A case study in computer-aided typology

Gerhard Jäger

Tübingen University

Symposium Linguistics Quo Vadis

MPI Nijmegen, October 2, 2017

Linguistics Quo Vadis

The ascent of quantitative methods

Gerhard Jäger (Tübingen)

Computer-aided typology

The ascent of quantitative methods

A Pendulum Swung Too Far

Kenneth Church

small data

Data

- comparative
- multi-modal
- high-quality

Models and priors

- based in linguistic theory
- dynamic

Inference methods

- (approximate) Bayesian computation
- causal inference
- multi-agent simulations
- ...

Case alignment systems

Universal syntactic-semantic primitives

- three universal core roles
 - S: intransitive subject
 - A: transitive subject
 - O: transitive object

German

Der Jungeistdreckig.the boy.NOMisdirty'The boy is dirty.'

Der Junge wirft einen Stein. DEF boy.NOM throw a.ACC stone 'The boy is throwing a stone.'

Kalkatungu (Australia)

Kaun muu-yan-ati dress.ABS dirt-PROP-INCH 'The dress is dirty.'

Kuntu wampa-ngku kaun not girl-ERG dress.ABS 'The girl will not dirty the dress.' muu-yan-puni-mi. dirty-PROP-CAUS-FUT

Alignment systems

Latin

Puer puellam vidit. boy.NOM girl.ACC saw 'The boy saw the girl.'

Puer venit. boy.NOM came '*The boy came*.'

Alignment systems

Dyirbal

numa yabu-ngu bura-n. father mother.ERG see-NONFUT 'The mother saw the father.'

numa banaga-nu. boy.NOM came '*The boy came*.'

Alignment systems

Mandarin

rén lái le. person come CRS 'The person has come.'

zhāngsān mà lĭsì le ma. Zhangsan scold Lisi CRS Q 'Did Zhangsan scold Lisi?'

Differential case marking

- many languages have mixed systems
- e.g., some NPs have accusative and some have neutral paradigm, such as Hebrew
 - (1) Ha-seret her?a ?et-ha-milxama the-movie showed acc-the-war 'The movie showed the war.'
 - (2) Ha-seret her?a (*?et-)milxama the-movie showed (*acc-)war
 'The movie showed a war' (from Aissen, 2003)

Differential case marking

Functional explanation?

probability P(syntactic role|prominence of NP)

Gerhard Jäger (Tübingen)

The analysis

The analysis

The analysis

Game-theoretic modeling

Game Theory

Rationalistic game theory

- strategic interaction between rational agents
- \bullet utility \approx motivation

Game Theory

Rationalistic game theory

- strategic interaction between rational agents
- \bullet utility \approx motivation

Evolutionary game theory

- frequency-dependent Darwinian selection
- utility \approx fitness

Signaling games

• private information: meaning, including linking of NPs to argument slots

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs
- action: assign NPs to argument slots

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs
- action: assign NPs to argument slots

• utility:

$$u(t,m,a) = -k \times c(m) + \begin{cases} 1 & \text{if } a = t \\ 0 & \text{else} \end{cases}$$

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs
- action: assign NPs to argument slots

• utility:

$$u(t,m,a) = -k \times c(m) + \begin{cases} \mathbf{1} & \text{if } \mathbf{a} = \mathbf{t} \\ \mathbf{0} & \text{else} \end{cases}$$

hearer economy

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs
- action: assign NPs to argument slots

• utility:

$$u(t,m,a) = -k \times \mathbf{c}(\mathbf{m}) + \begin{cases} 1 & \text{if } a = t \\ 0 & \text{else} \end{cases}$$

- hearer economy
- speaker economy

- private information: meaning, including linking of NPs to argument slots
- signal: case marking of NPs
- action: assign NPs to argument slots

• utility:

$$u(t,m,a) = -\mathbf{k} \times c(m) + \begin{cases} 1 & \text{if } a = t \\ 0 & \text{else} \end{cases}$$

- hearer economy
- speaker economy
- relative strength of speaker economy vs. hearer economy

• speaker strategies that will be considered:

A is prominent	A is non-prominent	O is prominent	O is non-prominent
e(rgative)	e(rgative)	a(ccusative)	a(ccusative)
e	е	а	z(ero)
е	е	z	а
е	е	Z	Z
е	Z	а	а
•••		•••	
Z	е	Z	Z
Z	Z	а	а
Z	Z	а	Z
Z	Z	Z	а
Z	Z	Z	Z

Gerhard Jäger (Tübingen)

• hearer strategies:

- strict rule: ergative means "agent", and accusative means "object"
- elsewhere rules:
- AO: "The first phrase is always the agent."
- 2 pA: "Pronouns are agents, and nouns are objects."
- **③** *pO*: "Pronouns are objects, and nouns are agents."
- OA: "The first phrase is always the object."

- stochastic evolution always settles for strategy configuration with highest overall utility
- \bullet depends on k

Taking stock

Case marking systems participating in stochastically stable equilibria

- eezz: consistent ergative marking
- zzaa: consistent accusative marking
- zeaz: split ergative system
- zezz: differential subject marking
- zzaz: differential object marking
- zzzz: no case marking

All stable systems are consistent with prominence hierarchies!

Empirical distribution

Bickel et al.'s (2015) sample

- genetically diverse sample of 460 case marking systems
- used here: 368 systems
 - one system per language
 - only languages with ISO code
 - only languages present in ASJP
- 342 out of 368 systems (88%) are stochastically stable

Phylogenetic non-independence

- languages are phylogenetically structured
- if two closely related languages display the same pattern, these are not two independent data points
- \Rightarrow we need to control for phylogenetic dependencies

Phylogenetic non-independence

Phylogenetic non-independence

Maslova (2000):

"If the A-distribution for a given typology cannot be assumed to be stationary, a distributional universal cannot be discovered on the basis of purely synchronic statistical data."

"In this case, the only way to discover a distributional universal is to **estimate transition probabilities** and as it were to 'predict' the stationary distribution on the basis of the equations in (1)."

The phylogenetic comparative method

Modeling language change

Markov process

Modeling language change

Markov process

Phylogeny

Modeling language change

Markov process

Phylogeny

Branching process

Estimating rates of change

• if phylogeny and states of extant languages are known...

Estimating rates of change

- if phylogeny and states of extant languages are known...
- ... transition rates and ancestral states can be estimated based on Markov model

Inferring a world tree of languages

concept	Latin	English
1	ego	Ei
you	tu	yu
we	nos	wi
one	unus	w3n
two	duo	tu
person	persona, homo	pers3n
fish	piskis	fiS
dog	kanis	dag
louse	pedikulus	laus
tree	arbor	tri
leaf	foly∼u*	lif
skin	kutis	skin
blood	$saNgw \sim is$	bl3d
bone	os	bon
horn	kornu	horn
ear	auris	ir
eve	okulus	Ei

Language	fish:z	tongue: 1	smoke:1
Abui-Atangmelang	-af-u		
Abui-Fuimelang	-af-u	tal-i-fi	
Adang	aab	tal-E-b	awaib-a-n-o-7o-
Blagar-Bakalang	-ab	j-e-bur-	ad <mark>b</mark> -a-n-aNka-
Blagar-Bama	aab	teg-e-bur-	b-e-n-a-xa-
Blagar-Kulijahi	-ab	tej-e-bur-	b-e-n-aNka-
Blagar-Nule	aab	tej-e-bur-	adb-e-n-aNka-
Blagar-Tuntuli	aab	tej-e-bur-	a-adgeb-a-n-a-q
Blagar-Warsalelang	-ab	tel-e-bur-	a-adb-a-n-a-x
Bunaq			b-o-t-o-h
Deing	haf		buu-n
Hamap	7ab	nar-ø-buN-	b-a-n-o-7
Kabola	hab	tal-e-b	awalb-e-n-e-7o-
Kaera-Padangsul	-ab	talee-b	a-adb-e-naa-x
Kafoa	-afUi	tal-i-p	f -o-n-a
Kamang	-ap-i	nalpu	a-
Kiraman	-Eb	nal-i-bar-	arb-a-n-o-kan
Klon	-eb-i	gel-E-b	ed-ab-o-n
Kui	-eb	tal-i-ber-	arb-o-n-o-k
Kula	-ap-i	-il-I-p	pn-ekka-
Nedebang	aaf-i	gel-e-fu	ar-ab-u-n
Reta	aab	nal-e-bul-	a-adb-o-n-a
Sar-Adiabang	haf	p-e-fal-	arbuu-n
Sar-Nule	haf	nal-e-faj-	
Sawila	-ap-i	gal-impuru	p-u-n-a-ka-
Teiwa-Madar	xaf	gel-i-vi	buu-n
Wersing	-ap-i	nej-e-bur-	ad-ap-u-n-a-k
Wpantar	hap	nal-e-bu	b-unn-a

	English	Spanish	Modern Greek	Standard German
1	Ei:A	yo:B	exo:C	iX:D
you	yu:A	ustet:B, tu:C	esi:D	du:E
we	A: iw	nosotros:B	emis:C	vir:A
one	w3n:A	uno:B	enas:C, ena:C	ains:D
two	tu:A	dos:B	8y~o:C, Sio:D	cvai:E
person	pers3n:A	persona:A	an8~ropos:B	nEnS:C
fish	fiS:A	peskado:A, pes:A	psari:B	fiS:A
dog	dag:A	pero:B	sTili:C, sTilos:C	hunt:D
come	k3m:A	veni:B	erx~o:C	kh~om3n:A
sun	s3n:A	sol:B	ily~os:C, iLos:C	zon3:A
star	star:A	estreya:A	asteri:A, astro:A	StErn: A
water	wat3r:A	agw~a:B	nero:C	vas3r:A
stone	ston:A	piedra:B	petra:B	Stain: A
fire	fEir:A	fuego:B	foty~a:C	foia:D
path	pE8:A	senda:B	Sromos:C	pf~at:A, vek:D
mountain	maunt3n:A	sero:B, monta5a:A	vuno:C, oros:D	bErk:E
full	ful:A	yeno:B	yematos:C, pliris:D	fol:A
new	nu:A	nuevo:A	neos:A, Tenury~os:B	noi:A
name	nem:A	nombre:A	onoma:A	nam3:A

TNG ENGAN MATRI TNG ENGAN POLE TNG. ENGAN. SAU TNG. ENGAN, YARIBA TNG FASU FASU TNG FASU NAMUMT TNG, FINISTERRE-HUON, AWARA TNG, FINISTERRE-HUON, BORONG TNG.FINISTERRE-HUON.BURUM TNG. EINISTERRE-HUON, BURUM MIND TNG, FINISTERRE-HUON, DEDUA TNG.FINISTERRE-HUON.HUBE TNG. ETNISTERRE-HUON. KATE TNG.FINISTERRE-HUON.KOMBA TNG, FINISTERRE-HUON, KOSORONG TNG.FINISTERRE-HUON.MAPE TNG. EINISTERRE-HUON. MAPE 2 TNG. FINISTERRE-HUON.MIGABAC TNG.FINISTERRE-HUON.MINDIK TNG.FINISTERRE-HUON.MOMOLILI TNG. FINISTERRE-HUON, NABAK TNG. FINISTERRE-HUON. NANKINA TNG, FINISTERRE-HUON, NEK TNG.FINISTERRE-HUON.NUKNA TNG. FINISTERRE-HUON. ONO TNG, FINISTERRE-HUON, SELEPET TNG ETNISTERRE-HUON TIMBE TNG.FINISTERRE-HUON.TOBO TNG.FINISTERRE-HUON.WANTOAT TNG, FINISTERRE-HUON, YOPNO TNG. GOTLALAN, AFOA TNG GOTLALAN KUNTMATPA TNG. GOTLALAN. MAFULU

Cases in equilibrium

Phylogenetically estimated Markov chain

Equilibrium probabilities

Empirical vs. estimated percentages

Posterior distribution

Gerhard Jäger (Tübingen)

Computer-aided typology

Summary

- \bullet three patterns occur with probability >5% in equilibrium:
 - non-differential accusative marking
 - differential accusative marking
 - no case marking
- all three are predicted to be stochastically stable
- ergative systems are conspicuously underrepresented

• method applicable to many typological issues

Linguistics Quo Vadis (cont.)

Gerhard Jäger (Tübingen)

Topics

Micro-dynamics

- pragmatics
- incremental processing
- language variation

Macro-dynamics

- typology
- historical linguistics
- dialectometry

Data

Micro-dynamics

- corpora
- psycholinguistic experiments
- crowd sourcing

Macro-dynamics

- cross-linguistic databases
- etymological dictionaries
- dialect atlases

Models

Micro-dynamics

- formal semantics and pragmatics
- rationalistic game theory
- classical comparative method

Macro-dynamics

- evolutionary game theory
- phylogenetic inference
- population genetics

Inference methods

Micro- and macro-dynamics

- Bayesian inference
- approximate Bayesian computation
- machine learning
- agent-based simulations
- causal inference

Judith Aissen. Differential object marking: Iconicity vs. economy. Natural Language and Linguistic Theory, 21(3):435-483, 2003.

Balthasar Bickel, Alena Witzlack-Makarevich, and Taras Zakharko. Typological evidence against universal effects of referential scales on case alignment. In Ina

Bornkessel-Schlesewsky, Andrej L. Malchukov, and Marc D. Richards, editors, Scales and hierarchies: A cross-disciplinary perspective, pages 7–43. de Gruyter, Berlin/Munich/Boston, 2015.

Georg Bossong. Differentielle Objektmarkierung in den neuiranischen Sprachen. Günther Narr Verlag, Tübingen, 1985.

Kenneth Church. A pendulum swung too far. Linguistic Issues in Language Technology, 2(4):1-26, 2007.

Bernard Comrie. Language Universals and Linguistic Typology. Basil Blackwell, Oxford, 1981.

Gerhard Jäger. Evolutionary Game Theory and typology: a case study. Language, 83(1):74-109, 2007.

Gerhard Jäger. Phylogenetic inference from word lists using weighted alignment with empirically determined weights. Language Dynamics and Change, 3(2): 245-291, 2013.

Gerhard Jäger. Support for linguistic macrofamilies from weighted sequence alignment. Proceedings of the National Academy of Sciences, 112(41):12752–12757, 2015. doi: 10.1073/pnas.1500331112.

Gerhard Jäger and Søren Wichmann. Inferring the world tree of languages from word lists. In S. G. Roberts, C. Cuskley, L. McCrohon, L. Barceló-Coblijn,
 O. Feher, and T. Verhoef, editors, *The Evolution of Language: Proceedings of the 11th International Conference (EVOLANG11)*, 2016. Available online:

http://evolang.org/neworleans/papers/147.html.

David Lewis. Convention. Harvard University Press, Cambridge, MA, 1969.

Elena Maslova. A dynamic approach to the verification of distributional universals. Linguistic Typology, 4(3):307-333, 2000.

Mark Pagel and Andrew Meade. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American Naturalist, 167(6):808-825, 2006.

Mark Pagel and Andrew Meade. BayesTraits 2.0. software distributed by the authors, November 2014.

Hugo Reyes-Centeno, Katerina Harvati, and Gerhard Jäger. Tracking modern human population history from linguistic and cranial phenotype. Scientific Reports, 6, 2016.

Michael Silverstein. Hierarchy of features and ergativity. In R. M. W. Dixon, editor, Grammatical Categories in Australian Languages, pages 112–171. Australian Institute of Aboriginal Studies, Canberra, 1976.

Søren Wichmann, Eric W. Holman, and Cecil H. Brown. The ASJP database (version 17). http://asjp.clld.org/, 2016.

H. Peyton Young. The evolution of conventions. Econometrica, 61:57-84, 1993.