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Zentrum für Allgemeine Sprachwissenschaft Berlin

jaeger@zas.gwz-berlin.de

www.let.uu.nl/˜Gerhard.Jaeger/personal



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing
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2. Anaphora in TLG

2.1. Jacobson’s proposal

• Semantics: pronouns denote identity functions

• Syntax: third slash: “A|B” is category of anaphoric
expression

• Pronouns: category np|np
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2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

... ... ...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun
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2.3. Binding

(1) John said he walked

John
lex

[j’ : np]i

said
lex

say’ : np\s/s

he
lex

[λx.x : np|np]i |E
j’ : np

walked
lex

walk’ : np\s
\E

walk’ j’ : s
/E

say’(walk’ j’) : np\s
\E

say’(walk’ j’)j’ : s
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2.4. Percolation

John
lex

j’ : np

said
lex

say’ : np\s/s

he
lex

λx.x : np|np
1

y : np

walked
lex

walk’ : np\s
\E

walk’y : s
/E

say’(walk’y) : np\s
\E

say’(walk’y)j’ : s
|I, 1

λy.say’(walk’y)j’ : s|np
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3. Covering indefinites

3.1. Basic idea

(2) a. It moved
b. Something moved

• Proposal: (a) and (b) have

◦ the same denotation: λx.move’x

◦ different syntactic categories
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3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals
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• indefinites function compose with their semantic envi-
ronment

• Natural deduction rule:

...
M : A ; B

i
Mx : B ...

... ... ...
N : C

;, i
λxN : A ; C
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(3) a. John saw something

b.

John
lex

john’

np

saw
lex

see’

(np\s)/np

something
lex

λxx
np ; np

i
y
np

/E
see’y
np\s

\E
see’yjohn’

s
;, i

λy.see’yjohn’

np ; s
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3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup
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4. Variable free existential clo-
sure

• Existential closure of a partial function: “big union”
over its domain

• built in into the truth definition and the semantics of
propositional operators (as in DRT)

• Relativization to syntactic categories to confine exis-
tential closure to indefinites
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• Truth is relativized to sequence of referents and syn-
tactic category

Definition 1 (Truth)

~e |= α : s iff α = 1

c~e |= α : S|np iff ~e |= (αc) : S

~e |= α : np ; S iff ~e |= (
⋃

αc is defined

(αc)) : S



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Truth is relativized to sequence of referents and syn-
tactic category

Definition 1 (Truth)

~e |= α : s iff α = 1

c~e |= α : S|np iff ~e |= (αc) : S

~e |= α : np ; S iff ~e |= (
⋃

αc is defined

(αc)) : S



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(4) A cup moved

~e |= ‖λx
cup’x

.move’x‖g : np ; s ⇐⇒
~e |=

⋃
a∈‖cup’‖g

‖move’‖g(a) : s ⇐⇒⋃
a∈‖cup’‖g

‖move’‖g(a) = 1 ⇐⇒
∃a.a ∈ ‖cup’‖g ∩ ‖move’‖g
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Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)
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Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope
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No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f ) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f ) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))
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6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace
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• Proposal: which cup has two types (but only one
meaning):

(9) a. q/(s ↑ np) : λP.?xcup’x ∧ Px
b. q|(np ; s) : λP.?xcup’x ∧ Px

• Antecedent clause has exactly the denotation that is
needed to complete the elliptical question
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6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable
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Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995
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Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)
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7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing
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