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Introduction

Word order correlations

@ Greenberg, Keenan, Lehmann etc.: general
tendency for languages to be either
consistently head-initial or consistently ]
head-final e

@ alternative account (Dryer, Hawkins): phrases
are consistently left- or consistently
right-branching

@ can be formalized as collection of implicative
universals, such as 3
With overwhelmingly greater than chance
frequency, languages with normal SOV order
are postpositional. (Greenberg's Universal 4) PO RP—

+| @ VoIPreposiions 454

@ both generativist and functional/historical
explanations in the literature
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Introduction

Phylogenetic non-independence

@ languages are phylogenetically structured

o if two closely related languages display the
same pattern, these are not two
independent data points

= we need to control for phylogenetic
dependencies
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(from Dunn et al., 2011)
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Introduction

Phylogenetic non-independence

Maslova (2000):

“If the A-distribution for a given typology cannot be as-
sumed to be stationary, a distributional universal cannot

be discovered on the basis of purely synchronic statistical
data.”

“In this case, the only way to discover a distributional
universal is to estimate transition probabilities and as
it were to ‘predict’ the stationary distribution on the basis
of the equations in (1)."
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The phylogenetic comparative method

The phylogenetic comparative method
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Modeling language change

Markov process
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Modeling language change

Markov process Phylogeny
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Modeling language change

Markov process Phylogeny
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Estimating rates of change

o if phylogeny and states of extant languages are kn

own...



The phylogenetic comparative method

Estimating rates of change

o if phylogeny and states of extant languages are known...

@ ... transition rates, stationary probabilities and ancestral states can be estimated based on
Markov model
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The phylogenetic comparative method

Correlation between features

Pagel and Meade (2006)

@ construct two types of Markov processes:

e independent: the two features evolve according to independend Markov processes
o dependent: rates of change in one feature depends on state of the other feature

@ fit both models to the data

@ apply statistical model comparison

Independent model Dependent model

o o e

Gerhard Jager (Tiibingen) Phylogenetic typology LanGeLin Workshop 9/39



Dunn et al. (2011)
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Dunn et al. (2011)

g Postposition,

@ all 28 pairs of 8 word-order features considered / ‘\\ //(

Postposition, Preposition, Postposition, Preposition,
object-verb verb-object object-verb verb-object

@ 4 language families: Austronesian, Bantu,
Indo-European, and Uto-Aztecan

@ main finding: wildly different results between
families

@ conclusion:
word-order correlations are lineage-specific
v

Austronesian Indo-European Uto-Aztecan
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Universal and lineage-specific models

Universal and lineage-specific models
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This study

© replication of Dunn et al. (2011) with different data

© model comparison: universal vs. lineage-specific correlations

© word-order correlations across a comprehensive collection of language families

| data; | | data, | | datas | | data4| | data; | | data, | | datas | | data, |
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Data

e word-order data: WALS
o phylogeny:
o ASJP word lists (Wichmann et al., 2016)
o feature extraction (automatic cognate detection, inter alia) ~» character matrix
e Maximum-Likelihood phylogenetic inference with Glottolog (Hammarstrém et al., 2016) tree

as backbone
o advantages over hand-coded Swadesh lists

@ applicable across language familes
@ covers more languages than those for which expert cognate judgments are available

e 1004 languages in total
o Austronesian: 123; Bantu: 41; Indo-European: 53; Uto-Aztecan: 13
o 34 families with at least five languages; comprising 768 languages in total
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Universal and lineage-specific models

Phylogenetic tree sample
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iversal and lineage-specific models

Replication of Dunn et al.
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Comparing universal and lineage-specific models

@ so far: fitting a separate model for each language family
o advantage: good fit of the lineage-specific data
o disadvantage: many parameters (8 per family for a dependent model)
@ statistical model comparison: quantifying to what degree the data support the excess
parameters of lineage-specific models
@ models to be compared:
e universal: one set of rates (8 parameters), applying to all 4 families
o lineage specific: a separate set of rates for each family
@ comparison via Bayes Factor
(implementation with RevBayes; Hohna et al. 2016)
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Results

universal vs. lineage correlated vs.
specific independent

feature pair Bayes Factor

feature pair  Bayes Factor

3 3
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Results

@ one tightly connected cluster of mutually universally
correlated word order features

@ comprises Dryer's (1992) verb patterners + V-Subj
@ additionally some correlations regarding NP syntax
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Universal and lineage-specific models

Results

universal (AdvP-N/V-Obj) lineage-specific (N-Gen/N-Num)

Austronesian

wwwwwwwwww

Uto-Aztecan
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Universal and lineage-specific models

What the universal dependencies look like
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Hierarchical Models

Hierarchical Models
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Hierarchical Models

Hierarchical Bayesian models

o @o> G G @O
Y ' ' — 4 N\
e s sl ol s
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lineage-specific universal
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Hierarchical Models

Hierarchical Bayesian models
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Hierarchical Models

Hierarchical Models

hyper-parameter
@ each family has its own parameters / \
@ parameters are all drawn from the same - - @ @
distribution D

@ shape of D is learned from the data

@ prior assumption that there is little | data1 | | data2 |

cross-family variation — can be

overwritten by the data - - @ @

Gerhard Jager (Tiibingen) Phylogenetic typology LanGeLin Workshop 24 /39



Hierarchical Models

Hierarchical Models

hyper-parameter

@ each family has its own parameters

@ parameters are all drawn from the same M\ \

@ shape of D is learned from the data + +

@ prior assumption that there is little
cross-family variation — can be | datal | | data2 |
overwritten by the data

@ enables information flow across families - - @ @
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Hierarchical Models

Trans-dimensional parameter estimation

@ Which version should we choose for CTMC; — the dependent or the independent one?
@ Choice can be left to the data via trans-dimensional parameter estimation
@ a.k.a. Reversible-Jump Markov Chain Monte Carlo

< 3
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Model comparison

model
. lineageSpeciic

| .

@ overall, hierarchical model outperforms both lineage
specific and universal model

Bayes Factor

@ exceptions in extreme cases

lineageSpecific universal
model

Gerhard Jager (Tiibingen) Phylogenetic typology LanGeLin Workshop 26/39



archical Models

Posterior probability of dependent model

feature pair P(dependent model|data
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Intermediate summary

Intermediate summary
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Intermediate summary

Intermediate summary

@ strong signal for universal word-order correlations, e.g.
e Adp-N / V-Obj

Adp-N / N-Gen

N-Gen / V-Obj

N-Gen / V-Subj

N-Dem / N-Num

N-Adj / N-Rel

V-Obj / V-Subj

V-Obj / N-Rel

@ signal only becomes apparent if we look at several families simultaneously

@ Bayesian hierarchical models:

o allows the model fit for individual families to inform each other
o lets the data decide to what degree patterns are universal and to what degree lineage-specific
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Further applications (work in progress)

Gerhard Jager (Tiibingen) Phylogenetic typology LanGeLin Workshop 30/39



Further applications (work in progress)

Case marking patterns

@ Maslova and Nikitina (2007): implementation of Maslova's (2000) program

@ rate estimation of CTMC by using two heuristics:
e how many languages of type A occur in a predominantly B-family
e how many pairs of closely related languages differ in their type
@ no phylogenetic information of intermediate time depths
@ no branch length infomation
@ universality is assumed a priori
@ conclusion: nominative is at least three times as likely as ergative in the equilibrium

distribution of the CTMC
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Further applications (work in progress)

Case marking patterns

@ data: from Maslova and Nikitina (2007)
@ intersected with (character-transformed) ASJP data
@ 260 languages from 23 families
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Further applications (work in progress)

Case marking patterns

@ main conclusions

o with 85% posterior probability, nominative is more likely in equilibrium than ergative
o with 82% posterior probability, ergative is more likely than nominative
e very high degree of uncertainty
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Major word orders

Major word orders
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Major word orders

Statistics of major word order distribution

@ data: WALS intersected with ASJP
@ 1,055 languages, 201 lineages, 71 families with at least 3 languages

Raw numbers

SOV SVO VSO VOS O0vS O0sv
497 447 78 20 10 3
47.1% 424% 74% 19% 0.9% 0.3%

by language

1000

0

pattern

. sov
. Svo
. (o)
M vos
Hovs

osv

Weighted by lineages

SOV SVO VSO VOS O0VS O0sVv

135.1 469 10.5 4.0 3.7 0.8
67.2% 233% 52% 2.0% 18% 0.4%

by family

pattern
M sov
M svo
M vso
M vos
Hovs

osv
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Major word orders

Estimating transition rates

@ totally unrestricted model, all 30 expected strength of flow
transition rates are estimed

independently @
@ implementation using RevBayes /1 \\\\\
(Héhna et al., 2016) @

\
%«\e\\/
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Reconstruction history with SIMMAP

@ estimated frequency of mutations within the 77 families under consideration (posterior
mean and 95% HPD, 100 simulations

sov svo VSO VoS ovs oSV

sov - 515 [19;82] 102 [1;19] 7.5 [0;29] 5.8 [0;14] 4.2 [0;13]

SVO 838 [31;131] - 223 [%42] 104 [0;30] 2.8 [0;8] 3.9 [0;12]

VSO 14 [0;5] 83  [0;24) - 290 [5:45] 3.0 [0;9] 1.1 [0;5]

VOS 43  [0;15] 141.9 [115188] 30.9 [17;47] - 21 [0;9] 1.0 [0;3]

ovVsS 111 [0;28] 08 [0;4 1.8 [0;8] 04 [0;3] - 08 [0;5]
]

oSV 42 [0;15] 04 03] 1.9 [o;11] 1.1 [0;7] 1.1 [0;9] -
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Major word orders

Posterior distributions

Empirical vs. estimated distribution

equilibrium probabilities: posterior distribution

VOS-
OSV-
OVS-
Y .

A ¥
! Y
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Major word orders

Posterior distributions

Waiting times

expected waiting times: posterior distribution

VOS-
ovs L
£0SV-
2
T
. .
VSO
SVO- A
SOV- ———e—

0 100 200
expected waiting time in 1,000 years
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Major word orders
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