Communication about similarity spaces

Gerhard Jäger
Gerhard.Jaeger@uni-bielefeld.de

February 6, 2007

KNAW, Amsterdam

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be convex if, for all points x and y in C, all points between x and y are also in C.

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be convex if, for all points x and y in C, all points between x and y are also in C.

Criterion P

A natural property is a convex region of a domain in a conceptual space.

Examples

- spatial dimensions: above, below, in front of, behind, left, right, over, under, between ...
- temporal dimension: early, late, now, in 2005, after, ...
- sensual dimenstions: loud, faint, salty, light, dark, ...
- abstract dimensions: cheap, expensive, important, ...
- two players:
- Sender
- Receiver
- infinite set of Meanings, arranged in a finite metrical space distance is measured by function $d: M^{2} \mapsto R$
- finite set of Forms
- sequential game:
(1) nature picks out $m \in M$ according to some probability distribution p and reveals m to S
(2) S maps m to a form f and reveals f to R
(3) R maps f to a meaning m^{\prime}
- Goal:
- optimal communication
- both want to minimize the distance between m and m^{\prime}
- Strategies:
- speaker: mapping S from M to F
- hearer: mapping R from F to M
- Average utility: (identical for both players)

$$
u(S, R)=\sum_{m} p_{m} \times \exp \left(-d(m, R(S(m)))^{2}\right)
$$

vulgo: average similarity between speaker's meaning and hearer's meaning

Voronoi tesselations

- suppose R is given and known to the speaker: which speaker strategy would be the best response to it?
- every form f has a "prototypical" interpretation: $R(f)$
- for every meaning m : S's best choice is to choose the f that minimizes the distance between m and $R(f)$
- optimal S thus induces a partition of the meaning space

- Voronoi tesselation, induced by the range of R

Voronoi tesselation

Okabe et al. (1992) prove the following lemma (quoted from Gärdenfors 2000):

Lemma

The Voronoi tessellation based on a Euclidean metric always results in a partioning of the space into convex regions.

ESSs of the naming game

- best response of R to a given speaker strategy S not as easy to characterize
- general formula

$$
R(f)=\arg \max _{m} \sum_{m^{\prime} \in S^{-1}(f)} p_{m^{\prime}} \times \exp \left(-d\left(m, m^{\prime}\right)^{2}\right)
$$

- such a hearer strategy always exists
- linguistic interpretation: R maps every form f to the prototype of the property $S^{-1}(f)$

ESSs of the naming game

Lemma

In every $E S S\langle S, R\rangle$ of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by $R[F]$.

ESSs of the naming game

Lemma

In every $E S S\langle S, R\rangle$ of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by $R[F]$.

Theorem

For every form $f, S^{-1}(f)$ is a convex region of M.

- two-dimensional circular meaning space
- discrete approximation
- uniform distribution over meanings
- initial stratgies are randomized
- update rule according to (discrete time version of) replicator dynamics

A toy example

- suppose
- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings

Red, Green, Blue and Yellow

A toy example

- suppose
- circular two-dimensional meaning space
- four meanings are highly frequent
- all other meanings are negligibly rare
- let's call the frequent meanings

Red, Green, Blue and Yellow
$p_{i}($ Red $)>p_{i}($ Green $)>p_{i}($ Blue $)>p_{i}($ Yellow $)$
Yes, I made this up without empirical justification.

- suppose there are just two forms
- only one Strict Nash equilibrium (up to permuation of the forms)
- induces the partition \{Red, Blue\} / \{Yellow, Green\}

- if there are three forms
- two Strict Nash equilibria (up to permuation of the forms)
- partitions \{Red\}/\{Yellow\}/\{Green, Blue\} and $\{$ Green $\} /\{$ Blue $\} /\{$ Red, Yellow $\}$
- only the former is stochastically stable
 (resistent against random noise)
- if there are four forms
- one Strict Nash equilibrium (up to permuation of the forms)
- partitions \{Red \}/\{Yellow\}/\{Green\}/\{Blue\}

Measure terms

Krifka's observations

- measure terms are vague
- some measure terms are ambiguous between different degrees of vagueness
- usually only simple expressions are ambiguous in this way
- complexifying an expression may reduce ambiguitiy

Measure terms

vagueness

95 m : between 94.5 and 95.5 m

ambiguity

- The water has a temperature of 40° : $38^{\circ}<T<42^{\circ}$
- His body temperature is $40^{\circ}: 39.95^{\circ}<T<40.05^{\circ}$
simple and complex expression
His body temperature is 39° :
cannot mean $37^{\circ}<T<41^{\circ}$

complexification

The water has a temperature of exactly $40^{\circ}: 39.9^{\circ}<T<40.1^{\circ}$

General considerations

- Suppose the game setup is as before, with arithmetic difference as distance function

ESS

- Sender:
- meaning space is partitioned into continuous intervals of equal length
- each interval is correlated with one signal
- Receiver:
- each signal is mapped to the center of the corresponding interval

General considerations

Costly signaling

- suppose signals incur a cost for both sender and receiver
- modified utility function

$$
u(S, R)=\sum_{m} p_{m} \exp \left(-(m-R(S(m)))^{2}\right)-c(S(m))
$$

- intuitive idea:

$$
c(\text { thirty-nine })>c(\text { forty })
$$

etc.

Costly signaling

ESSets

- general pattern as before
- additional constraint: in an ESS (S, R), we have

$$
\forall m: S(m)=\arg _{f} \max \left[\exp \left(-(m-R(f))^{2}\right)-c(f)\right]
$$

- simultaneous
- minimizing distance between m and $R(S(m))$
- minimizing costs $c(S(m))$
- in equilibrium (ESSet), distance between m and $R(S(m))$ need not be minimal

Variable standard of precision

Assessment

- this setup
- predicts the possibility of vague interpretation: good
- fails to predict the ambiguity between precise and vague interpretations (or different degrees of vagueness): bad

Variable standard of precision

Proposal

- required degree of precision depends on context
- modeling as Bayesian game with different utility function
- both players still have same utility function and know that function

$$
u(S, R)=\sum_{m, \sigma} p_{m, \sigma} \exp \left(-(m-R(S(m)))^{2} / \sigma^{2}\right)-c(S(m))
$$

- high value of σ : precision doesnt matter very much
- low value of σ : precision is more important than economy of expression

An example

- Suppose:
- just two meanings: 39, 40
- just two forms: thirty-nine, forty

$$
c(\text { thirty-nine })-c(\text { forty })=\mathbf{c}>0
$$

- two standards of precision, σ_{1} and σ_{2}

$$
\begin{aligned}
\sigma_{1} & <\sigma_{2} \\
\exp \left(-\left(1^{2} / \sigma_{1}^{2}\right)\right) & =d_{1} \\
\exp \left(-\left(1^{2} / \sigma_{2}^{2}\right)\right) & =d_{2} \\
1-d_{1} & >\mathbf{c} \\
1-d_{2} & <\mathbf{c} \\
\forall m, \sigma: p_{m, \sigma} & =.25
\end{aligned}
$$

An example

Intuitive characterization

- two standards of precision
- utility loss under vague interpretation is $1-d_{i}$
- utility loss due to usage of more complex expression is \mathbf{c}
- under σ_{1} precision is more important
- under σ_{2} economy of expression is more important
- uniform probability distribution over states

meanings/signals

$S \quad R$

$\begin{array}{lcc}39 & \text { thirty-nine } & 39 \\ 40 & \text { forty } & 40\end{array}$

strategies

- $S_{1} / R_{1} \stackrel{\rightarrow-}{\bullet-}$
- S_{2} / R_{2}.
- S_{3} / R_{3}.
- $S_{4} / R_{4}:-$

Extensive form

Utility matrices

σ_{2}				
	\bullet	\bullet	\bullet	\bullet
\bullet	$1-\frac{c}{2}$	$d_{2}-\frac{c}{2}$	$\frac{1+d_{2}-c}{2}$	$\frac{1+d_{2}-c}{2}$
\bullet	$d_{2}-\frac{c}{2}$	$1-\frac{c}{2}$	$\frac{1+d_{2}-c}{2}$	$\frac{1+d_{2}-c}{2}$
\bullet	$\frac{1+d_{2}}{2}$	$\frac{1+d_{2}}{2}$	$\frac{1+d_{2}}{2}$	$\frac{1+d_{2}}{2}$
$\bullet \rightarrow$	$\frac{1+d_{2}}{2}-c$	$\frac{1+d_{2}}{2}-c$	$\frac{1+d_{2}}{2}-c$	$\frac{1+d_{2}}{2}-c$

Results

Evolutionary stability

- first subgame (σ_{1}; precision is important): two ESS
- S_{1} / R_{1}
- S_{2} / R_{2}
- in either case, both expressions have a precise meaning and are interpreted exactly as intended
- second subgame (σ_{2}; economy of expression is important): one ESSet
- consists of S_{3} and all mixed strategies of R
- Bayesian game:
- two ESSets
- any combination of ESSets of the two sub-games

Asymmetric information

Assessment

- this setup
- predicts that
- all number words receive a precise interpretation if precision is important
- only short number words are used and receive a vague interpretation if economy is important
- good
- with larger dictionary prediction that there is no correlation between the interpretation of words between the different subgames
- for instance:
- forty could mean 40 for σ_{1} and $\{28 . . .32\}$ for σ_{2}
- bad

Asymmetric information

Modified information sets

- idea
- S knows σ, but
- R doesn't
- then R's interpretation of a word cannot depend on σ

Strategy space

- Sender strategies:
- functions from pairs (m, σ) to signals
- in the example: $4 \times 4=16$ strategies, as before
- Receiver's strategies
- functions from signals to meanings
- in the example: only four such functions (as in the first version of the example)

Extensive form

old game:

Extensive form

new game:

Asymmetric information

ESS

- resulting game has only two ESSs
- ESS 1:
- $\mathrm{S}:(\cdots, \cdots)$
- R: ...
- ESS 2:

- in either case
- R always assumes precise interpretation
- S always chooses correct word if σ is low
- S always chooses short word if σ is high

Loose ends

Open questions

- notion of ESS/ESSet only make sense for finite strategy space
- can results be maintained if meaning space is really continuous?
- S's signal gives information about value of σ
- perhaps R's guess about value of σ should enter the utility function
- would explain why
- it can be rational for S to use excessively complex phrases like exactly fourty and short phrases like fourty synonymously
- exactly fourty can only be interpreted precisely, while fourty is ambiguous

