1}{20}, \ c(m_3) = 0$$

|       | $a_h$ | $a_a$ |
|-------|-------|-------|
| $w_h$ | 1,1   | 0,0   |
| $w_a$ | 0, 0  | 1,1   |

### **I-implicatures**

| $\sigma_0$   | OPEN                              | OPEN-H          | OPEN-A                                         | $\rho_0$                 | $w_h$                                      | $w_a$                                      |
|--------------|-----------------------------------|-----------------|------------------------------------------------|--------------------------|--------------------------------------------|--------------------------------------------|
| $w_h$ $w_a$  | $\frac{\frac{1}{2}}{\frac{1}{2}}$ | $\frac{1}{2}$ 0 | $\begin{array}{c} 0\\ \frac{1}{2} \end{array}$ | OPEN<br>OPEN-H<br>OPEN-A | $\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$ | $\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$ |
| $\sigma_1$   | OPEN                              | OPEN-H          | OPEN-A                                         | $\rho_1$                 | $w_h$                                      | $w_a$                                      |
| $w_h \\ w_a$ | 1<br>0                            | 0<br>0          | 0<br>1                                         | OPEN<br>OPEN-H<br>OPEN-A | $egin{array}{c} 1 \\ 1 \\ 0 \end{array}$   | $egin{array}{c} 0 \ 0 \ 1 \end{array}$     |

 $F = (\sigma_1, \rho_0)$ 

### Measure terms

Krifka (2002,2007) notes that measure terms can be used in a precise or in a vague way, and that more complex expressions are less likely to be used in a vague way. Here is a schematic analysis:

- $w_1, w_3$ : 100 meter,  $w_2, w_4$ : 101 meter
- m<sub>100</sub>: "one hundred meter" m<sub>101</sub>: "one hundred and one meter" m<sub>ex100</sub>: "exactly one hundred meter"
- $||m_{100}|| = ||m_{ex100}|| = \{w_1, w_3\},$  $||m_{101}|| = \{w_2, w_4\}$
- $c(m_{100}) = 0$ ,  $c(m_{101}) = c(m_{ex100}) = 0.15$
- *a*<sub>1</sub>, *a*<sub>3</sub>: 100, *a*<sub>2</sub>, *a*<sub>4</sub>: 101

- in  $w_1, w_2$  precision is important
- in  $w_3, w_4$  precision is not important

|       | $a_1$ | $a_2$ | $a_3$ | $a_4$ |
|-------|-------|-------|-------|-------|
|       |       |       |       |       |
| $w_1$ | 1     | 0.5   | 1     | 0.5   |
| $w_2$ | 0.5   | 1     | 0.5   | 1     |
| $w_3$ | 1     | 0.9   | 1     | 0.9   |
| $w_4$ | 0.9   | 1     | 0.9   | 1     |

### **Measure terms**

| $\sigma_0$   | $m_{100}$                                | $m_{101}$                             | $m_{ex100}$                                             |
|--------------|------------------------------------------|---------------------------------------|---------------------------------------------------------|
|              | 1                                        | 0                                     | 1                                                       |
| $w_1$        | $\frac{1}{2}$                            | 0                                     | $\frac{1}{2}$                                           |
| $w_2$        | 0                                        | 1                                     | 0                                                       |
| $w_3$        | $\frac{1}{2}$<br>0<br>$\frac{1}{2}$<br>0 | 0                                     | $     \frac{1}{2}     0     \frac{1}{2}     0     0   $ |
| $w_4$        | 0                                        | 1                                     | 0                                                       |
|              |                                          |                                       |                                                         |
|              |                                          |                                       |                                                         |
| $\sigma_1$   | $m_{100}$                                | $m_{101}$                             | $m_{ex100}$                                             |
|              |                                          |                                       |                                                         |
| $w_1$        | 1                                        | 0                                     | 0                                                       |
| $w_2$        | 0                                        | 1                                     | 0                                                       |
| $w_3$        | 1                                        | 0                                     | 0                                                       |
| $w_4$        | 1                                        | 0                                     | 0                                                       |
|              |                                          |                                       |                                                         |
|              |                                          |                                       |                                                         |
| $\sigma_2$   | $m_{100}$                                | $m_{101}$                             | $m_{ex100}$                                             |
|              |                                          |                                       |                                                         |
|              | 0                                        | 0                                     | 1                                                       |
| $w_1 \\ w_2$ | 0<br>0                                   | $\begin{array}{c} 0 \\ 1 \end{array}$ | $\begin{array}{c} 1\\ 0\end{array}$                     |

0

0

0

0

| $\rho_0$                          | $a_1$                               | $a_2$                                                                              | $a_3$                                    | $a_4$                                                                            |
|-----------------------------------|-------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------|
| $m_{100} \\ m_{101} \\ m_{ex100}$ | $\frac{1}{2}$<br>0<br>$\frac{1}{2}$ | $     \begin{array}{c}       0 \\       \frac{1}{2} \\       0     \end{array}   $ | $\frac{\frac{1}{2}}{0}$<br>$\frac{1}{2}$ | $     \begin{array}{c}       0 \\       \frac{1}{2} \\       0     \end{array} $ |

| $\rho_1$                          | $a_1$                               | $a_2$       | $a_3$                               | $a_4$ |
|-----------------------------------|-------------------------------------|-------------|-------------------------------------|-------|
| $m_{100} \\ m_{101} \\ m_{ex100}$ | $\frac{1}{3}$<br>0<br>$\frac{1}{2}$ | 0<br>1<br>0 | $\frac{1}{3}$<br>0<br>$\frac{1}{2}$ |       |

| $\rho_2$               | $a_1$                                 | $wa_2$   | $a_3$         | $a_4$         |
|------------------------|---------------------------------------|----------|---------------|---------------|
| $m_{100}$              | 0                                     | 0        | $\frac{1}{2}$ | $\frac{1}{2}$ |
| $m_{101} \\ m_{ex100}$ | $\begin{array}{c} 0 \\ 1 \end{array}$ | $1 \\ 0$ | 0             | 0             |

 $w_3 = 1$ 

 $w_4$ 

1

### **M-implicatures**

3

- **a.** John stopped the car. (= STOP)
  - **b.** John made the car stop. (= MAKE-STOP)
  - w<sub>1</sub>: John used the foot brake.
  - w<sub>2</sub>: John drove the car against a wall.
  - $\|\text{STOP}\| =$  $\|\text{MAKE-STOP}\| =$  $\{w_1, w_2\}$
  - c(stop) = 0;c(make-stop = 0.1)

• 
$$p^*(w_1) = .8;$$
  
 $p^*(w_2) = .2.$ 

| Utility | matr  | ix    |       |   |
|---------|-------|-------|-------|---|
|         |       | $a_1$ | $a_2$ |   |
|         | $w_1$ | 1     | 0     | 1 |
|         | $w_2$ | 0     | 1     |   |

### **M-implicatures**

#### **IBR** sequence

| $\sigma_0$ | STOP          | MAKE-STOP     | $ ho_0$  | $a_1$                | $a_2$         |  |
|------------|---------------|---------------|----------|----------------------|---------------|--|
| $w_1$      | $\frac{1}{2}$ | $\frac{1}{2}$ | STOP     | 1                    | 0             |  |
| $w_2$      | $\frac{1}{2}$ | $\frac{1}{2}$ |          | E-STOP 1             | 0             |  |
| -          | _             |               |          |                      |               |  |
| $\sigma_1$ | STOP          | MAKE-STOP     | $\rho_1$ | $a_1$                | $a_2$         |  |
| $w_1$      | 1             | 0             | STOP     | 1                    | 0             |  |
| $w_2$      | 1             | 0             | MAKI     | E-STOP $\frac{1}{2}$ | $\frac{1}{2}$ |  |
|            |               |               |          |                      |               |  |
| $\sigma_2$ | STOP          | MAKE-STOP     | $\rho_2$ | $a_1$                | $a_2$         |  |
| $w_1$      | 1             | 0             | STOP     | 1                    | 0             |  |
| $w_2$      | 0             | 1             | MAKI     | E-STOP 0             | 1             |  |

Gerhard Jäger (February 18, 2011)

Game theoretic pragmatics