Color naming universals: a statistical approach

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

March 29, 2011

QITL 4

The psychological color space

- physical color space has infinite dimensionality every wavelength within the visible spectrum is one dimension
- psychological color space is only 3-dimensional
- this fact is employed in technical devices like computer screens (additive color space) or color printers (subtractive color space)

additive color space

subtractive color space

The psychological color space

- psychologically correct color space should not only correctly represent the topology of, but also the distances between colors
- distance is inverse function of perceived similarity
- L*a*b* color space has this property
- three axes:
 - black white
 - red green
 - blue yellow
- irregularly shaped 3d color solid

The color solid

The Munsell chart

- for psychological investigations, the Munsell chart is being used
- 2d-rendering of the surface of the color solid
 - 8 levels of lightness
 - 40 hues
- plus: black-white axis with 8 shaded of grey in between
- neighboring chips differ in the minimally perceivable way

- pilot study how different languages carve up the color space into categories
- informants: speakers of 20 typologically distant languages (who happened to be around the Bay area at the time)
- questions (using the Munsell chart):
 - What are the basic color terms of your native language?
 - What is the extension of these terms?
 - What are the prototypical instances of these terms?
- results are not random
- indicate that there are universal tendencies in color naming systems

extensions

Arabic

extensions

Bahasa Indonesia

extensions

Cantonese

- identification of absolute and implicational universals, like
 - all languages have words for black and white
 - if a language has a word for yellow, it has a word for red
 - if a language has a word for pink, it has a word for blue
 - ...

The World Color Survey

- B&K was criticized for methodological reasons
- in response, in 1976 Kay and co-workers launched the world color survey
- investigation of 110 non-written languages from around the world
- around 25 informants per language
- two tasks:
 - the 330 Munsell chips were presented to each test person one after the other in random order; they had to assign each chip to some basic color term from their native language
 - for each native basic color term, each informant identified the prototypical instance(s)
- data are publicly available under http://www.icsi.berkeley.edu/wcs/

• distribution of focal colors across all informants:

• distribution of focal colors across all informants:

• partition of a randomly chosen informant from a randomly chosen language

• partition of a randomly chosen informant from a randomly chosen language

partition of a randomly chosen informant from a randomly chosen language

• partition of a randomly chosen informant from a randomly chosen language

What is the extension of categories?

- data from individual informants are extremely noisy
- averaging over all informants from a language helps, but there is still noise, plus dialectal variation
- desirable: distinction between "genuine" variation and noise

Statistical feature extraction

- first step: representation of raw data in contingency matrix
 - rows: color terms from various languages
 - columns: Munsell chips
 - cells: number of test persons who used the row-term for the column-chip

	A0	B0	В1	B2		138	139	I40	J0
red	0	0	0	0		0	0	2	0
green	0	0	0	0		0	0	0	0
blue	0	0	0	0		0	0	0	0
black	0	0	0	0		18	23	21	25
white	25	25	22	23		0	0	0	0
:	:	:	:	:	:	:	:	:	:
rot	0	0	0	0		1	0	0	0
grün	0	0	0	0		0	0	0	0
gelb	0	0	0	1		0	0	0	0
:	:	:	:	:	:	:	:	:	:
rouge	0	0	0	0		0	0	0	0
vert	0	0	0	0		0	0	0	n
vert	U	U	U	U		U	•	U	U
	- 1	- 1	- 1	- :			- 1	- 1	

- further processing:
 - divide each row by the number n of test persons using the corresponding term
 - duplicate each row n times

Principal Component Analysis

- technique to reduce dimensionality of data
- ullet input: set of vectors in an n-dimensional space

first step:

- rotate the coordinate system, such that
 - the new n coordinates are orthogonal to each other
 - the variations of the data along the new coordinates are stochastically independent

second step:

- ullet choose a suitable m < n
- project the data on those m new coordinates where the data have the highest variance

Principal Component Analysis

- alternative formulation:
 - ullet choose an m-dimensional linear sub-manifold of your n-dimensional space
 - project your data onto this manifold
 - when doing so, pick your sub-manifold such that the average squared distance of the data points from the sub-manifold is minimized
- intuition behind this formulation:
 - ullet data are "actually" generated in an m-dimensional space
 - ullet observations are disturbed by n-dimensional noise
 - PCA is a way to reconstruct the underlying data distribution
- applications: picture recognition, latent semantic analysis, statistical data analysis in general, data visualization, ...

Statistical feature extraction: PCA

- first 15 principal components jointly explain 91.6% of the total variance
- choice of m=15 is determined by using "Kaiser's stopping rule"

principal components

Statistical feature extraction: PCA

- noise removal: project observed data onto the lower-dimensional submanifold that was obtained via PCA
- in our case: noisy binary categories are mapped to smoothed fuzzy categories (= probability distributions over Munsell chips)
- some examples:

Implicative universals

- first six features correspond nicely to the six primary colors white, black, red, green, blue, yellow
- according to Kay et al. (1997) (and many other authors) simple system of implicative universals regarding possible partitions of the primary colors

Implicative universals

source: Kay et al. (1997)

Partition of the primary colors

- each speaker/term pair can be projected to a 15-dimensional vector
- primary colors correspond to first 6 entries
- each primary color is assigned to the term for which it has the highest value
- defines for each speaker a partition over the primary colors

Partition of the primary colors

- for instance: sample speaker (from Piraha):
- extracted partition:

white/yellow red green/blue black

 supposedly impossible, but occurs 61 times in the database

Partition of primary colors

most frequent partition types:

```
{white}, {red}, {yellow}, {green, blue}, {black} (41.9%)
{white}, {red}, {yellow}, {green}, {blue}, {black} (25.2%)
{white}, {red, yellow}, {green, blue, black} (6.3%)
{white}, {red}, {yellow}, {green}, {black, blue} (4.2%)
{white, yellow}, {red}, {green, blue}, {black} (3.4%)
{white}, {red}, {yellow}, {green, blue, black} (3.2%)
{white}, {red, yellow}, {green, blue}, {black} (2.6%)
{white, yellow}, {red}, {green, blue, black} (2.0%)
{white}, {red}, {yellow}, {green, blue, black} (1.6%)
{white}, {red}, {green, yellow}, {blue, black} (1.2%)
```

Partition of primay colors

- ullet 87.1% of all speaker partitions obey Kay et al.'s universals
- the ten partitions that confirm to the universals occupy ranks 1, 2, 3, 4, 6, 7, 9, 10, 16, 18
- decision what counts as an exception seems somewhat arbitrary on the basis of these counts

The semantic map of primary colors

- Manual inspection of the frequently occurring patterns shows that:
 - most speakers lump green and blue into one category ($\approx 63.2\%$)
 - many speakers lump black and blue into one category ($\approx 19.3\%$)
 - a fair amount of speakers lumps *red* and *yellow* into one category ($\approx 9.8\%$)
 - some speakers lump white and yellow into one category ($\approx 7.6\%$)
 - ullet a few speakers even lump *green* and *yellow* into one category (pprox 4.6%)

The semantic map of primary colors

 leads to a graph structure (a reviewer pointed out that this is a kind of semantic map):

- (1) a. All partition cells are continuous subgraphs of the connection graph.
 - b. No partition cell has more than three elements.
 - c. Red and white only occur in cells with at most two elements.

The semantic map of primary colors

- three more partition types obey this constraint, which all occur in the data:
 - {green}, {white/yellow}, {red}, {black/blue} (14 occurrences)
 - {green}, {white/yellow}, {red}, {black}, {blue} (8 occurrences)
 - $\bullet \ \ \{\mathsf{green}\}, \ \{\mathsf{white}\}, \ \{\mathsf{red/yellow}\}, \ \{\mathsf{black}\}, \ \{\mathsf{blue}\} \ (2 \ \mathsf{occurrences})$
- all predicted partition types occur in the data
- ullet about 94% of the data fit to the model
- adding further links to the graph (green-black, black-white) improves the precision but reduces the recall

Power Laws

- more fundamental problem:
 - partition frequencies are distributed according to power law

$$frequency \sim rank^{-1.99}$$

 no natural cutoff point to distinguish regular from exceptional partitions

Partition of seven most important colors

 $frequency \sim rank^{-1.64}$

Partition of eight most important colors

 $frequency \sim rank^{-1.46}$

Smoothing the partitions

- from smoothed extensions we can recover smoothed partitions
- each pixel is assigned to category in which it has the highest degree of membership

Convexity

- note: so far, we only used information from the WCS
- the location of the 330 Munsell chips in L*a*b* space played no role so far
- still, apparently partition cells always form continuous clusters in L*a*b* space
- Hypothesis (Gärdenfors): extension of color terms always form convex regions of L*a*b* space

Support Vector Machines

- supervised learning technique
- smart algorithm to classify data in a high-dimensional space by a (for instance) linear boundary
- minimizes number of mis-classifications if the training data are not linearly separable

Convex partitions

- a binary linear classifier divides an n-dimensional space into two convex half-spaces
- intersection of two convex set is itself convex
- ullet hence: intersection of k binary classifications leads to convex sets
- procedure: if a language partitions the Munsell space into m categories, train $\frac{m(m-1)}{2}$ many binary SVMs, one for each pair of categories in L*a*b* space
- leads to m convex sets (which need not split the L*a*b* space exhaustively)

 \bullet on average, 93.7% of all Munsell chips are correctly classified by convex approximation

• compare to the outcome of the same procedure without PCA, and with PCA but using a random permutation of the Munsell chips

- ullet choice of m=10 is somewhat arbitrary
- outcome does not depend very much on this choice though

Power laws

Power laws

Power laws

FIG. 4 Cumulative distributions or "rank/frequency plots" of twelve quantities reputed to follow power laws. The distributions were computed as described in Appendix \(\frac{\text{\tex{

from Newman 2006

number of vowels	vowel systems and their frequency of occurrence				
3	14				
4	14	5	4	2	
5	97	3			
6	26	12	12		
7	23	6	5	4	3
8	6	3	3	2	
9	7	7	3		

 $frequency \sim rank^{-1.06}$

- size of language families
- source: Ethnologue $frequency \sim rank^{-1.32}$

- number of speakers per language
- source: Ethnologue $frequency \sim rank^{-1.01}$

- large scale typological database, conducted mainly by the MPI EVA, Leipzig
- 2,650 languages in total are used
- 142 features, with between 120 and 1,370 languages per feature
- available online

- question: are frequency of feature values powerlaw distributed?
- problem: number of feature values usually too small for statistic evaluation
- solution:
 - cross-classification of two (randomly chosen) features
 - only such feature pairs are considered that lead to at least 30 non-empty feature value combinations
- pilot study with 10 such feature pairs

- Feature 1: Consonant-Vowel Ratio
- Feature 2: Subtypes of Asymmetric Standard Negation
- Kolmogorov-Smirnov test: positive

- Feature 1: Weight
 Factors in
 Weight-Sensitive Stress
 Systems
- Feature 2: Ordinal Numerals
- Kolmogorov-Smirnov test: positive

- Feature 1: Third Person Zero of Verbal Person Marking
- Feature 2: Subtypes of Asymmetric Standard Negation
- Kolmogorov-Smirnov test: positive

- Feature 1: Relationship between the Order of Object and Verb and the Order of Adjective and Noun
- Feature 2: Expression of Pronominal Subjects
- Kolmogorov-Smirnov test: positive

- Feature 1: Plurality in Independent Personal Pronouns
- Feature 2: Asymmetrical Case-Marking
- Kolmogorov-Smirnov test: positive

- Feature 1: Locus of Marking: Whole-language Typology
- Feature 2: Number of Cases
- Kolmogorov-Smirnov test: positive

- Feature 1: Prefixing vs.
 Suffixing in Inflectional Morphology
- Feature 2: Coding of Nominal Plurality
- Kolmogorov-Smirnov test: positive

- Feature 1: Prefixing vs.
 Suffixing in Inflectional Morphology
- Feature 2: Ordinal Numerals
- Kolmogorov-Smirnov test: positive

- Feature 1: Coding of Nominal Plurality
- Feature 2: Asymmetrical Case-Marking
- Kolmogorov-Smirnov test: positive

- Feature 1: Position of Case Affixes
- Feature 2: Ordinal Numerals
- Kolmogorov-Smirnov test: negative

Why power laws?

- critical states
- self-organized criticality
- preferential attachment
- random walks
- ..

Preferential attachment

- items are stochastically added to bins
- probability to end up in bin n is linear in number of items that are already in bin n

(Wide) Open questions

- Preferential attachment explains power law distribution if there are no a priori biases for particular types
- first simulations suggest that preferential attachment + biased type assignment does not lead to power law
- negative message: uneven typological frequency distribution does not prove that frequent types are inherently preferred linguistically/cognitively/socially
- unsettling questions:
 - Are there linguistic/cognitive/social biases in favor of certain types?
 - If yes, can statistical typology supply information about this?
 - If power law distributions are the norm, is their any content to the notion of *statistical universal* in a Greenbergian sense?