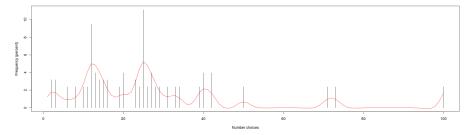
Cost-based pragmatic implicatures in an artificial language experiment

Judith Degen, Michael Franke & Gerhard Jäger Rochester/Stanford Amsterdam Tübingen

July 27, 2013

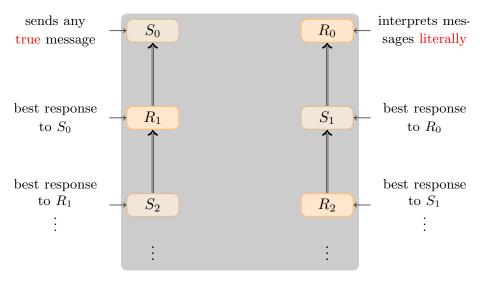
Workshop on Artificial Grammar Learning Tübingen



The Beauty Contest

- each participant has to write down a number between 0 and 100
- all numbers are collected
- the person whose guess is closest to 2/3 of the arithmetic mean of all numbers submitted is the winner

The Beauty Contest


(data from Camerer 2003, Behavioral Game Theory)

Signaling games

sequential game:

- **1** nature chooses a world w
 - $\bullet\,$ out of a pool of possible worlds W
 - ${\ensuremath{\, \bullet }}$ according to a certain probability distribution p^*
- **2** nature shows w to sender **S**
- ${f 0}$ S chooses a message m out of a set of possible signals M
- **④** S transmits m to the receiver **R**
- S R chooses an action *a*, based on the sent message.
- Both S and R have preferences regarding R's action, depending on w.
- S might also have preferences regarding the choice of *m* (to minimize signaling costs).

The Iterated Best Response sequence

Degen, Franke & Jäger (AGL-Workshop)

Quantity implicatures

- (1) a. Who came to the party?
 - **b.** SOME: Some boys came to the party.
 - **c.** ALL: All boys came to the party.

Game construction

- $ct = \emptyset$
- $W = \{w_{\exists \neg \forall}, w_{\forall}\}$
- $w_{\exists \neg \forall} = \{\text{SOME}\}, w_{\forall} = \{\text{SOME, ALL}\}$

•
$$p^* = (1/2, 1/2)$$

• interpretation function:

$$\|\text{SOME}\| = \{w_{\exists \neg \forall}, w_{\forall}\} \\ \|\text{ALL}\| = \{w_{\forall}\} \\ \|w_{\forall}\}$$

• utilities:

$$\begin{array}{c|c} a_{\exists\neg\forall} & a_{\forall} \\ \hline w_{\exists\neg\forall} & 1, 1 & 0, 0 \\ w_{\forall} & 0, 0 & 1, 1 \end{array}$$

Truth conditions

	SOME	ALL
$w_{\exists \neg \forall}$	1	0
w_\forall	1	1

Example: Quantity implicatures

S_0	SOME	ALL	R_0	$w_{\exists \neg \forall}$	w_{\forall}
$w_{\exists \neg \forall}$	1	0	SOL	ME $1/2$	1/2
w_{\forall}	1/2	$^{1/2}$	ALI	L 0	1
R_1	$w_{\exists \neg \forall}$	w_{\forall}	S_1	SOME	ALL
$\frac{R_1}{\text{SOME}}$		$\frac{w_\forall}{0}$	$\frac{S_1}{w_{\exists^-}}$		ALL

 $F = (R_1, S_1)$

In the fixed point, ${\rm SOME}$ is interpreted as entailing $\neg {\rm ALL},$ i.e. exhaustively.

0

Lifted games

- a. Ann or Bert showed up. (= OR)
 - **b.** Ann showed up. (= A)
 - **c.** Bert showed up. (= B)
 - **d.** Ann and Bert showed up. (= AND)
- w_a : Only Ann showed up.
- w_b : Only Bert showed up.
- w_{ab} : Both showed up.

Truth conditions

	OR	А	В	AND
$\{w_a\}$	1	1	0	0
$\{w_b\}$	1	0	1	0
$\{w_{ab}\}$	1	1	1	1
$\{w_a, w_b\}$	1	0	0	0
$\{w_a, w_{ab}\}$	1	1	0	0
$\{w_b, w_{ab}\}$	1	0	1	0
$\{w_a, w_b, w_{ab}\}$	1	0	0	0

IBR sequence: 1				
S_0	OR	А	В	AND
$\{w_a\}$	$^{1/2}$	1/2	0	0
$\{w_b\}$	$^{1/2}$	0	$^{1/2}$	0
$\{w_{ab}\}$	1/4	1/4	1/4	1/4
$\{w_a, w_b\}$	1	0	0	0
$\{w_a, w_{ab}\}$	1/2	1/2	0	0
$\{w_b, w_{ab}\}$	$^{1/2}$	0	$^{1/2}$	0
$\{w_a, w_b, w_{ab}\}$	1	0	0	0

IBR	seque	nce: 2						
	R_1	$\{w_a\}$	$\{w_b\}$	$\{w_{ab}\}$	$\{w_a, w_b\}$	$\{w_a, w_{ab}\}$	$\{w_b, w_{ab}\}$	$\{w_a, w_b, w_{ab}\}$
	OR	0	0	0	1	0	0	0
	А	1	0	0	0	0	0	0
	В	0	1	0	0	0	0	0
	AND	0	0	1	0	0	0	0

IBR sequence: 3					
S_2	OR	А	В	AND	
$\{w_a\}$	0	1	0	0	
$\{w_b\}$	0	0	1	0	
$\{w_{ab}\}$	} 0	0	0	1	
$\{w_a, \cdots, w_{a_i}\}$	w_b 1	0	0	0	
$\{w_a, \cdots, w_{a_i}\}$	w_{ab} } $1/2$	1/2	0	0	
$\{w_b, w_b\}$	w_{ab} } $1/2$	0	$^{1/2}$	0	
$\{w_a,$	$w_b, w_{ab}\} = 1$	0	0	0	

- OR is only used in $\{w_a, w_b\}$ in the fixed point
- this means that it carries two implicatures:
 - exhaustivity: Ann and Bert did not both show up
 - ignorance: Sally does not know which one of the two disjuncts is true

Predicting behavioral data

- Behavioral Game Theory: predict what real people do (in experiments), rather what they ought to do if they were perfectly rational
- one implementation (Camerer, Ho & Chong, TechReport CalTech):
 - **stochastic choice:** people try to maximize their utility, but they make errors
 - **level**-*k* thinking: every agent performs a fixed number of best response iterations, and they assume that everybody else is less smart (i.e., has a lower strategic level)

Stochastic choice

- real people are not perfect utility maximizers
- they make mistakes \rightsquigarrow sub-optimal choices
- still, high utility choices are more likely than low-utility ones

Rational choice: best response

$$P(a_i) = \begin{cases} \frac{1}{|\arg_j \max u_i|} & \text{if } u_i = \max_j u_j \\ 0 & \text{else} \end{cases}$$

Stochastic choice: (logit) quantal response

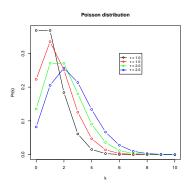
$$P(a_i) \propto e^{\lambda u_i}$$

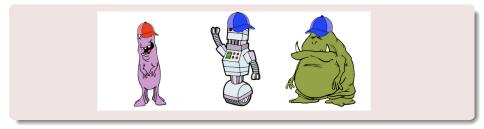
Degen, Franke & Jäger (AGL-Workshop)

Stochastic choice

- λ measures degree of rationality
- $\lambda = 0$:
 - completely irrational behavior
 - all actions are equally likely, regardless of expected utility
- $\lambda \to \infty$
 - convergence towards behavior of rational choice
 - probability mass of sub-optimal actions converges to 0

Iterated Quantal Response (IQR)

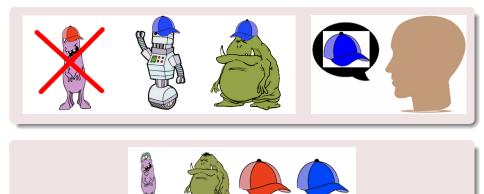

- variant of IBR model
- best response ist replaced by quantal response
- predictions now depend on value for λ
- no 0-probabilities
- IQR converges gradually

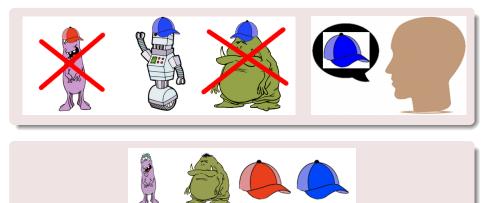

Level-k thinking

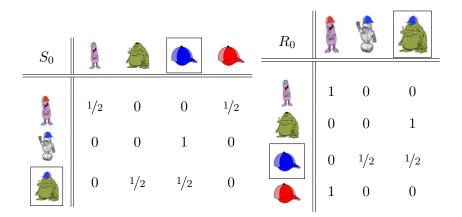
- every player:
 - performs iterated quantal response a limited number k of times (where k may differ between players),
 - assumes that the other players have a level < k, and
 - assumes that the strategic levels are distributed according to a **Poisson distribution**

$$P(k) \propto \tau^k / k!$$

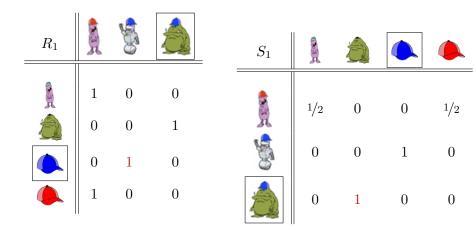
 τ, a free parameter of the model, is the average/expected level of the other players

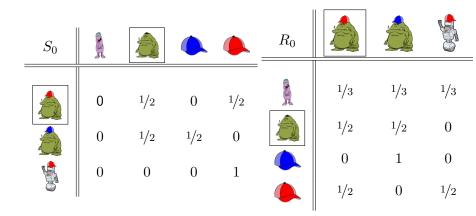


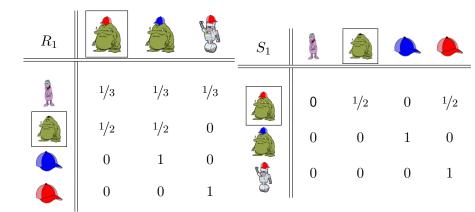


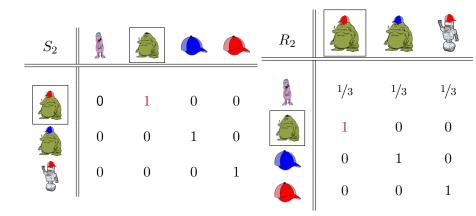

Degen, Franke & Jäger (AGL-Workshop)

7/27/2013 20 / 42




Simple condition: Literal meanings


Simple condition: Iterated Best Response

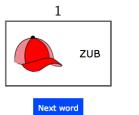

Complex condition: Literal meanings

Complex condition: Iterated Best response

Complex condition: Iterated Best response

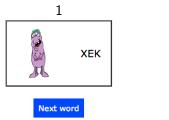
Experiment 1 - comprehension

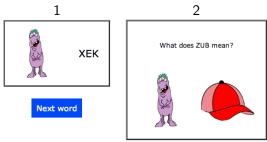
- test participants' behavior in a comprehension task implementing previously described signaling games
- 48 participants on Amazon's Mechanical Turk
- two stages:
 - language learning
 - inference
- 36 experimental trials
 - 6 simple (one-step) implicature trials
 - 6 complex (two-step) implicature trials
 - 24 filler trials (entirely unambiguous/ entirely ambiguous target)



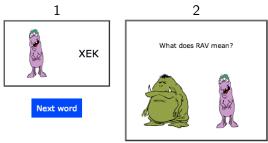
Three stages of language learning: 1 2

2

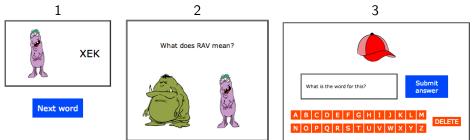

Three stages of language learning:


2

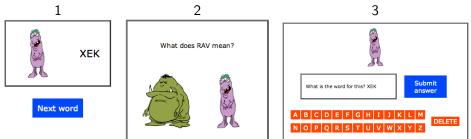
Three stages of language learning:



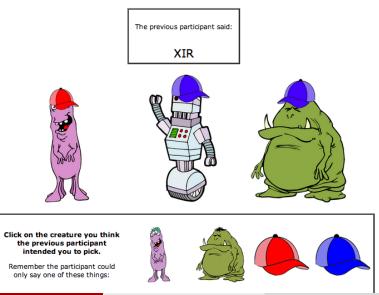
Three stages of language learning:



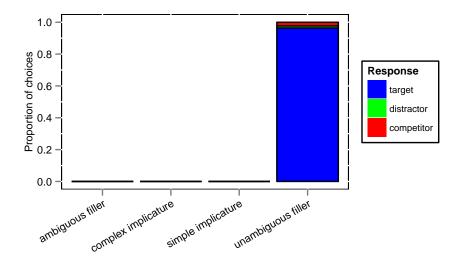
Three stages of language learning:

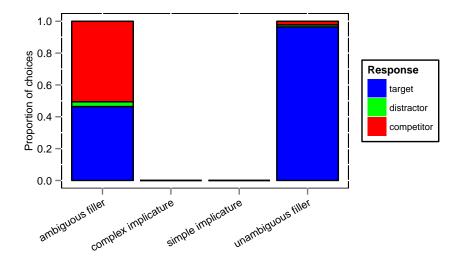


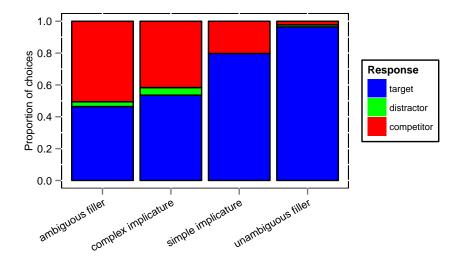
Three stages of language learning:



Three stages of language learning:

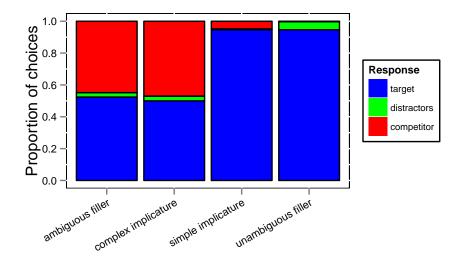



Inference trial



Degen, Franke & Jäger (AGL-Workshop)

Cost-based implicatures



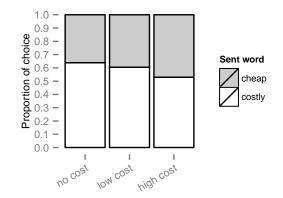
Experiment 2 - production

- test participants' behavior in a production task implementing previously described signaling games
- 48 participants on Amazon's Mechanical Turk
- two stages:
 - language learning
 - inference
- 36 experimental trials
 - 6 simple (one-step) implicature trials
 - 6 complex (two-step) implicature trials
 - 24 filler trials (entirely unambiguous/ entirely ambiguous target)

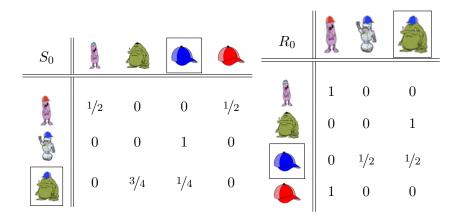
Experiment 3 - varying message costs

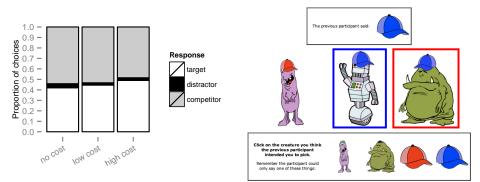
- Question 1: Are comprehenders aware of message costs?
- Question 2: If a cheap ambiguous message competes with a costly unambiguous one, do we find quantity implicatures, and if so, how does its likelihood depend on message costs?
- 240 participants on Amazon's Mechanical Turk
- three stages:
 - language learning
 - cost estimation
 - inference (18 trials, 6 inference and 12 filler trials)

Cost estimation


two cheap features

one cheap & one costly feature


Results - proportion of costly messages


The use of costly messages decreases as the cost of that message increases.

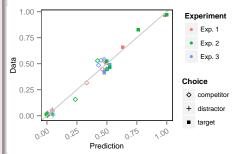
Cost-based implicatures

Simple condition: Literal meanings

Inference results

The Quantity inference becomes more likely as the cost of the ambiguous message increases.

Model fitting


Fitted parameters

- cost estimation: mixed effects logistic regression on the data from experiment 3
- reasoning parameters fitted via least squares regression:
 - comprehension (experiments 1, 3)

 $\lambda = 4.825, \tau = 0.625, r = 0.99$

• production (experiment 2)

 $\lambda = 8.853, \tau = 0.818, r = 0.99$

Conclusion

- proof of concept: game theoretic model captures experimental data quite well
- both speakers and listeners routinely perform simple inference steps
- likelihood of nested inferences is rather low
- speakers behave more strategically than listeners

Collaborators

