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Overview

Signaling games with a Euclidean meaning space: the model

structure of Nash equilibria

evolution: finite strategy space

evolution: infinite strategy space

applications and modifications
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Signaling game

two players:

Sender
Receiver

set of Meanings

finite set of Forms

sequential game:

1 nature picks out m ∈M according to some probability
distribution p and reveals m to S

2 S maps m to a form f and reveals f to R
3 R maps f to a meaning m′
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Signaling game

standard utility function (extensive form):

us/r(m, f,m
′) =

{
1 if m = m′

0 else

or perhaps

us/r(m, f,m
′) = −cost(f) +

{
1 if m = m′

0 else
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Euclidean meaning space

Modification of standard model:

graded notion of similarity between meanings
players try to maximize similarity between m and m′

implementation using conceptual spaces:

meanings are points in n-dimensional Euclidean space
similarity is inversely related to distance

large set of meanings, small set of forms

Linguistic motivation:

lexical semantics, esp. of simple adjectives
finite categorization of continuous high-dimensional space
possible connections to cognitive psychology and quantitative
distributional semantics
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Utility function

General format

us/r(m, f,m
′) = sim(m,m′)

sim(x, y) is strictly
monotonically decreasing in
Euclidean distance ‖x− y‖

in this talk, I assume either

a Gaussian similarity
function

sim(x, y)
.
= exp(−‖x− y‖

2

2σ
)

(psychologically plausible),
or

a quadratic dependency

sim(x, y)
.
= −‖x− y‖2

(better mathematical
tractability)
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Normal form

prior probability density function f over meanings (“nature”) is
exogenously given

set of meanings is a finite or a convex and compact subset of Rn

normalized utility functions (S and R are sender/receiver strategies
resp.)

Finite meaning space

us/r(S,R) =
∑
m

f(m)sim(m,R(S(m)))

Continuous meaning space

us/f =

∫
Rn

f(x)sim(x,R(S(x)))dx
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Evolution of strategies

main interest of this talk: which strategy pairs are
dynamically stable under evolution?
evolutionary dynamics:

replicator dynamics
utility = replicative success
idealizations:

infinite population
everybody interacts with everybody else with equal probability

dynamic stability concepts

asymptotically stable point: dynamically attracts all
points that are sufficiently close (according to some suitable
notion of distance between population states)

asymptotically stable set: continous (compact) set of
points that jointly attract all points that are outside the set
but sufficiently close
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Simulations

two-dimensional circular
meaning space

finitely many pixels
(meanings)

uniform distribution over
meanings

initial stratgies are
randomized

update rule according to
(discrete time version of)
replicator dynamics
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Voronoi tesselations

suppose R (a pure strategy) is known to
the sender: which sender strategy would
be the best response to it?

every form f has a “prototypical”
interpretation: R(f)
for every meaning m: S’s best choice is
to choose the f that minimizes the
distance between m and R(f)
optimal S thus induces a partition of
the meaning space
Voronoi tesselation, induced by the
range of R
tiles in a Voronoi tesselation are always
convex
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Nash equilibria

suppose S (also pure) is known to the receiver: which receiver
strategy is a best response?

receiver has map each signal f to a point that maximizes
average similarity to the points in S−f (f)
intuitively, this is the center of f ’s Voronoi cell
formally: if R is a best response to S, then

R(f) = argx min

∫
S−1(f)

f(y)sim(x, y)dy

for continuous meaning space always uniquely defined

for a quadratic similarity function, this is the center of gravity
of the Voronoi cell:

R(f) =

∫
S−1(f)

f(y)ydy
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Evolutionary stability in finite strategy space: static
notion

Theorem (Selten 1980)

In asymmetric games, the evolutionarily stable states are exactly
the strict Nash equilibria.

In asymmetric games and in partnership games, the
asymptotically stable states are exactly the ESSs (Cressman
2003; Hofbauer and Sigmund 1998)

asymptically stable state entails Voronoi tesselation

This does not entail (yet) that evolution always leads to
Voronoi strategies
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Evolutionarily stable sets

some games do not have an ESS

evolution nevertheless leads to Voronoi languages
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Evolutionary stability in finite strategy space: static
notion

Definition

A set E of symmetric Nash equilibria is an evolutionarily stable set
(ESSet) if, for all x∗ ∈ E, u(x∗, y) > u(y, y) whenever
u(y, x∗) = u(x∗, x∗) and y 6∈ E. (Cressman 2003)

Observation

If R is a pure receiver strategy, the inverse image of any
S ∈ BR(R) is consistent with the Voronoi tessellation of the
meaning space that is induced by the image of R.
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Evolutionary stability in finite strategy space: static
notion

Theorem

If a symmetric strategy is an element of some ESSet, the inverse
image of its sender strategy is consistent with the Voronoi
tessellation that is induced by the image of its receiver strategy.

sketch of proof:

game in question is symmetrized asymmetric game
ESSets of symmetrized games coincide with SESets of
asymmetric game (Cressman, 2003)
SESets are sets of NE
SESets are finite unions of Cartesian producs of faces of the
state space
hence every component of an element of an SESet is a best
reply to some pure strategy
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Static and dynamic stability in finite strategy space

Asymptotic stability

in symmetrized games with a finite strategy space, a set E is
an asymptotically stable set of rest points if and only if it is
an ESSet

in partnership games, at least one ESSet exists

intuitive interpretation: under replicator dynamics + small
effects of drift, system will eventually converge into some
ESSet
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Dynamic stability in games with continuous strategy
spaces

in finite games, every strict Nash equilibrium is asymptotically
stable

for games with a continuum of strategies, things are more
complex ... (cf. for instance Oechssler and Riedel 2001)

definition of stability refers to topology of the state space, i.e.
to a notion of closeness between population states
population state: probability measure over strategies
finite strategy space: closeness of states means closeness of
probabilities for each strategy
continuous strategy space: small deviation means

few agents change their strategy drastically, or
many agents change their strategy slightly

every asymptotically stable point (set) is an ESS (ESSet), but
not vice versa
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Dynamic stability in games with continuous strategy
spaces

Example

u(x, y) = −x2 + 4xy

all real numbers are possible strategies

(0, 0) is a strict Nash equilibrium

homogeneous 0-population cannot
be invaded by a single mutant with
a different strategy

if entire population mutates to
some ε 6= 0, it will not return to
the equilibrium, no matter how
small |ε| is
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Signaling games with continuous meaning space

each such game has an asymptotically stable rest point

sketch of proof:
in partnership games, utility is a Lyapunov function
utility is continuous is state space
state space is compact
hence utility has a maximum, which must then be
asymptotically stable

every trajectory converges to some as. st. state

all asymptotically stable states are strict Nash equilibria

as in previous example, not every strict NE is as. st.

several static stability notions have been suggested in the
literature, but none coincides with dynamic stability for the
class of games considered here
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Signaling games with continuous meaning space

Example

meaning space: unit
square [0, 1]× [0, 1]

uniform probability
distribution

quadratic similarity
function

two signals
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Stability vs. efficiency

Example

meaning space:
rectangle
[0, a]× [0, b] with
3b2 > 2a2

uniform probability
distribution

quadratic similarity
function

two signals
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Stability vs. efficiency

Example

meaning space:
rectangle
[0, a]× [0, b] with
3b2 > 2a2

uniform probability
distribution

quadratic similarity
function

two signals

two dynamically stable states

the left one has a higher utility than
the right one

this means that the left equilibrium
is sub-optimal but nevertheless
stable
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Unit square, three words

four strict equilibria (up to symmetries)

only the first one is dynamically stable
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Unit square, many words

for small number of words, square shaped cells are stable

for larger numbers, evolution favors hexagonal cells

. . .
. . .
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Skewed probability distributions

uniform probability distribution over meanings favors
tesselation into regular polygons

skewed distributions lead to irregular shapes

tendency: high probability regions are covered by small tiles

no analytical results about this so far though
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Potential application: color categorization

The color solid

psychological color space

three-dimensional
Euclidean topology (where distances reflect subjective
similarities)
irregularly shaped spindle-like object
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The Munsell chart

2d-rendering of the surface of the color solid
8 levels of lightness
40 hues

plus: black–white axis with 8 shaded of grey in between
neighboring chips differ in the minimally perceivable way
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The World Color Survey

building on work by Berlin and Kay, in 1976 Kay and
co-workers launched the world color survey

investigation of 110 non-written languages from around the
world

around 25 informants per language

two tasks:

the 330 Munsell chips were presented to each test person one
after the other in random order; they had to assign each chip
to some basic color term from their native language
for each native basic color term, each informant identified the
prototypical instance(s)
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Convex color categories

categorization task leads to partition of Munsell space for
each participant
raw data are noisy; statistical dimensionality reduction yields
smooth partitions (cf. Jäger 2009; Jäger 2010)

raw and processed data from a randomly picked WCS participant
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Convex approximation

on average, 93.7% of all Munsell
chips are correctly classified by best
convex approximation

only small number of possible
tesselations (up to some minor
variation)a

question for future research: are
these partitions Voronoi?

if so: can we somehow estimate the
prior probabilities for colors to come
up with actual empirical (here:
typological) predictions?

aThings are not quite as clear-cut as Berlin
and Kay would have it though.
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Finitely many meanings, continuous signal space

Related modification of standard model

finitely many meanings

continuum of forms (points in a Euclidean space)

noisy transmission

noise is normally distributed
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Signaling with noisy transmission

Strict Nash equilibria

sender strategy: mapping from vowel categories to points in
the meaning space

receiver strategy: categorization of signals
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Voronoi tesselations

suppose receiver strategy R is given and
known to the sender: which sender
strategy would be the best response to it?

every signal f has a “prototypical”
interpretation: R(f)
for every meaning m: S’s best choice is
to choose the f that minimizes the
distance between m and R(f)
optimal S thus induces a Voronoi
tesselation of the signal space
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Extreme prototypes

Best response of the sender

suppose strategy of receiver — essentially a partition of the
signal space — is known

best response of the sender is to maximize distance to
boundaries of this partition

if a partition cell is at the boundary of the signal space, the
prototype is not central but extreme
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Application: vowel space

meanings: vowel phonemes
signals: points in acoustic F1/F2 space

Simulations

colored dots display receiver strategies

suggestive similarity to typologically attested patterns
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Directions for future work

more specific generalizations on relation probability
distribution/equilibrium structure

impact of costs

same question for game with noisy signals

endogenization of prior probabilities

other metrical spaces

non-partnership games
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