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Signaling games

general setup

two players, the sender and the receiver.

sender has private information about an event that is
unknown to the receiver

event is chosen by nature according to a certain fixed
probability distribution

sender emits a signal which is revealed to the receiver

receiver performs an action, and the choice of action may
depend on the observed signal

utilities of sender and receiver may depend on the event, the
signal and the receiver’s action
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Signaling games

specific assumptions

the utility of sender and receiver are identical,

set of events E , set of events F , and set of actions A are
finite,

E = A (the receiver’s action is to guess an event)
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Signaling games

costly signaling

production/reception of signals may incur costs

examples:

length, processing complexity etc. of natural language
expressions
advertising costs in economics
“handicap” signaling in biology
...

can be represented as negative utility
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Signaling games

let e be the event to be communicated, σ the signal and a the
receiver’s action

cσ is the cost of using signal σ

partnership game: S and H have identical utility function

utility function (extensive form)

u(e, σ, a) = δe,a + cσ (1)
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Signaling games

matrix representation

let n = |E| be number of events

m = |F| is number of signals

(pure) strategies can be represented as matrices with one 1
per row and else columns

sender strategy S: n×m-matrix

receiver strategy R: m× n-matrix

~e: nature’s probability distribution over events

~c: costs of signals 1, . . . ,m

7/32



Signaling games

normal form utility function

u(S, R) =
∑

i

ei ×
∑

j

sij(rji + cj) (2)
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Signaling games

compiling costs and probabilities into matrix notation

pS
ij

.
= sij × ei

qR
ij

.
= rij + ci

utility function

u(S, R) =
∑

i

∑
j

pS
ijq

R
ji = tr(PSQR).
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Signaling games

symmetrized mixed strategies

let x be a mixed strategy of a symmetrized signaling game
with costly signaling

P x =
∑
P,Q

x(P,Q)P (3)

Qx =
∑
P,Q

x(P,Q)Q (4)
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Signaling games

symmetrized utility function

u(x, y) = tr(P xQy) + tr(P yQx) (5)
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Signaling games

further constraints

costs are normalized such that maxi ci = 0

all events have positive probability

no event has costs ≤ −1—otherwise use of that signal would
never be rationalizable

structural stability

no two events have identical probability

no two signals have identical costs

all signals have costs strictly > −1
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Examples

example 1: more signals than events

(n, m) = (2, 3)

~e = 〈.6, .4〉
~c = 〈0,−.1,−.4〉
one possible Nash equilibrium:

P x =

(
.3 .3 0
.3 0 .1

)
Qx =

 .9 .1
.9 −.1
−.9 .1


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Examples

example 2: more events than signals

(n, m) = (3, 2)

~e = 〈.5, .3, .2〉
~c = 〈0,−.1〉
Nash equilibrium:

P x =

 .5 0
.1 .2
0 .2

 Qx =

(
1 0 0
−.1 0 .8

)
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Examples

example 3: a strict Nash equilibrium

strict equlibria:

n = m
bijection between events and signals
ESSs are exactly the strict NE

~e = 〈.75, .25〉
~c = 〈0,−.1〉

P x1 =

(
.75 0
0 .25

)
Qx1 =

(
1 0
−.1 .9

)
P x2 =

(
0 .75

.25 0

)
Qx2 =

(
0 1
.9 −.1

)
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Neutral stability

Definition (Neutral stability)

The (possibly mixed) strategy profile x∗ is neutrally stable iff

∀y : u(x∗, x∗) ≥ u(y, x∗), and

∀y : if u(y, x∗) = u(x∗, x∗), then u(x∗, y) ≥ u(y, y).
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Examples

example 4: a neutrally stable state for the previous game

P x =

(
.75 0
.25 0

)
Qx =

(
1 0

α− .1 .9− α

)
for α ∈ (.9, 1].
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Examples

example 5: an unstable equilibrium

P x =

(
.75 0
.25 0

)
Qx =

(
1 0
.8 0

)
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Evolutionary stability

Observation

If n = m, x is an ESS if and only if Sx is a permutation matrix
and Rx its transpose.

Theorem

x is an ESS if and only if

1 m ≤ n,

2 the first column of P x has n−m + 1 positive entries,

3 each other column of P x has exactly one positive entry, and

4 qx
ji = 1 + cj iff i = min({i′ : px

i′j > 0}), otherwise qx
ji = cj .
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Evolutionary stability

an ESS with m < n

P x =

 .5 0
.3 0
0 .2

 Qx =

(
1 0 0
−.1 −.1 .9

)
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Evolutionary stability

Evolutionarily stable sets

proposed in Thomas (1985)

generalization of ESSet

set of Nash equilibria that is, as a whole, protected against
invasions by mutants

Definition

A set A of symmetric Nash equilibria is an evolutionarily stable set
(ESSet) if, for all x∗ ∈ A, u(x∗, x) > u(x, x) whenever
u(x, x∗) = u(x∗, x∗) and x 6∈ A.
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Evolutionary stability

a non-singleton ESSetx : P x =

(
.8 0 0
0 .2 0

)
, Qx =

 1 0
−.1 .9

α− .2 .8− α

 & α ∈ [0, 1]



22/32



Evolutionary stability

Theorem

A set of strategies A is an ESSet iff for each x ∈ A, x is an ESS or

1 m > n,

2 the restriction of P x to the first n columns and the restriction
of Qx to the first n rows form an ESS, and

3 for each y such that P x = P y, and Qx and Qy agree on the
first n rows: y ∈ A.
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Neutral stability

Theorem

x is a NSS if and only if it is a Nash equilibrium and Qx does not
contain multiple column maxima.

Observation

If m,n ≥ 2, there is always at least one NSS that is not element of
an ESSet.
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Dynamic stability

some facts

in symmetrized asymmetric games:

the ESSs are exactly the asymptotically stable rest points
under the replicator dynamics,
the ESSets are exactly the asymptotically stable sets of rest
points under the replicator dynamics (Cressman, 2003)

in doubly symmetric games,

the neutrally stable states are exactly the Lyapunov stable rest
points (Thomas, 1985; Bomze and Weibull, 1995; Bomze,
2002)
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Dynamic stability

Lemma

Let x∗ be a NSS that is not an ESS. There is some ε > 0 such that
for each Nash equilibrium y with ‖x− y‖ < ε,

1 y is itself neutrally stable, and

2 for each α ∈ [0, 1], αx∗ + (1− α)y is neutrally stable.
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Dynamic stability

Theorem

Each NSS x has some non-null environment A such that each
interior point in A converges to some neutrally stable equilibrium y
under the replicator dynamics that belongs to the same continuum
of NSSs as x.
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Dynamic stability

sketch of proof

(proof inspired by Pawlowitsch, 2006)

suppose x is an NSS

then x is Lyapunov stable

for each environment U of x, every interior point in U
converges to some Nash equilibrium (Hofbauer and Sigmund,
1998; Akin and Hofbauer, 1982)

hence almost every point in some environment A of x
converges to some NSS that belongs to the same continuum
of NSSs as x
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Dynamic stability

Corollary

The set of Nash equilibria that do not belong to any ESSet
attracts a positive measure of the state space.
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Dynamic stability

Theorem

Given any strategy profile x1, there is a finite sequence of profiles
(xi)i≤n for some n ∈ N such that

1 there is an ESSet E such that xn ∈ E, and

2 u(xi+1, xi) ≥ u(xi, xi) ∀i < n.
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Conclusion

in a nutshell

evolutionary stability: 1-1 map between min(m,n)-many
events and signals

if n > m, excess events are expressed by cheapest signal

neutral stability: some signals may remain unused, even if
they would be useful

natural selection alone does not suffice to guarantee
convergence to evolutionary stability (= local maximum of
average utility)

combination of natural selection and drift does guarantee
convergence to some ESSet
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