Evolutionary Game Theory as a framework for modeling language evolution

Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de

August 12, 2005

University of Edinburgh, LEC Group

・ロト ・回ト ・ヨト ・ヨト

Introduction

Lingueme-based evolution Evolutionary Game Theory Convex meanings The color space Conclusion References

Overview

- lingueme-based evolution
- Evolutionary Game Theory
- evolutionary stability
- convex meanings
- color terms
- typology of case marking systems
- conclusion

<ロ> (四) (四) (三) (三) (三) (三)

Conceptualization of language evolution

prerequisites for evolutionary dynamics

- replication
- variation
- selection

Gerhard Jäger EGT and Language Evolution

・ロン ・回 と ・ ヨン ・ ヨン

3

Linguemes

- "any piece of structure that can be independently learned and therefore transmitted from one speaker to another" (Nettle 1999:5)
- Croft (2000) attributes the name *lingueme* to Haspelmath (Nettle calls them *items*)
- Examples:
 - phonemes
 - morphemes
 - words
 - constructions
 - idioms
 - collocations
 - ...

・ロン ・回と ・ヨン ・ヨン

Linguemes

- Linguemes are replicators
- comparable to genes
- structured configuration of replicators
 - Biology: genotype
 - Linguistics: utterance

・ロン ・回 とくほど ・ ほとう

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

・ロン ・四マ ・ヨマ ・ヨマ

3

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

- linguistic creativity
- reanalysis
- language contact
- ...

・ロン ・回と ・ヨン・

Evolution

Replication

(at least) two modes of lingueme replication:

- acquisition
- priming (see Jäger and Rosenbach 2005; Croft and Nettle would perhaps not agree)

Variation

- linguistic creativity
- reanalysis
- language contact

• ...

Selection

- social selection
- selection for learnability
- selection for primability

Fitness

learnability/primability

- selection against complexity
- selection against ambiguity
- selection for frequency

・ロン ・回 と ・ ヨン ・ ヨン

Э

Evolutionary Game Theory

- populations of players
- individuals are (genetically) programmed for certain strategy
- individuals replicate and thereby pass on their strategy

Utility and fitness

- number of offspring is monotonically related to average utility of a player
- high utility in a competition means the outcome improves reproductive chances (and vice versa)
- number of expected offspring (Darwin's "fitness") corresponds to expected utility against a population of other players
- genes of individuals with high utility will spread

・ロット (四) (日) (日)

Replicator dynamics

- simplest dynamics that implements these ideas
- fitness is simply identified with utility

$$\frac{dx_i}{dt} = x_i \left(\sum_{j=1}^n y_j u_A(i,j) - \sum_{k=1}^n x_k \sum_{j=1}^n y_j u_A(k,j)\right)$$

$$\frac{dy_i}{dt} = y_i \left(\sum_{j=1}^m x_j u_B(i,j) - \sum_{k=1}^n y_k \sum_{j=1}^m x_j u_B(k,j)\right)$$

 x_i ... proportion of s_i^A within the A-population y_i ... proportion of s_i^B within the B-population

Evolutionary stability

- Darwinian evolution predicts ascent towards local fitness maximum
- once local maximum is reached: stability
- only random events (genetic drift, external forces) can destroy stability
- central question for evolutionary model: what are stable states?

Evolutionary stability (cont.)

- replication sometimes unfaithful (mutation)
- population is evolutionarily stable → resistant against small amounts of mutation
- Maynard Smith (1982): static characterization of Evolutionarily Stable Strategies (ESS) in terms of utilities only

・ロン ・四マ ・ヨマ ・ヨマ

Evolutionary stability (cont.)

Rock-Paper-Scissor

	R	Р	S
R	0	-1	1
Ρ	1	0	-1
S	-1	1	0

- one stationary state ("Nash equilibrium"): $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
- not evolutionarily stable though

・ロト ・回ト ・ヨト ・ヨト

3

Trajectories

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Э

Hawks and Doves

Hawks and Doves

	H	D
Η	1,1	7,2
D	2,7	3,3

- two-population setting:
 - both A and B come in hawkish and dovish variant
 - everybody only interacts with individuals from opposite "species"
 - excess of A-hawks helps B-doves and vice versa
 - population push each other into opposite directions

Vector field

Gerhard Jäger EGT and Language Evolution

▲ロト ▲圖ト ▲温ト ▲温ト

Э

Evolutionary stability

Definition (Strict Nash Equilibrium)

A pair of strategies (S, H) is a Strict Nash Equilibrium iff

$$\forall S'(S' \neq S \rightarrow u(S, H) > u(S', H))$$

and

$$\forall H'(H' \neq H \rightarrow u(S,H) > u(S,H'))$$

• in a SNE, S is unique best response to H and vice versa

・ロト ・回ト ・ヨト ・ヨト

Evolutionary stability

Definition (Strict Nash Equilibrium)

A pair of strategies (S, H) is a Strict Nash Equilibrium iff

$$\forall S'(S' \neq S \rightarrow u(S, H) > u(S', H))$$

and

$$\forall H'(H' \neq H \rightarrow u(S,H) > u(S,H'))$$

• in a SNE, S is unique best response to H and vice versa

Theorem (Selten 1980)

(S, H) is evolutionarily stable if and only if it is a Strict Nash Equilibrium.

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

・ロト ・回ト ・ヨト ・ヨト

3

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

・ロト ・回ト ・ヨト ・ヨト

Cognitive semantics

Gärdenfors (2000):

- meanings are arranged in conceptual spaces
- conceptual space has geometrical structure
- dimensions are founded in perception/cognition

Convexity

A subset C of a conceptual space is said to be *convex* if, for all points x and y in C, all points between x and y are also in C.

Criterion P

A *natural property* is a convex region of a domain in a conceptual space.

- spatial dimensions: *above, below, in front of, behind, left, right, over, under, between ...*
- temporal dimension: early, late, now, in 2005, after, ...
- sensual dimenstions: loud, faint, salty, light, dark, ...
- abstract dimensions: cheap, expensive, important, ...

・ロト ・回ト ・ヨト ・ヨト

The naming game

- two players:
 - Speaker
 - Hearer
- infinite set of Meanings, arranged in a finite metrical space distance is measured by function $d: M^2 \mapsto R$
- finite set of Forms
- sequential game:
 - nature picks out $m \in M$ according to some probability distribution p and reveals m to S
 - 2 S maps m to a form f and reveals f to H
 - **3** H maps f to a meaning m'

・ロン ・回 と ・ ヨ と ・ ヨ と

The naming game

- Goal:
 - optimal communication
 - both want to minimize the distance between m and m'
- Strategies:
 - speaker: mapping S from M to F
 - hearer: mapping H from F to M
- Average utility: (identical for both players)

$$u(S,H) = \int_M p_m \times \exp(-d(m,H(S(m)))^2) dm$$

vulgo: average similarity between speaker's meaning and hearer's meaning

・ロト ・回ト ・ヨト ・ヨト

Voronoi tesselations

- suppose *H* is given and known to the speaker: which speaker strategy would be the best response to it?
 - every form f has a "prototypical" interpretation: H(f)
 - for every meaning *m*: S's best choice is to choose the *f* that minimizes the distance between *m* and *H*(*f*)
 - optimal *S* thus induces a **partition** of the meaning space
 - Voronoi tesselation, induced by the range of *H*

・ロン ・回と ・ヨン・

Voronoi tesselation

Okabe et al. (1992) prove the following lemma (quoted from Gärdenfors 2000):

Lemma

The Voronoi tessellation based on a Euclidean metric always results in a partioning of the space into convex regions.

・ロト ・回ト ・ヨト ・ヨト

ESSs of the naming game

- best response of H to a given speaker strategy S not as easy to characterize
- general formula

$$H(f) = \arg \max_{m} \int_{S^{-1}(f)} p_{m'} \times \exp(-d(m, m')^2) dm'$$

- such a hearer strategy always exists
- linguistic interpretation: H maps every form f to the prototype of the property S⁻¹(f)

・ロン ・回と ・ヨン・

Introduction Evolutionary Game Theory Convex meanings The color space Conclusion References

ESSs of the naming game

Lemma

In every ESS (S, H) of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

Gerhard Jäger EGT and Language Evolution

・ロット (四) (日) (日)

3

ESSs of the naming game

Lemma

In every ESS (S, H) of the naming game, the partition that is induced by S^{-1} on M is the Voronoi tesselation induced by H[F].

Theorem

For every form f, $S^{-1}(f)$ is a convex region of M.

< □ > < @ > < 注 > < 注 > ... 注

Simulations

- two-dimensional circular meaning space
- discrete approximation
- uniform distribution over meanings
- initial stratgies are randomized
- update rule according to (discrete time version of) replicator dynamics

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A toy example

- suppose
 - circular two-dimensional meaning space
 - four meanings are highly frequent
 - all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

 $p_i(\text{Red}) > p_i(\text{Green}) > p_i(\text{Blue}) > p_i(\text{Yellow})$

A toy example

- suppose
 - circular two-dimensional meaning space
 - four meanings are highly frequent
 - all other meanings are negligibly rare
- let's call the frequent meanings Red, Green, Blue and Yellow

 $p_i(\mathsf{Red}) > p_i(\mathsf{Green}) > p_i(\mathsf{Blue}) > p_i(\mathsf{Yellow})$

Yes, I made this up without empirical justification.

Two forms

- suppose there are just two forms
- only one Strict Nash equilibrium (up to permuation of the forms)
- induces the partition {Red, Blue}/{Yellow, Green}

イロン イヨン イヨン イヨン

Introduction Evolutionary Game Theory Convex meanings **The color space** Conclusion References

Three forms

- if there are three forms
- two Strict Nash equilibria (up to permuation of the forms)
- partitions {Red}/{Yellow}/{Green, Blue} and {Green}/{Blue}/{Red, Yellow}
- only the former is stochastically stable (resistent against random noise)

・ロン ・回 とくほど ・ ほとう

Four forms

- if there are four forms
- one Strict Nash equilibrium (up to permuation of the forms)
- partitions
 {Red}/{Yellow}/{Green}/{Blue}

イロン イヨン イヨン イヨン

Conclusion

Meaning spaces

- assumption: utility is correlated with similarity between speaker's meaning and hearer's meaning
- onsequences:
 - convexity of meanings
 - prototype effects
 - uneven probability distribution over meanings leads to the kind of implicational universals that are known from typology of color terms

・ロン ・回と ・ヨン ・ヨン

Conclusion

EGT and language evolution

- EGT is well-suited to model utterance based, horizontal cultural language evolution
- allows to characterize attractor states in a static way, regardless of the micro-structure of language change
- possible refinements
 - stochastic evolution
 - spatial/network structure between agents

イロン イヨン イヨン イヨン

References

- Croft, W. (2000). *Explaining Language Change*. Longman.Gärdenfors, P. (2000). *Conceptual Spaces*. The MIT Press, Cambridge, Mass.
- Jäger, G. and A. Rosenbach (2005). Priming as a driving force in grammaticalization: on the track of unidirectionality. Paper presented at *New Reflections on Grammaticalization 3*, Santiago de Compostela.
- Nettle, D. (1999). *Linguistic Diversity*. Oxford University Press, Oxford.

Okabe, A., B. Boots, and K. Sugihara (1992). *Spatial tessellations: concepts and applications of Voronoi diagrams.* Wiley, Chichester.