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Greenberg’s Universal 17
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With overwhelmingly more than chance
frequency, languages with dominant order VSO
have the adjective after the noun. (Greenberg,
1963)

Mirror image: Verb-final languages prefer adjective-noun order.

But: Dryer (1992)
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Dependency Length Minimization

The dog was chased by the cat
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• Dependency distances.
• DDm: dependency distance minimization principle (Liu et al., 2017).
• Cognitive origins of DDm: interference and decay (Liu et al., 2017).
• The challenge of aggregating D over heterogeneous data: sentences of different lengths,

multiple authors, ... (Ferrer-i-Cancho and Liu, 2014)
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DDm provides functional motivation for Universal 17 and its mirror image.
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Frequency distribution (WALS)
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Frequency distribution, weighted by lineage
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Geographic distribution
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Phylogenetic non-independence

• languages are phylogenetically structured
• if two closely related languages display the

same pattern, these are not two
independent data points

⇒ we need to control for phylogenetic
dependencies

(from Dunn et al., 2011)
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Phylogenetic non-independence

Maslova (2000):
“If the A-distribution for a given typology cannot be as-
sumed to be stationary, a distributional universal cannot
be discovered on the basis of purely synchronic statistical
data.”

“In this case, the only way to discover a distributional
universal is to estimate transition probabilities and as
it were to ‘predict’ the stationary distribution on the basis
of the equations in (1).”
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The phylogenetic comparative method
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Modeling language change

Markov process
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Modeling language change

Markov process Phylogeny
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Modeling language change

Markov process Phylogeny

Branching process
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Estimating rates of change

• if phylogeny and states of extant languages are known...

• ... transition rates, stationary probabilities and ancestral states can be estimated based on
Markov model
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Correlation between features
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Pagel and Meade (2006)

• construct two types of Markov processes:
• independent: the two features evolve according to independend Markov processes
• dependent: rates of change in one feature depends on state of the other feature

• fit both models to the data
• apply statistical model comparison

Independent model Dependent model
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Data

• word-order data: WALS
• phylogeny:

• ASJP word lists (Wichmann et al., 2016)
• feature extraction (automatic cognate detection, inter alia) ; character matrix
• Bayesian phylogenetic inference with Glottolog (Hammarström et al., 2016) tree as backbone
• advantages over hand-coded Swadesh lists

• applicable across language familes
• covers more languages than those for which expert cognate judgments are available

• 902 languages in total
• 76 families and 105 isolates

16 / 30



Phylogenetic tree sample
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Hierarchical Bayesian models
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Hierarchical Bayesian models

CTMC

trees1

data1

trees2

data2

trees3

data3

trees4

data4

trees1

data1

trees2

data2

trees3

data3

trees4

data4

CTMC4CTMC3CTMC2CTMC1

trees1

data1

trees2

data2

trees3

data3

trees4

data4

CTMC4CTMC3CTMC2CTMC1

hyper-parameter

lineage-specific universal hierarchical

18 / 30



Hierarchical Models

• each family has its own parameters
• parameters are all drawn from the same

distribution f
• shape of f is learned from the data
• prior assumption that there is little

cross-family variation → can be
overwritten by the data

• enables information flow across families
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What about isolates?

• Continuous Time Markov Chain defines a unique equilibrium distribution
• hierarchical model assumes a different CTMC, and thus a different equilibrium distribution

for each lineage
• by modeling assumption, root state of a lineage is drawn from this distribution (Uniformity

Principle)
• isolates are treated as families of size 1, i.e., they are drawn from their equilibrium

distribution
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Results
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Independent model Dependent model
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• Bayes Factor: 260 in favor of dependent model1

1In the abstract we reported the opposite conclusion, but there we used a non-hierarchical universal model.
22 / 30



No posterior support for Universal 17/17’
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Correlation between verb order and adjective order

• lineages fall into two, about equally sized,
groups:

1 negative or no correlation
Nuclear Macro-Je, Mande, Siouan, Pama-Nyungan, Austronesian, ...

2 positive correlation
Uto-Aztecan, Afro-Asiatic, Indo-Euroean, Dravidian, Austroasiatic,

Otomanguean, ...
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word order correlation: lineage-wise posterior distribution
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Correlation between verb order and adjective order
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A representative family for each type
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Pama-Nyungan
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Conclusion
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• no empirical support for Universal 17
• more nuanced picture for its mirror image:

• two different possible dynamics governing relationship between verb-object and
noun-adjective order

• Dependency Length Minimization is operative in one dynamic, but not the other
• reminds of an OT style pattern, with two competing constraints
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