Indefinites and Sluicing A Type-Logical Approach

Gerhard Jäger

Workshop Cross-modular approaches to ellipsis

Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
 - Indefinites and scope
 - Sluicing

Anaphora in TLG

Jacobson's proposal

- Semantics: pronouns denote identity functions
- Syntax: third slash: "A|B" is category of anaphoric expression
- **Pronouns: category** np|np

Adaptation to TLG

Natural Deduction rules for anaphora slash

$$[M:A]_{i} \quad \cdots \quad \frac{N:B|A}{[NM:B]_{i}} \mid E, i \qquad \qquad \begin{array}{c} \vdots \quad \frac{M:A|B}{Mx:A} i \\ \vdots \quad \vdots \\ \frac{np:C}{\lambda xN:C|B} \mid I, i \end{array}$$

Only constraint on anaphora resolution: The antecedent must precede the pronoun

Binding

(1) John said he walked

Percolation

VP Ellipsis

2) John revised his paper, and Harry did (too).

- stranded auxiliary *did* is treated as proverb $(\lambda P.P : (np \setminus s)|(np \setminus s))$
- the lexical entry for non-elliptical *did* is $\lambda P.P : (np \setminus s)/(np \setminus s)$
- strict/sloppy ambiguity: pronoun is either identified with the actual subject or with a hypothetical premise that is discharged later

Interaction with Quantification

- Background: Moortgat's in situ binder q(np, s, s)
- to scope a quantifier, 1. insert an hypothetical np into its position, 2. derive the local clause, 3. discharge the assumption, and 4. apply the quantifier to the resulting predicate
- Hypothetical np can serve as antecedent of a pronoun

(3) a. Everybody loves his mother

- Derivation of a bound reading for *His mother loves* everybody fails since the hypothetical np does not precede the pronoun ⇒ accounts for Crossover phenomena
- bound readings only possible as long as quantifier isn't scoped ⇒ bound pronouns are in the scope of the binder

Embedded Antecedents

(4) a. Everybody's mother loves him b.

every body	- lex								
q(np,s,s) EVERY'	- 1 _	s'	_lor					him	_ lor
$[np]_i\\y$	1	$np \backslash np/n$ OF'	$\setminus F$	mother	lor	loves	lor	$\frac{[np np]_i}{\lambda x.x}$	
	np/nOF' y			n MOTHER'		$np \setminus s/np$ LOVES'	- 162	np y	- <i>L</i>
	np OF' y MOTHER'				- / L	L	$np \setminus s$. OVE' y	_\ <i>E</i>	Ľ
	$\frac{s}{\text{LOVE'}y(\text{OF'}y\text{MOTHER'})}{gE,1}$								
	EVERY' $(\lambda y. LOVE' y(OF' yMOTHER'))$								

Covering indefinites

Basic idea

- (5) a. It moved.
 - b. Something moved.
 - Proposal: (a) and (b) have
 - the same denotation: $\lambda x.MOVE'x$
 - different syntactic categories

Type Logical implementation

- yet another substructural implication, " \sim ,"
- Intuition: $A \rightsquigarrow B$: category of B-sign containing an indefinite A
- category of indefinite NPs: $np \rightarrow np$
- *it* and *something* both denote the identity function on individuals

- indefinites function compose with their semantic environment
- Natural deduction rule:

(6)

Descriptive content

- Idea: descriptive content expresses domain restriction
- ||a|| = function that maps a property to the identity function over its extension
- \blacksquare $\|a \ cup\| = identity function on the set of cups$
- Image: Image: Image: Image: Image: Addition of the second structure of the
 - f(x) = 1 iff x is a cup that moved
 - f(x) = 0 iff x is a cup that did not move
 - f(x) is undefined iff x is not a cup

Variable free existential closure

- Existential closure of a partial function: "big union" over its domain
- built in into the truth definition and the semantics of propositional operators (as in DRT)
- Relativization to syntactic categories to confine existential closure to indefinites

Truth is relativized to sequence of referents and syntactic category

Definition 1 (Truth)

$$\vec{e} \models \alpha : s \quad \text{iff} \quad \alpha = 1$$

$$c\vec{e} \models \alpha : S | np \quad \text{iff} \quad \vec{e} \models (\alpha c) : S$$

$$\vec{e} \models \alpha : np \rightsquigarrow S \quad \text{iff} \quad \vec{e} \models (\bigcup (\alpha c)) : S$$

$$\alpha c \text{ is defined}$$

(7) A cup moved.

$$\begin{split} \vec{e} &\models \|\lambda x_{\mathsf{CUP}'x}.\mathsf{MOVE}'x\|_g : np \rightsquigarrow s \iff \\ \vec{e} &\models \bigcup_{a \in \|\mathsf{CUP'}\|_g} \|\mathsf{MOVE'}\|_g(a) : s \iff \\ \bigcup_{a \in \|\mathsf{CUP'}\|_g} \|\mathsf{MOVE'}\|_g(a) = 1 \iff \\ \exists a.a \in \|\mathsf{CUP'}\|_g \cap \|\mathsf{MOVE'}\|_g \end{split}$$

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

$$\sim \alpha : s = 1 - \alpha$$

$$\sim \alpha : S | A = \lambda c. \sim (\alpha c)$$

$$\sim \alpha : A \rightsquigarrow S = \sim (\bigcup_{c \in Dom(\alpha)} \alpha c)$$

Linguistic consequences

Indefinites and scope

- (8) John didn't see a cup move.
 - First option: existential closure by negation:

$$\neg \lambda x_{\text{CUP'}x}$$
.SEE'(MOVE'x)JOHN'
 \equiv
 $\neg \exists x(\text{CUP'}x \land \text{SEE'}(\text{MOVE'}x)\text{JOHN'})$

Second option: existential closure at matrix level:

$$\begin{array}{l} \lambda x_{\text{CUP'}x} \cdot \neg \text{SEE'}(\text{MOVE'}x) \text{JOHN'} \\ & \equiv \\ \exists x(\text{CUP'}x \land \neg \text{SEE'}(\text{MOVE'}x) \text{JOHN'}) \end{array}$$

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
 - No movement involved ~> not constrained by constraints on movement
 - scoping mechanism is independent from quantifier scoping ~> not constrained by constraints on quantifier scope

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:

$$Dom(f) \subseteq Dom(f \circ g)$$

- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

Avoids

- Donald Duck Problem" of naive long-distance existential closure analysis:
- (9) a. Max will be offended if we invite a certain philosopher.
 - $\mathbf{b.} \simeq \exists x (\mathsf{PHILO'}x \land (\mathsf{INVITE'}x\mathsf{WE'} \to \mathsf{OFFENDED'M'}))$
 - $C \neq \exists x (PHILO'x \land INVITE'xWE' \rightarrow OFFENDED'M')$

Sluicing

(10) a. A cup moved, and Bill wonders which cup.b. A cup moved, and Bill wonders which cup moved.

- Syntax:
 - Sluicing involves a bare *wh*-phrase
 - needs a declarative clause containing an indefinite as antecedent
- Semantics:
 - "missing" material is identical to antecedent except that indefinite is replaced by *wh*-trace

Proposal: which cup has two types (but only one meaning):

(11) a.
$$q/(s \uparrow np) : \lambda P.?x \text{CUP'} x \land Px$$

b. $q|(np \rightsquigarrow s) : \lambda P.?x \text{CUP'} x \land Px$

Antecedent clause has exactly the denotation that is needed to complete the elliptical question

Predictions

Antecedent must contain an indefinite

- (12) *The cup moved, and Bill wonders which cup.
 - First conjunct has category s
 - *which cup* requires antecedent of category $np \rightsquigarrow s$
 - I-elimination not applicable

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- No restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
- (13) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one
 - b. *The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one the administration has issued a statement that it is willing to meet with

from Chung, Ladusaw and McCloskey 1995

Morphological sensitivity

(14) Er will jemandem schmeicheln, aber sie wissen nicht {wem / *wen}
 HE WANTS SOMEONEDAT FLATTER BUT THEY KNOW NOT {WHODAT / *WHOACC}
 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $np(dat) \rightsquigarrow np(dat)$
- clause containing dative indefinite: $np(dat) \rightsquigarrow s$
- Sluicing remnant in dative: $q|(np(dat) \rightsquigarrow s)|$

Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

TRENDS IN LOGIC - STUDIA LOGICA LIBRARY

Anaphora and Type Logical Grammar

Gerhard Jäger

Deringer

Indefinites and Sluicing A Type-Logical Approach – p.34/34