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Major word orders
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Statistics of major word order distribution
• data: WALS intersected with ASJP
• 1,055 languages, 201 lineages, 71 families with at least 3 languages

Raw numbers

SOV SVO VSO VOS OVS OSV
497 447 78 20 10 3

47.1% 42.4% 7.4% 1.9% 0.9% 0.3%
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Weighted by lineages

SOV SVO VSO VOS OVS OSV
135.1 46.9 10.5 4.0 3.7 0.8

67.2% 23.3% 5.2% 2.0% 1.8% 0.4%
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Previous approaches

• Gell-Mann and Ruhlen (2011):
• Proto-world was SOV
• general pathway: SOV → SVO ↔ VSO/VOS
• minor pathway: SOV → OVS/OSV
• exceptions due to diffusion

• Ferrer-i-Cancho (2015):

• permutation circle

SOV

SVO

VSO

VOS

OVS

OSV

• transition probability inversely related to path length
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Phylogenetic non-independence

• languages are phylogenetically structured
• if two closely related languages display the same pattern, these are not two independent

data points
⇒ we need to control for phylogenetic dependencies
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Phylogenetic non-independence
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Typological distributions
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Typological distributions

• common practice since Greenberg (1963):
• collect a sample of languages
• classify them according to some typological feature

⇒ skewed distribution indicates something interesting going on

• Problem: languages are not independent samples
• skewed distribution may reflect

• skewed diversification rate across families
• properties of an ancestral bottleneck

• balanced sampling mitigates the first, but not the second problem

7 / 45



Typological distributions

Maslova (2000):
“If the A-distribution for a given typology can-
not be assumed to be stationary, a distributional
universal cannot be discovered on the basis of
purely synchronic statistical data.”

“In this case, the only way to discover a dis-
tributional universal is to estimate transition
probabilities and as it were to ‘predict’ the sta-
tionary distribution on the basis of the equations
in (1).”
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The phylogenetic comparative method
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Modeling language change

Markov process

cf. Dunn et al. (2011); Levinson and Gray (2012), inter alia
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Estimating rates of change
• if phylogeny and states of extant languages are known...

• ... transition rates and ancestral states can be estimated based on Markov model
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Inferring trees across many families
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From words to trees

word alignments
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Estimating word-order transition patterns
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Workflow

(data from all 77 families with ≥ 3 languages in data base; 924 languages in total)
• estimate posterior tree distributions with MrBayes for each family, using Glottolog as

constraint tree
• estimate transition rates
• estimate stationary distribution of major word order categories
• apply stochastic character mapping (SIMMAP; Bollback 2006)
• estimate expected number of mutations for each transition type
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Estimating posterior tree distributions

• using characters extracted from ASJP data (Jäger 2018)
• Glottolog as constraint tree
• Γ-distributed rates
• ascertainment bias correction
• relaxed molecular clock (IGR)
• uniform tree prior
• stop rule: 0.01, samplefreq=1000
• if convergence later than after 1,000,000 steps, sample 1,000 trees from posterior
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Phylogenetic tree sample
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Estimating transition rates

• totally unrestricted model, all 30
transition rates are estimed
independently

• implementation using RevBayes
(Höhna et al., 2016)

expected strength of flow

SOV

VOS

VSO

SVO

OVS

OSV
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Reconstruction history with SIMMAP

• estimated frequency of mutations within the 77 families under consideration (posterior
mean and 95% HPD, 100 simulations

SOV SVO VSO VOS OVS OSV
SOV − 51.5 [19; 82] 10.2 [1; 19] 7.5 [0; 29] 5.8 [0; 14] 4.2 [0; 13]
SVO 83.8 [31; 131] − 22.3 [2; 42] 10.4 [0; 30] 2.8 [0; 8] 3.9 [0; 12]
VSO 1.4 [0; 5] 8.3 [0; 24] − 29.0 [5; 45] 3.0 [0; 9] 1.1 [0; 5]
VOS 4.3 [0; 15] 141.9 [115; 188] 30.9 [17; 47] − 2.1 [0; 9] 1.0 [0; 3]
OVS 11.1 [0; 28] 0.8 [0; 4] 1.8 [0; 8] 0.4 [0; 3] − 0.8 [0; 5]
OSV 4.2 [0; 15] 0.4 [0; 3] 1.9 [0; 11] 1.1 [0; 7] 1.1 [0; 9] −
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Posterior distributions
Empirical vs. estimated distribution
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Posterior distributions
Waiting times

expected waiting time in 1,000 years 21 / 45



Differential case marking
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Universal syntactic-semantic primitives

• three universal core roles
S: intransitive subject
A: transitive subject
O: transitive object
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Alignment systems

Accusative
system

S

A
O

nominative

accusative

Latin

Puer puellam vidit.
boy.NOM girl.ACC saw 'The boy saw the girl.'

Puer venit.
boy.NOM came 'The boy came.'
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Alignment systems

Ergative
system

S

A O

ergative

nominative
(absolutive)

Dyirbal

ŋuma yabu-ŋgu bura-n.
father mother.ERG see-NONFUT
'The mother saw the father.'

ŋuma banaga-nu.
boy.NOM came 'The boy came.'
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Alignment systems

Neutral
system

S

A O

nominative

Mandarin

rén lái le.
person come CRS
'The person has come.'

zhāngsān mà lĭsì le ma.
Zhangsan scold Lisi CRS Q
'Did Zhangsan scold Lisi?'
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Differential case marking

• many languages have mixed systems
• e.g., some NPs have accusative and some have neutral paradigm, such as Hebrew

(1) Ha-seret her?a ?et-ha-milxama
the-movie showed acc-the-war
‘The movie showed the war.’

(2) Ha-seret her?a (*?et-)milxama
the-movie showed (*acc-)war
‘The movie showed a war’
(from Aissen, 2003)

27 / 45



Differential case marking
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Functional explanation?

probability P(syntactic role|prominence of NP)
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A note on terminology

A is prominent A is non-prominent O is prominent O is non-prominent
e(rgative) e(rgative) a(ccusative) a(ccusative)

e e a z(ero)
e e z a
e e z z
e z a a
· · · · · · · · · · · ·
z e z z
z z a a
z z a z
z z z a
z z z z
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A note on terminology

actually attested:
1 zzzz: no case marking
2 zzaa: non-differential object marking
3 zzaz: harmonic differential object marking
4 ezzz: non-differential subject marking
5 zeaz: split ergative
6 eeaz: non-differential subject marking plus differential object marking
7 ezzz: dis-harmonic differential subject marking
8 zezz: harmonic differential subject marking
9 zeaa: harmonic differential subject marking plus non-differential object marking
10 zzza: dis-harmonic differential object marking
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Differential case marking and referential scales

• received wisdom (Silverstein, 1976;
Comrie, 1981; Aissen, 2003, , inter alia):

• if object-marking is differential, upper
segments of a referential hierarchy
receive accusative marking

• if object-marking is differential, lower
segments of a referential hierarchy
receive accusative marking

• Bickel et al. (2015):
• large differences between macro-areas
• no universal effects of referential scales

on differential case marking
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Bickel et al.’s (2015) sample

• genetically diverse sample of 460 case
marking systems

• used here: 368 systems
• one system per language
• only languages with ISO code
• only languages present in ASJP

• 2 out of 333 systems (99.4%) are obey the
Silverstein hierarchy (not counting
inconsistent states)
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• differential object marking
concentrated in Eurasia

• diffential subject marking
concentrated in Sahul

• only cases of anti-DOM and
anti-DSM (one instance of each)
in North America
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Phylogenetic trees for the case data

• 39 families and 63 isolates in the intersection of the Autotyp data and ASJP (Wichmann
et al., 2018)

• for each of these families, I inferred a posterior distribution of 1,000 trees (using lexical
data from ASJP) to reflect uncertainty in tree structure and branch length

• Glottolog tree was used as constraint tree
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Hierarchical Bayesian models

CTMC
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Hierarchical Models to capture areal effects

• each macro-area has its own parameters
• parameters are all drawn from the same

distribution f
• shape of f is learned from the data
• prior assumption that there is little

cross-area variation → can be overwritten
by the data

• enables information flow across areas

trees1
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What about isolates?

• Continuous Time Markov Chain defines a unique equilibrium distribution
• hierarchical model assumes a different CTMC, and thus a different equilibrium distribution

for each lineage
• by modeling assumption, root state of a lineage is drawn from this distribution (Uniformity

Principle)
• isolates are treated as families of size 1, i.e., they are drawn from their equilibrium

distribution
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Estimated transitions
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Estimated equilibrium distributions
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Preference for scale-respecting differential case marking

• strength of preference of DOM over
anti-DOM:

log
P(..az)
P(..za)

• DSM over anti-DSM:

log
P(ze..)
P(ez..)

differential object marking differential subject marking

strength of preference
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Further variables
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Word order and case

no case
OV

no case
VO

case
OV

case
VO
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Word order correlations
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Conclusion

• Maslova’s program can be carried out with phylogenetic comparative method
• future research:

• equilibrium distributions generally resemble family-wise weighted distributions — bug or
feature?

• hierarchical models instead of one Markov process for all lineages?
• more data!!! (but there are never enough of them)
• better methods for feature selection?
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