
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Contents
1 Outline of talk 3

2 Anaphora in TLG 4
2.1 Jacobson’s proposal . 4
2.2 Adaptation to TLG . 5
2.3 Binding . 6
2.4 Percolation . 7

3 Covering indefinites 8
3.1 Basic idea . 8
3.2 Type Logical implementation . 9
3.3 Descriptive content . 12

4 Variable free existential closure 13

5 Linguistic consequences 17
5.1 Indefinites and scope . 17

6 Sluicing 21
6.1 Predictions . 23

7 Conclusion 26

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Indefinites and Sluicing

A Type-Logical Approach

Amsterdam Colloquium

December 18, 2001

Gerhard Jäger

Zentrum für Allgemeine Sprachwissenschaft Berlin

jaeger@zas.gwz-berlin.de

www.let.uu.nl/˜Gerhard.Jaeger/personal

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1. Outline of talk

• Anaphora in Type Logical Grammar

• Extrapolation to indefinites

• Linguistic consequences:

◦ Indefinites and scope

◦ Sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Anaphora in TLG

2.1. Jacobson’s proposal

• Semantics: pronouns denote identity functions

• Syntax: third slash: “A|B” is category of anaphoric
expression

• Pronouns: category np|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Anaphora in TLG

2.1. Jacobson’s proposal

• Semantics: pronouns denote identity functions

• Syntax: third slash: “A|B” is category of anaphoric
expression

• Pronouns: category np|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Anaphora in TLG

2.1. Jacobson’s proposal

• Semantics: pronouns denote identity functions

• Syntax: third slash: “A|B” is category of anaphoric
expression

• Pronouns: category np|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2. Anaphora in TLG

2.1. Jacobson’s proposal

• Semantics: pronouns denote identity functions

• Syntax: third slash: “A|B” is category of anaphoric
expression

• Pronouns: category np|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.2. Adaptation to TLG

• Natural Deduction rules for anaphora slash

[M : A]i · · ·
N : B|A |E, i

[NM : B]i

...
M : A|B

i
Mx : A ...

...
N : C |I, i

λxN : C|B

• Only constraint on anaphora resolution: The an-
tecedent must precede the pronoun

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.3. Binding

(1) John said he walked

John
lex

[j’ : np]i

said
lex

say’ : np\s/s

he
lex

[λx.x : np|np]i |E
j’ : np

walked
lex

walk’ : np\s
\E

walk’ j’ : s
/E

say’(walk’ j’) : np\s
\E

say’(walk’ j’)j’ : s

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.3. Binding

(1) John said he walked

John
lex

[j’ : np]i

said
lex

say’ : np\s/s

he
lex

[λx.x : np|np]i |E
j’ : np

walked
lex

walk’ : np\s
\E

walk’ j’ : s
/E

say’(walk’ j’) : np\s
\E

say’(walk’ j’)j’ : s

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.3. Binding

(1) John said he walked

John
lex

[j’ : np]i

said
lex

say’ : np\s/s

he
lex

[λx.x : np|np]i |E
j’ : np

walked
lex

walk’ : np\s
\E

walk’ j’ : s
/E

say’(walk’ j’) : np\s
\E

say’(walk’ j’)j’ : s

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.4. Percolation

John
lex

j’ : np

said
lex

say’ : np\s/s

he
lex

λx.x : np|np
1

y : np

walked
lex

walk’ : np\s
\E

walk’y : s
/E

say’(walk’y) : np\s
\E

say’(walk’y)j’ : s
|I, 1

λy.say’(walk’y)j’ : s|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

2.4. Percolation

John
lex

j’ : np

said
lex

say’ : np\s/s

he
lex

λx.x : np|np
1

y : np

walked
lex

walk’ : np\s
\E

walk’y : s
/E

say’(walk’y) : np\s
\E

say’(walk’y)j’ : s
|I, 1

λy.say’(walk’y)j’ : s|np

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Covering indefinites

3.1. Basic idea

(2) a. It moved
b. Something moved

• Proposal: (a) and (b) have

◦ the same denotation: λx.move’x

◦ different syntactic categories

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Covering indefinites

3.1. Basic idea

(2) a. It moved
b. Something moved

• Proposal: (a) and (b) have

◦ the same denotation: λx.move’x

◦ different syntactic categories

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Covering indefinites

3.1. Basic idea

(2) a. It moved
b. Something moved

• Proposal: (a) and (b) have

◦ the same denotation: λx.move’x

◦ different syntactic categories

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3. Covering indefinites

3.1. Basic idea

(2) a. It moved
b. Something moved

• Proposal: (a) and (b) have

◦ the same denotation: λx.move’x

◦ different syntactic categories

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.2. Type Logical implementation

• yet another substructural implication, “;”

• Intuition: A ; B: category of B-sign containing an
indefinite A

• category of indefinite NPs: np ; np

• it and something both denote the identity function on
individuals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• indefinites function compose with their semantic envi-
ronment

• Natural deduction rule:

...
M : A ; B

i
Mx : B ...

...
N : C

;, i
λxN : A ; C

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• indefinites function compose with their semantic envi-
ronment

• Natural deduction rule:

...
M : A ; B

i
Mx : B ...

...
N : C

;, i
λxN : A ; C

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(3) a. John saw something

b.

John
lex

john’

np

saw
lex

see’

(np\s)/np

something
lex

λxx
np ; np

i
y
np

/E
see’y
np\s

\E
see’yjohn’

s
;, i

λy.see’yjohn’

np ; s

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(3) a. John saw something

b.

John
lex

john’

np

saw
lex

see’

(np\s)/np

something
lex

λxx
np ; np

i
y
np

/E
see’y
np\s

\E
see’yjohn’

s
;, i

λy.see’yjohn’

np ; s

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3.3. Descriptive content

• Idea: descriptive content expresses domain restriction

• ‖a‖ = function that maps a property to the identity
function over its extension

• ‖a cup‖ = identity function on the set of cups

• ‖a cup moved‖ = partial function f from individuals
to truth values:

◦ f (x) = 1 iff x is a cup that moved

◦ f (x) = 0 iff x is a cup that did not move

◦ f (x) is undefined iff x is not a cup

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. Variable free existential clo-
sure

• Existential closure of a partial function: “big union”
over its domain

• built in into the truth definition and the semantics of
propositional operators (as in DRT)

• Relativization to syntactic categories to confine exis-
tential closure to indefinites

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. Variable free existential clo-
sure

• Existential closure of a partial function: “big union”
over its domain

• built in into the truth definition and the semantics of
propositional operators (as in DRT)

• Relativization to syntactic categories to confine exis-
tential closure to indefinites

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. Variable free existential clo-
sure

• Existential closure of a partial function: “big union”
over its domain

• built in into the truth definition and the semantics of
propositional operators (as in DRT)

• Relativization to syntactic categories to confine exis-
tential closure to indefinites

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. Variable free existential clo-
sure

• Existential closure of a partial function: “big union”
over its domain

• built in into the truth definition and the semantics of
propositional operators (as in DRT)

• Relativization to syntactic categories to confine exis-
tential closure to indefinites

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Truth is relativized to sequence of referents and syn-
tactic category

Definition 1 (Truth)

~e |= α : s iff α = 1

c~e |= α : S|np iff ~e |= (αc) : S

~e |= α : np ; S iff ~e |= (
⋃

αc is defined

(αc)) : S

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Truth is relativized to sequence of referents and syn-
tactic category

Definition 1 (Truth)

~e |= α : s iff α = 1

c~e |= α : S|np iff ~e |= (αc) : S

~e |= α : np ; S iff ~e |= (
⋃

αc is defined

(αc)) : S

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(4) A cup moved

~e |= ‖λx
cup’x

.move’x‖g : np ; s ⇐⇒
~e |=

⋃
a∈‖cup’‖g

‖move’‖g(a) : s ⇐⇒⋃
a∈‖cup’‖g

‖move’‖g(a) = 1 ⇐⇒
∃a.a ∈ ‖cup’‖g ∩ ‖move’‖g

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(4) A cup moved

~e |= ‖λx
cup’x

.move’x‖g : np ; s ⇐⇒
~e |=

⋃
a∈‖cup’‖g

‖move’‖g(a) : s ⇐⇒⋃
a∈‖cup’‖g

‖move’‖g(a) = 1 ⇐⇒
∃a.a ∈ ‖cup’‖g ∩ ‖move’‖g

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Negation

• Negation is polymorphic

• indefinites in its scope are (optionally) existentially
closed

• anaphora slots are passed through unchanged

Definition 2 (Negation)

∼ α : s = 1− α
∼ α : S|A = λc. ∼ (αc)

∼ α : A ; S = ∼ (
⋃

c∈Dom(α)

αc)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn’t see a cup move

• First option: existential closure by negation:

¬λx
cup’x

.see’(move’x)john’

≡
¬∃x(cup’x ∧ see’(move’x)john’)

• Second option: existential closure at matrix level:

λx
cup’x

.¬see’(move’x)john’

≡
∃x(cup’x ∧ ¬see’(move’x)john’)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Properties of the analysis

No island effects

• An indefinite can take scope over each clause it is
contained in

• Indefinites scopally interact with operators like nega-
tion, but:

◦ No movement involved ; not constrained by con-
straints on movement

◦ scoping mechanism is independent from quantifier
scoping ; not constrained by constraints on quan-
tifier scope

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

No split between existential force and descriptive
content

• descriptive part is interpreted as domain restriction of
partial function

• is inherited by superconstituents in semantic compo-
sition:

Dom(f) ⊆ Dom(f ◦ g)

• Existential closure entails non-emptiness of domain

• Thus existential and descriptive scope are always iden-
tical

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Avoids

• “Donald Duck Problem” of naive long-distance exis-
tential closure analysis:

(6) a. John will be offended if we invite a certain
philosopher

b. ' ∃x(philo’x ∧ (invite’xwe’ →
offended’m’))

c. 6= ∃x(philo’x ∧ invite’xwe’ →
offended’m’)

• “Bound Pronoun Problem” of choice function analysis

(7) a. Every girl visited a boy she fancied
b. = ∀x(girl’x → ∃y(boy’y ∧ fancy’yx ∧

visit’yx))
c. 6= ∃f (ChF (f) ∧ ∀x(girl’x →
∧visit’f (λy.boy’y ∧ fancy’yx)x))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

• Syntax:

◦ Sluicing involves a bare wh-phrase

◦ needs a declarative clause containing an indefinite
as antecedent

• Semantics:

◦ “missing” material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Proposal: which cup has two types (but only one
meaning):

(9) a. q/(s ↑ np) : λP.?xcup’x ∧ Px
b. q|(np ; s) : λP.?xcup’x ∧ Px

• Antecedent clause has exactly the denotation that is
needed to complete the elliptical question

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Proposal: which cup has two types (but only one
meaning):

(9) a. q/(s ↑ np) : λP.?xcup’x ∧ Px
b. q|(np ; s) : λP.?xcup’x ∧ Px

• Antecedent clause has exactly the denotation that is
needed to complete the elliptical question

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Proposal: which cup has two types (but only one
meaning):

(9) a. q/(s ↑ np) : λP.?xcup’x ∧ Px
b. q|(np ; s) : λP.?xcup’x ∧ Px

• Antecedent clause has exactly the denotation that is
needed to complete the elliptical question

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Proposal: which cup has two types (but only one
meaning):

(9) a. q/(s ↑ np) : λP.?xcup’x ∧ Px
b. q|(np ; s) : λP.?xcup’x ∧ Px

• Antecedent clause has exactly the denotation that is
needed to complete the elliptical question

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

• First conjunct has category s

• which cup requires antecedent of category np ; s

• |-elimination not applicable

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Sluicing is island insensitive

• No transformational connection to non-elliptical coun-
terpart

• No restrictions on scope of indefinites ⇒ no restric-
tions on embedding depth of antecedent indefinites in
Sluicing

(11) a. The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one

b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I’m not sure which one the administration has
issued a statement that it is willing to meet with
from Chung, Ladusaw and McCloskey 1995

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht
{wem / *wen}
He wants someoneDAT flatter but they

know not {whoDAT / *whoACC}
‘He wants to flatter someone, but they don’t know
whom’

• morphological information coded in syntactic category

• indefinite NP in dative has category np(dat) ;

np(dat)

• clause containing dative indefinite: np(dat) ; s

• Sluicing remnant in dative: q|(np(dat) ; s)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. Conclusion

• Indefinites and pronouns are interpreted as (partial)
identity functions

• Pronoun binding via syntactic deduction

• existential impact of indefinites is buried in truth def-
inition/semantics of negation etc.

• descriptive content of indefinites is interpreted as do-
main restriction

• empirical coverage: specificity and sluicing

	Outline of talk
	Anaphora in TLG
	Jacobson's proposal
	Adaptation to TLG
	Binding
	Percolation

	Covering indefinites
	Basic idea
	Type Logical implementation
	Descriptive content

	Variable free existential closure
	Linguistic consequences
	Indefinites and scope

	Sluicing
	Predictions

	Conclusion

