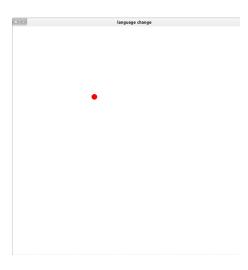
Estimating and Visualizing Language Similarities Using Weighted Alignment and Force-Directed Graph Layout

Gerhard Jäger, Armin Buch, David Erschler and Andrei Lupas

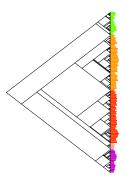
University of Tübingen
MPI for Developmental Biology Tübingen

September 1, 2012, Stockholm

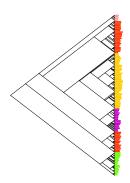

CLANS

- Cluster Analysis of Sequences (Frickey and Lupas 2004)
- Visualization of similarity matrices using Force Directed Graph Layout
- advantages in comparison to tree-based algorithms:
 - does not a priori assume a tree like signal (useful when lateral transfer plays a role)
 - fast (esp. in comparison to character based algorithms)
 - robust (noise in data items does not accumulate)
- general impression so far (Lupas, p.c.):
 - tree algorithms are more precise when evolutionary distances are small; CLANS is more sensitive to weak evolutionary signals

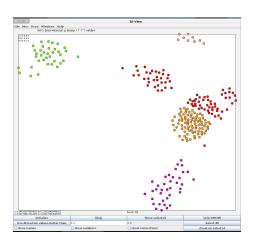
Is this true?


simLC

- simulation of language change:
 - "languages" are represented as vectors of identifiers (cognate classes, if you like)
 - languages are located on a two-dimensional surface
 - in each time step, each living language
 - moves a bit around in space
 - may replace words by some new, unrelated words
 - may borrow words from geographically neighboring languages
 - may split into two languages, and
 - may go extinct



Analyzing simulated data


True phylogenetic tree

Reconstructed tree (using neighbor joining)

Analyzing simulated data

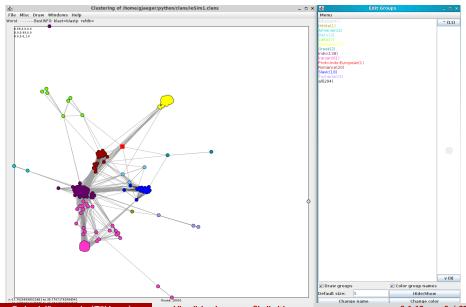
The Automated Similarity Judgment Program

- Project at MPI EVA in Leipzig around Sören Wichmann
- covers more than 5,000 languages
- basic vocabulary of 40 words for each language, in uniform phonetic transcription
- freely available

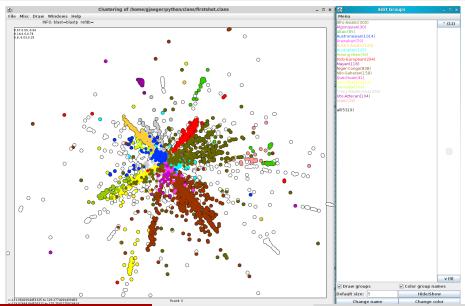
used concepts: I, you, we, one, two, person, fish, dog, louse, tree, leaf, skin, blood, bone, horn, ear, eye, nose, tooth, tongue, knee, hand, breast, liver, drink, see, hear, die, come, sun, star, water, stone, fire, path, mountain, night, full, new, name

First shot: Levenshtein Distance

- first step: finde minmal edit distance between all translation pairs of the languages to be compared
- \bullet e.g. German \leftrightarrow Latin

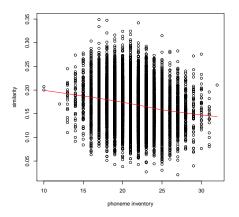


- edit distance = 2
- transformation into similarity measure


$$sim(x,y) \doteq \frac{2(\max(l(x),l(y)) - d_{Lev}(x,y))}{l(x) + l(y)}$$

 similarity between L1 and L2: average similarity of translation pairs between L1 and L2

First shot: normalized Levenshtein Distance



First shot: normalized Levenshtein Distance

First shot: normalized Levenshtein Distance

 basic problem here: the smaller the sound inventories of the languages compared, the higher is the probability of false positives

Benchmark: LDND measure

- Wichmann et al.: doubly normalized Levenshtein distance (Levenshtein Distance Normalized and Divided)
- normalization for word length

$$\operatorname{ldn}(x,y) \doteq \frac{d_{Lev}(x,y)}{\max(l(x),l(y))} \tag{1}$$

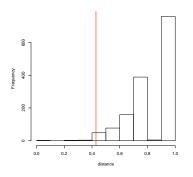
- normalization for language specific patterns (including sound inventory size):
 - normalization factor $1/\mu$
 - μ_{L_1,L_2} : mean of $\{ldn(x,y)|x\in L_1,y\in L_1,\|x\|\neq\|y\|\}$

$$\begin{aligned} \mathrm{ldnd}(x,y,L_1,L_2) &\doteq \frac{ldn(x,y)}{\mu_{L_1,L_2}} \\ \mathrm{ldnd}(L_1,L_1) &\doteq \frac{\sum_{x\in L_1,y\in L_2} \{\mathrm{ldnd}(x,y,L_1,L_2): \|x\| = \|y\|\}}{\#\{x,y: \|x\| = \|y\|\}} \end{aligned}$$

Benchmark: LDND measure

English / Swedish

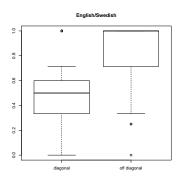
	Ei	yu	wi	w3n	tu	fiS	
yog	1	2/3	1	1	1	1	
du	1	1/2	1	1	1/2	1	
vi	1/2	1	1/2	1	1	2/3	
et	1	1	1	1	1	1	
tvo	1	1	1	1	2/3	1	
fisk	3/4	1	3/4	1	1	1/2	
÷							


- ullet average LDN along diagonal: 0.56
- average LDN off diagonal: 0.91
- LDND: 0.56/0.91 = 0.61

A bit of information theory

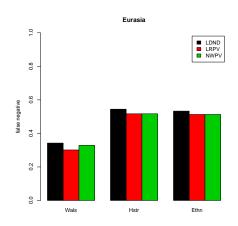
```
Swedish fisk = English fish?
Turkish dört = English dirt?
```

- first guess is good because the words sound similars and the languages are closely related
- second guess is bad (and wrong) even though the words sound similar because the languages are not related
- If two languages are related, knowing a word from one language reduces the uncertainty about its form in the other language
- Hypothesis: degree of similarity between two languages ≈ average amount of information that the form of a word in one language carries about the form of its translation into the other language

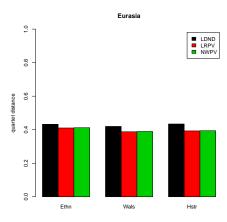

English and Swedish again

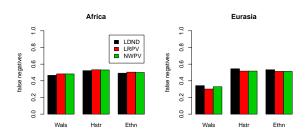


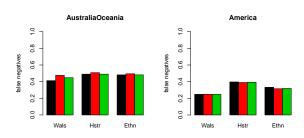
- Histogramm: off-diagonal distances
- ullet red line: distance $\emph{fiS} \sim \emph{fisk} \ (=4.3)$
- relative frequency of off-diagonal entries ≤ 4.3 : 0.004
- can be interpreted as p-value for the null hypothesis that the two words are not cognates
- $-log_2(0.004) = 7.9$ bit: amout of information that [fisk] carries about [fiS], given the general pattern of phonotactic similarities between unrelated English and Swedish words

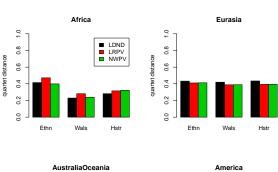

Information theoretic estimate of language similarity

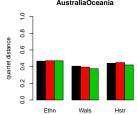
- similarity between two languages: average amount of information that a word from one language carries about its translation
- ullet formally: average binary logarithm of the p-values for all Swadesh items in the date base

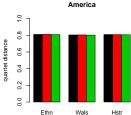


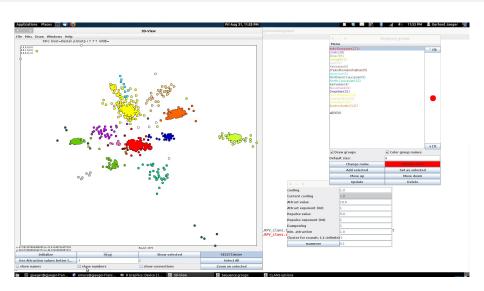

- comparison of Neighbor-Joining tree with three expert classifications:
 - WALS
 - Ethnologue
 - Hammarström 2010
- measure: proportion of false negatives, i.e. clades in the expert tree that are not recognized in the automatically obtained tree

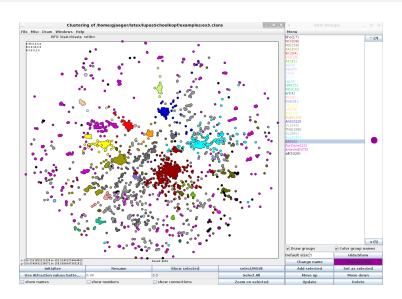



- same, but using quartet distance:
 - all quadruples of languages are considered
 - there are three ways how a quadruple can be organized into an unrooted binary tree
 - quartet distance counts the proportion of quadruples where the expert tree assumes another structure than the induced tree




LRPV seems to fare pretty well, but...

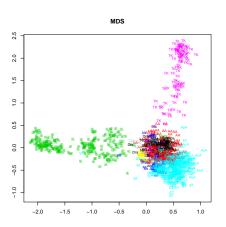



Visualization with CLANS

Qualitative results

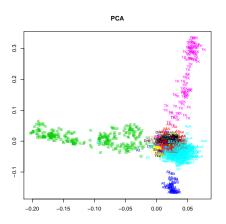
- several stable recurring patterns:
 - primary division of Eurasia into
 - Sino-Tibetan/Austro-Asiatic/Japanese/Hmong-Mien (/Tai-Kadai)
 - Indo-European/Altaic/Uralic/Caucasian languages/Siberian languages/Chukotko-Kamchatkan
 - Dravidian languages always end up in the center, right between the two major groups
 - Sino-Tibetan/Japanese
 - Indo-European/Burushaski
 - Turkic/Uralic
 - Tai-Kadai/Austronesian
 - Nilo-Saharan/Niger-Congo

The world is not enough



CLANS and dimensionality reduction

- CLANS performs a kind of (non-deterministic) dimensionality reduction
- How does this relate to more established methods?


CLANS vs. Multi-Dimensional Scaling

• MDS applied to NWPV-matrix of the Eurasian languages

CLANS vs. Principal Component Analysis

• PCA applied to NWPV-matrix of the Eurasian languages

CLANS and dimensionality reduction

- language families massively vary in size
- MDS and PCA only provide information about the largest families
- CLANS is sensitive to local patterns

Frickey, T. and A. N. Lupas (2004). Clans: a java application for visualizing protein families based on pairwise similarity. *Bioinformatics*, **20**(18):3702–3704.