On the proper use of phylogenetic information in typology

Gerhard Jäger

Tübingen University

Workshop Phylogenetic Linguistics and Linguistic Theory

York, November 15, 2018

Introduction

Word order correlations

- Greenberg, Keenan, Lehmann etc.: general tendency for languages to be either consistently head-initial or consistently head-final
- alternative account (Dryer, Hawkins): phrases are consistently left- or consistently right-branching
- can be formalized as collection of implicative universals, such as
 With overwhelmingly greater than chance frequency, languages with normal SOV order are postpositional. (Greenberg's Universal 4)
- both generativist and functional/historical explanations in the literature

Phylogenetic non-independence

- languages are phylogenetically structured
- if two closely related languages display the same pattern, these are not two independent data points
- ⇒ we need to control for phylogenetic dependencies

(from Dunn et al., 2011)

Phylogenetic non-independence

Maslova (2000):

"If the A-distribution for a given typology cannot be assumed to be stationary, a distributional universal cannot be discovered on the basis of purely synchronic statistical data."

"In this case, the only way to discover a distributional universal is to **estimate transition probabilities** and as it were to 'predict' the stationary distribution on the basis of the equations in (1)."

The phylogenetic comparative method

Modeling language change

Markov process

Modeling language change

Markov process

Phylogeny

Modeling language change

Markov process

Phylogeny

Branching process

Estimating rates of change

• if phylogeny and states of extant languages are known...

Estimating rates of change

- if phylogeny and states of extant languages are known...
- ... transition rates, stationary probabilities and ancestral states can be estimated based on Markov model

Correlation between features

Pagel and Meade (2006)

- construct two types of Markov processes:
 - independent: the two features evolve according to independend Markov processes
 - dependent: rates of change in one feature depends on state of the other feature
- fit both models to the data
- apply statistical model comparison

Independent model VO PN OV/PN OV/NP VO/NP

Dunn et al. (2011)

Dunn et al. (2011)

- all 28 pairs of 8 word-order features considered
- 4 language families: Austronesian, Bantu, Indo-European, and Uto-Aztecan
- main finding: wildly different results between families
- conclusion: word-order correlations are lineage-specific

Universal and lineage-specific models

This study

Experiments

- replication of Dunn et al. (2011) with different data
- 2 model comparison: universal vs. lineage-specific correlations
- word-order correlations across a comprehensive collection of language families

Data

- word-order data: WALS
- phylogeny:
 - ASJP word lists (Wichmann et al., 2016)
 - feature extraction (automatic cognate detection, *inter alia*) → character matrix
 - Maximum-Likelihood phylogenetic inference with Glottolog (Hammarström et al., 2016) tree as backbone
 - advantages over hand-coded Swadesh lists
 - applicable across language familes
 - covers more languages than those for which expert cognate judgments are available
 - 1004 languages in total
 - Austronesian: 123; Bantu: 41; Indo-European: 53; Uto-Aztecan: 13
 - 34 families with at least five languages; comprising 768 languages in total

Phylogenetic tree sample

Replication of Dunn et al.

Comparing universal and lineage-specific models

- so far: fitting a separate model for each language family
 - advantage: good fit of the lineage-specific data
 - disadvantage: many parameters (8 per family for a dependent model)
- statistical model comparison: quantifying to what degree the data support the excess parameters of lineage-specific models
- models to be compared:
 - universal: one set of rates (8 parameters), applying to all 4 families
 - lineage specific: a separate set of rates for each family
- comparison via Bayes Factor (implementation with RevBayes; Höhna et al. 2016)

Results

universal vs. lineage specific

correlated vs. independent

correlated

Results

- one tightly connected cluster of mutually universally correlated word order features
- comprises Dryer's (1992) verb patterners + V-Subj
- additionally some correlations regarding NP syntax

Results

universal (AdvP-N/V-Obj)

lineage-specific (N-Gen/N-Num)

What the universal dependencies look like

Hierarchical Models

Hierarchical Bayesian models

lineage-specific

universal

Hierarchical Bayesian models

lineage-specific

universal

hierarchical

Hierarchical Models

- each family has its own parameters
- parameters are all drawn from the same distribution D
- ullet shape of D is learned from the data
- prior assumption that there is little cross-family variation → can be overwritten by the data

Hierarchical Models

- each family has its own parameters
- parameters are all drawn from the same distribution D
- ullet shape of D is learned from the data
- prior assumption that there is little cross-family variation → can be overwritten by the data
- enables information flow across families

Trans-dimensional parameter estimation

- Which version should we choose for CTMC_i the dependent or the independent one?
- Choice can be left to the data via trans-dimensional parameter estimation
- a.k.a. Reversible-Jump Markov Chain Monte Carlo

Model comparison

- overall, hierarchical model outperforms both lineage specific and universal model
- exceptions in extreme cases

Posterior probability of dependent model

featur	e pair	P(dependent model data)
Adp-N	N-Gen	0.94
Adp-N	V-Obj	0.93
N-Adj	N-Num	0.91
V-Obj	V-Subj	0.90
N-Gen	V-Obj	0.89
V-Obj	N-Rel	0.88
N-Dem	N-Num	0.87
N-Dem	N-Gen	0.87
N-Adj	N-Gen	0.87
N-Rel	V-Subj	0.87
N-Adj	N-Dem	0.86
Adp-N	N-Rel	0.85
Adp-N	V-Subj	0.85
N-Dem	V-Subj	0.83
N-Adj	N-Rel	0.83
N-Gen	V-Subj	0.83
N-Gen	N-Rel	0.81
N-Adj	V-Obj	0.80
Adp-N	N-Dem	0.80
N-Adj	Adp-N	0.77
N-Gen	N-Num	0.76
Adp-N	N-Num	0.75
N-Dem	V-Obj	0.73
N-Num	V-Obj	0.70
N-Dem	N-Rel	0.68
N-Num	N-Rel	0.59
N-Adj	V-Subj	0.58
N-Num	V-Subj	0.57

ndependent

Intermediate summary

Intermediate summary

- strong signal for universal word-order correlations, e.g.
 - Adp-N / V-Obj
 - Adp-N / N-Gen
 - N-Gen / V-Obj
 - N-Gen / V-Subj
 - N-Dem / N-Num
 - N-Adj / N-Rel
 - V-Obj / V-Subj
 - V-Obj / N-Rel
- signal only becomes apparent if we look at several families simultaneously
- Bayesian hierarchical models:
 - allows the model fit for individual families to inform each other
 - lets the data decide to what degree patterns are universal and to what degree lineage-specific

Further applications (work in progress)

Case marking patterns

- Maslova and Nikitina (2007): implementation of Maslova's (2000) program
- rate estimation of CTMC by using two heuristics:
 - ullet how many languages of type A occur in a predominantly B-family
 - how many pairs of closely related languages differ in their type
- no phylogenetic information of intermediate time depths
- no branch length infomation
- universality is assumed a priori
- conclusion: nominative is at least three times as likely as ergative in the equilibrium distribution of the CTMC

Case marking patterns

- data: from Maslova and Nikitina (2007)
- intersected with (character-transformed) ASJP data
- 260 languages from 23 families

Case marking patterns

- main conclusions
 - with 85% posterior probability, nominative is more likely in equilibrium than ergative
 - ullet with 82% posterior probability, ergative is more likely than nominative
 - very high degree of uncertainty

Major word orders

Statistics of major word order distribution

- data: WALS intersected with ASJP
- 1,055 languages, 201 lineages, 71 families with at least 3 languages

Raw numbers

SOV	SVO	VSO	VOS	OVS	OSV
497	447	78	20	10	3
47.1%	42.4%	7.4%	1.9%	0.9%	0.3%

Weighted by lineages

•	SOV	SVO	VSO	VOS	OVS	OSV
	135.1	46.9	10.5	4.0	3.7	0.8
	67.2%	23.3%	5.2%	2.0%	1.8%	0.4%

Estimating transition rates

- totally unrestricted model, all 30 transition rates are estimed independently
- implementation using RevBayes (Höhna et al., 2016)

expected strength of flow

Reconstruction history with SIMMAP

ullet estimated frequency of mutations within the 77 families under consideration (posterior mean and 95% HPD, 100 simulations

	\mathbf{sov}		svo		\mathbf{vso}		\mathbf{vos}		ovs		osv	
sov	_		51.5	[19; 82]	10.2	[1; 19]	7.5	[0; 29]	5.8	[0; 14]	4.2	[0; 13]
svo	83.8	[31; 131]	_		22.3	[2; 42]	10.4	[0; 30]	2.8	[0; 8]	3.9	[0; 12]
\mathbf{vso}	1.4	[0; 5]	8.3	[0; 24]	_		29.0	[5; 45]	3.0	[0; 9]	1.1	[0; 5]
\mathbf{vos}	4.3	[0; 15]	141.9	[115; 188]	30.9	[17; 47]	_		2.1	[0; 9]	1.0	[0; 3]
ovs	11.1	[0; 28]	0.8	[0; 4]	1.8	[0; 8]	0.4	[0; 3]	_		0.8	[0; 5]
osv	4.2	[0; 15]	0.4	[0; 3]	1.9	[0; 11]	1.1	[0; 7]	1.1	[0; 9]	-	

Posterior distributions

Empirical vs. estimated distribution

Posterior distributions

Waiting times

- $Matthew \ S. \ Dryer. \ The \ Greenbergian \ word \ order \ correlations. \ \textit{Language}, \ 68(1):81-138, \ 1992.$
- Michael Dunn, Simon J. Greenhill, Stephen Levinson, and Russell D. Gray. Evolved structure of language shows lineage-specific trends in word-order universals. Nature, 473(7345):79–82, 2011.
- Harald Hammarström, Robert Forkel, Martin Haspelmath, and Sebastian Bank. Glottolog 2.7. Max Planck Institute for the Science of Human History, Jena, 2016. Available online at http://glottolog.org, Accessed on 2017-01-29.
- Martin Haspelmath, Matthew S. Dryer, David Gil, and Bernard Comrie. The World Atlas of Language Structures online. Max Planck Digital Library, Munich, 2008. http://wals.info/.
- Sebastian Höhna, Michael J. Landis, Tracy A. Heath, Bastien Boussau, Nicolas Lartillot, Brian R. Moore, John P. Huelsenbeck, and Frederik Ronquist. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Systematic biology, 65(4):726–736, 2016. Elena Maslova. A dynamic approach to the verification of distributional universal functions. Integristic Typology, 4(3):307–333, 2000.
- Elena Maslova and E. Nikitina. Stochastic universals and dynamics of cross-linguistic distributions: the case of alignment types. unpublished manuscript, Stanford University, 2007.
- Mark Pagel and Andrew Meade. Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. The American Naturalist, 167(6):808–825, 2006.
- Søren Wichmann, Eric W. Holman, and Cecil H. Brown. The ASJP database (version 17), http://asip.clld.org/, 2016.