Contents

1 Outline of talk 3
2 Anaphora in TLG 4
2.1 Jacobson's proposal 4
2.2 Adaptation to TLG 5
2.3 Binding 6
2.4 Percolation 7
3 Covering indefinites 8
3.1 Basic idea 8
3.2 Type Logical implementation 9
3.3 Descriptive content 12
4 Variable free existential closure 13
5 Linguistic consequences 17
5.1 Indefinites and scope 17
6 Sluicing 21
6.1 Predictions 23
7 Conclusion 26

Indefinites and Sluicing

A Type-Logical Approach

Amsterdam Colloquium
December 18, 2001
Gerhard Jäger
Zentrum für Allgemeine Sprachwissenschaft Berlin
jaeger@zas.gwz-berlin.de
www.let.uu.nl/~Gerhard.Jaeger/personal

1. Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
- Indefinites and scope
- Sluicing

1. Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
- Indefinites and seope
- Sluicing

1. Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
- Indefinites and scope
- Sluicing

1. Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
- Indefinites and scope
- Sluicing

1. Outline of talk

- Anaphora in Type Logical Grammar
- Extrapolation to indefinites
- Linguistic consequences:
- Indefinites and scope
- Sluicing

2. Anaphora in TLG
 2.1. Jacobson's proposal

- Semantics: pronouns denote identity functions
- Syntax: third slash: " $A \mid B$ " is category of anaphoric expression
- Pronouns: category $n p \mid n p$

2. Anaphora in TLG
 2.1. Jacobson's proposal

- Semantics: pronouns denote identity functions
- Syntax: third slash: " $A \mid B$ " is category of anaphoric expression
- Pronouns: category nplnp

2. Anaphora in TLG
 2.1. Jacobson's proposal

- Semantics: pronouns denote identity functions
- Syntax: third slash: " $A \mid B$ " is category of anaphoric expression
- Pronouns: category $n p \mid n p$

2. Anaphora in TLG
 2.1. Jacobson's proposal

- Semantics: pronouns denote identity functions
- Syntax: third slash: " $A \mid B$ " is category of anaphoric expression
- Pronouns: category $n p \mid n p$

2.2. Adaptation to TLG

- Natural Deduction rules for anaphora slash

- Only constraint on anaphora resolution: The antecedent must precede the pronoun

2.2. Adaptation to TLG

- Natural Deduction rules for anaphora slash

2.2. Adaptation to TLG

- Natural Deduction rules for anaphora slash

$$
\left.[M: A]_{i} \cdots \frac{N: B \mid A}{[N M: B]_{i}} \right\rvert\, E, i
$$

- Only constraint on anaphora resolution: The antecedent must precede the pronoun

2.2. Adaptation to TLG

- Natural Deduction rules for anaphora slash
- Only constraint on anaphora resolution: The antecedent must precede the pronoun

2.2. Adaptation to TLG

- Natural Deduction rules for anaphora slash

$$
\left.[M: A]_{i} \cdots \frac{N: B \mid A}{[N M: B]_{i}} \right\rvert\, E, i \quad \frac{\vdots}{\frac{N: A \mid B}{M x: A} i} \quad \vdots
$$

- Only constraint on anaphora resolution: The antecedent must precede the pronoun

2.3. Binding

(1) John said he walked

2.3. Binding
(1) John said he walked

2.3. Binding

(1) John said he walked

2.4. Percolation

2.4. Percolation

3. Covering indefinites

3.1. Basic idea
(2) a. It moved
b. Something moved

- Proposal: (a) and (b) have
- the same denotation: λx. MOVE' x
- different syntactic categories

3. Covering indefinites

3.1. Basic idea
(2) a. It moved
b. Something moved

- Proposal: (a) and (b) have
- the same denotation: λx. M \circ © ${ }^{\prime} x$ - different syntactic categories

3. Covering indefinites

3.1. Basic idea
(2) a. It moved
b. Something moved

- Proposal: (a) and (b) have
- the same denotation: $\lambda x \cdot \operatorname{MOVE}{ }^{\prime} x$
- different syntactic categories

3. Covering indefinites

3.1. Basic idea
(2) a. It moved
b. Something moved

- Proposal: (a) and (b) have
o the same denotation: λx.MOVE' x
- different syntactic categories

3.2. Type Logical implementation

- yet another substructural implication, " \sim "
- Intuition: $A \leadsto B$: category of B-sign contairing an indefinite A
- category of indefinite NPs: $n p \leadsto n p$
- it and something both denote the identity function on individuals
3.2. Type Logical implementation
- yet another substructural implication, "~"
- Intuition: $A \leadsto B$: category of B-sign containing an indefinite A
- category of indefinite NPs: $n p \sim n p$
- it and something both denote the identity function on individuals

3.2. Type Logical implementation

- yet another substructural implication, "~"
- Intuition: $A \leadsto B$: category of B-sign containing an indefinite A
- category of indefinite NPs: $n p \sim n p$
- it and something both denote the identity function on individuals

3.2. Type Logical implementation

- yet another substructural implication, "~"
- Intuition: $A \leadsto B$: category of B-sign containing an indefinite A
- category of indefinite NPs: $n p \leadsto n p$
- it and something both denote the identity function on individuals

3.2. Type Logical implementation

- yet another substructural implication, "~"
- Intuition: $A \leadsto B$: category of B-sign containing an indefinite A
- category of indefinite NPs: $n p \leadsto n p$
- it and something both denote the identity function on individuals
- indefinites function compose with their semantic environment

- Natural deduction rule:

- indefinites function compose with their semantic environment
- Natural deduction rule:

$$
\frac{, i}{}
$$

(3) a. John saw something

(3) a. John saw something

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|$ al $=$ function that mans a pronerty to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- \|a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup
3.3. Descriptive content
- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- "a cup" = identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- ||a cup moved || = partial function f from individuals to truth values:

$$
\begin{aligned}
& \text { - } f(x)=1 \text { iff } x \text { is a cup that moved } \\
& \text { - } f(x)=0 \text { iff } x \text { is a cup that did not move } \\
& 0 f(x) \text { is undefined iff } x \text { is not a cup }
\end{aligned}
$$

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:

$$
\begin{aligned}
& \text { o } f(x)=1 \text { iff } x \text { is a cup that moved } \\
& \text { o } f(x)=0 \text { iff } x \text { is a cup that did not move } \\
& \text { o } f(x) \text { is undefined iff } x \text { is not a cup }
\end{aligned}
$$

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup

3.3. Descriptive content

- Idea: descriptive content expresses domain restriction
- $\|a\|=$ function that maps a property to the identity function over its extension
- $\|$ a cup $\|=$ identity function on the set of cups
- $\|$ a cup moved $\|=$ partial function f from individuals to truth values:
- $f(x)=1$ iff x is a cup that moved
- $f(x)=0$ iff x is a cup that did not move
- $f(x)$ is undefined iff x is not a cup

4. Variable free existential closure

- Existential closure of a partial function: "big union" over its domain
- built in into the truth definition and the semantics of propositional operators (as in DRT)
- Relativization to syntactic categories to confine existential closure to indefinites

4. Variable free existential closure

- Existential closure of a partial function: "big union" over its domain
- built in into the truth definition and the semantics of propositional operators (as in DRT)
- Relativization to syntactic categories to confine existential closure to indefinites

4. Variable free existential closure

- Existential closure of a partial function: "big union" over its domain
- built in into the truth definition and the semantics of propositional operators (as in DRT)
- Relativization to syntactic categories to confine existential closure to indefinites

4. Variable free existential closure

- Existential closure of a partial function: "big union" over its domain
- built in into the truth definition and the semantics of propositional operators (as in DRT)
- Relativization to syntactic categories to confine existential closure to indefinites
- Truth is relativized to sequence of referents and syntactic category

Definition 1 (Truth)

- Truth is relativized to sequence of referents and syntactic category

Definition 1 (Truth)

$$
\begin{array}{rll}
\vec{e} \models \alpha: s & \text { iff } & \alpha=1 \\
c \vec{e} \models \alpha: S \mid n p & \text { iff } & \vec{e} \models(\alpha c): S \\
\vec{e} \models \alpha: n p \leadsto S & \text { iff } & \vec{e} \models\left(\quad \bigcup^{\models} \models\right. \\
& & \alpha c \text { is defined }
\end{array}
$$

(4) A cup moved

(4) A cup moved

$$
\begin{aligned}
& \vec{e} \models \| \lambda x_{\text {CUP }}{ }_{x} \cdot \text { MOVE }^{\prime} x \|_{g}: n p \leadsto s \\
& \vec{e} \models \bigcup_{a \in \| \text { CUP }}{ }^{\prime}\left\|_{g}\right\| \text { MOVE }^{\prime} \|_{g}(a): s \\
& \bigcup_{a \in \| \mathrm{CUP}}{ }^{\|_{g}}\left\|\mathrm{MOVE}^{\prime}\right\|_{g}(a)=1 \\
& \exists a . a \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \cap\left\|\mathrm{MOVE}^{\prime}\right\|_{g}
\end{aligned}
$$

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

Negation

- Negation is polymorphic
- indefinites in its scope are (optionally) existentially closed
- anaphora slots are passed through unchanged

Definition 2 (Negation)

$$
\begin{aligned}
\sim \alpha: s & =1-\alpha \\
\sim \alpha: S \mid A & =\lambda c \cdot \sim(\alpha c) \\
\sim \alpha: A \leadsto S & =\sim\left(\bigcup_{c \in \operatorname{Dom}(\alpha)} \alpha c\right)
\end{aligned}
$$

5. Linguistic consequences

5.1. Indefinites and scope
(5) John didn't see a cup move

- First option: existential closure by negation:

$$
-\lambda x_{\text {CUP }} \text {, SEE'(MOVE' } x \text {) دOHN' }
$$

$$
\neg \exists x\left(\text { CUP }^{\prime} x \wedge \text { SEE }^{\prime}(\text { MOVE' } x) \text { JOHN' }\right)
$$

- Second option: existential closure at matrix level:
$\lambda_{\text {CUP }}-$ SRE $^{\prime}($ MOVE' x) Jomin'
$\exists x\left(\right.$ CUP ${ }^{\prime} x \wedge \neg$ SEE' $^{\prime}\left(\right.$ MOVE' $\left.^{x}\right)$ JOHN')

5. Linguistic consequences

5.1. Indefinites and scope
(5) John didn't see a cup move

- First option: existential closure by negation:

- Second option: existential closure at matrix level:

5. Linguistic consequences

5.1. Indefinites and scope
(5) John didn't see a cup move

- First option: existential closure by negation:

$$
\begin{aligned}
& \neg \lambda x_{\mathrm{CUP}}{ }_{x} \text {. SEE'(MOVE' } x \text {) JOHN' } \\
& \neg \exists x\left(\text { CUP }^{\prime} x \wedge \text { SEE }^{\prime}(\text { MOVE } ' x) \text { JOHN' }\right) \\
& \text { - Second ontion: existential closure at matrix level: } \\
& \lambda x_{\text {CUP }}{ }_{x} \cdot \neg \text { SEE }^{\prime}\left(\text { MOVE' }^{\prime} x\right) \text { JOHN }{ }^{\prime} \\
& \exists x\left(\text { CUP' }^{\prime} x \wedge \text { ᄀSEE' }(\text { MOVE' } x)\right. \text { JOHN') }
\end{aligned}
$$

5. Linguistic consequences

5.1. Indefinites and scope
(5) John didn't see a cup move

- First option: existential closure by negation:

$$
\begin{gathered}
\neg \lambda x_{\mathrm{CUP}}{ }_{x} \cdot \text { SEE ' }^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN} ' \\
\equiv \\
\neg \exists x\left(\mathrm{CUP}^{\prime} x \wedge \mathrm{SEE}^{\prime}\left(\text { MOVE' }^{\prime} x\right) \mathrm{JOHN}\right. \text { ' }
\end{gathered}
$$

- Second option: existential closure at matrix level: $\lambda x_{\text {CUP }}{ }^{\prime} . \neg$ SEE ${ }^{\prime}\left(\right.$ MOVE' $\left.^{\prime} x\right)$ JOHN ${ }^{\prime}$ $\exists x\left(\right.$ CUP' $^{\prime} x \wedge \neg$ SEE' $^{\prime}(\mathrm{MOVE} ’ x) \mathrm{JOHN}$ ')

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn't see a cup move

- First option: existential closure by negation:

$$
\left.\begin{array}{rl}
\neg \lambda x_{\mathrm{CUP}}{ }_{x} \cdot \mathrm{SEE}{ }^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN} \\
\equiv \\
& \equiv \\
\neg x\left(\mathrm{CUP}^{\prime} x \wedge \mathrm{SEE}^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN}\right.
\end{array}\right)
$$

- Second option: existential closure at matrix level:

$$
\lambda x_{\mathrm{CUP}}{ }^{\prime}{ }_{x} \cdot \neg \mathrm{SEE}^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN}{ }^{\prime}
$$

5. Linguistic consequences

5.1. Indefinites and scope

(5) John didn't see a cup move

- First option: existential closure by negation:

$$
\left.\begin{array}{rl}
\neg \lambda x_{\mathrm{CUP}}{ }_{x} \cdot \mathrm{SEE}{ }^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN} \\
\equiv \\
& \equiv \\
\neg x\left(\mathrm{CUP}^{\prime} x \wedge \mathrm{SEE}^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN}\right.
\end{array}\right)
$$

- Second option: existential closure at matrix level:

$$
\begin{gathered}
\lambda x_{\mathrm{CUP}^{\prime}}{ }_{x} \cdot \neg \mathrm{SEE}^{\prime}\left(\mathrm{MOVE}^{\prime} x\right) \mathrm{JOHN} \text { ' } \\
\equiv \\
\exists x\left(\mathrm{CUP}^{\prime} x \wedge \neg \mathrm{SEE}^{\prime}\left(\text { MOVE' }^{\prime} x\right) \mathrm{JOHN} \text { ' }\right)
\end{gathered}
$$

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
- No movement involved \leadsto not constrained by constraints on movement
- scoping mechanism is independent from quantifier scoping \leadsto not constrained by constraints on quantifier scope

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
- No movement involved \leadsto not constrained by constraints on movement
- scoping mechanism is independent from quantifier scoping \leadsto not constrained by constraints on quantifier scope

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
> \circ No movement involved \leadsto not constrained by constraints on movement
> - scoping mechanism is independent from quantifier scoping \leadsto not constrained by constraints on quantifier scope

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
- No movement involved \leadsto not constrained by constraints on movement
scoping mechanism is independent from quantifier
scoping \leadsto not constrained by constraints on quan-
tifier scope

Properties of the analysis

No island effects

- An indefinite can take scope over each clause it is contained in
- Indefinites scopally interact with operators like negation, but:
- No movement involved \leadsto not constrained by constraints on movement
- scoping mechanism is independent from quantifier scoping \leadsto not constrained by constraints on quantifier scope

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:
$\operatorname{Dom}(f) \subseteq \operatorname{Dom}(f \circ g)$
- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:

- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:
$\operatorname{Dom}(f) \subseteq \operatorname{Dom}(f \circ g)$
- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:

$$
\operatorname{Dom}(f) \subseteq \operatorname{Dom}(f \circ g)
$$

- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:

$$
\operatorname{Dom}(f) \subseteq \operatorname{Dom}(f \circ g)
$$

- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

No split between existential force and descriptive content

- descriptive part is interpreted as domain restriction of partial function
- is inherited by superconstituents in semantic composition:

$$
\operatorname{Dom}(f) \subseteq \operatorname{Dom}(f \circ g)
$$

- Existential closure entails non-emptiness of domain
- Thus existential and descriptive scope are always identical

Avoids

- "Donald Duck Problem" of naive long-distance existential closure analysis:
(6) a. John will be offended if we invite a certain philosopher
b. $\simeq \quad \exists x$ (PHILO' $x \wedge\left(\right.$ INVITE' $^{\prime} x \mathrm{WE}^{\prime}$

OFFENDED'M'))
c. $\neq \exists x\left(\right.$ PHILO $x \wedge$ invite $^{\circ} x$ WE $^{\circ}$

OFFENDED'M')

- "Bound Pronoun Problem" of choice function analysis
(7) a. Every girl visited a boy she fancied b. $=\forall x\left(\right.$ GIRL' $x \rightarrow \exists y\left(\mathrm{BOY}^{\prime} y \wedge\right.$ FANCY' $y x \wedge$ VISIT'yx))
c. $\neq \quad \exists f(\operatorname{ChF}(f) \wedge \quad \forall x($ GIRL' x
\wedge VISIT $^{\prime} f\left(\lambda y\right.$. BOY' $^{\prime} y \wedge$ FANCY' $\left.\left.y x\right) x\right)$

Avoids

- "Donald Duck Problem" of naive long-distance existential closure analysis:

Avoids

- "Donald Duck Problem" of naive long-distance existential closure analysis:
(6) a. John will be offended if we invite a certain philosopher
b. $\simeq \exists x\left(\mathrm{PHILO}^{\prime} x \wedge\right.$ (INVITE' $x \mathrm{WE}^{\prime} \quad \rightarrow$ OFFENDED'M'))
c. $\neq \exists x\left(\right.$ PHILO' $^{\prime} x \wedge$ INVITE $^{\prime} x \mathrm{WE}{ }^{\prime} \rightarrow$ OFFENDED'M')
- "Bound Pronoun Problem" of choice function analysis
(7) a. Every girl visited a boy she fancied

Avoids

- "Donald Duck Problem" of naive long-distance existential closure analysis:
(6) a. John will be offended if we invite a certain philosopher
b. $\simeq \quad \exists x$ (PHILO' $x \wedge($ INVITE' x WE' \rightarrow OFFENDED'M'))
c. $\neq \quad \exists x($ PHILO' $x \wedge$ INVITE' x WE $\quad \rightarrow$ OFFENDED'M')
- "Bound Pronoun Problem" of choice function analysis
(7) a. Every girl visited a boy she fancied

Avoids

- "Donald Duck Problem" of naive long-distance existential closure analysis:
(6) a. John will be offended if we invite a certain philosopher
b. $\simeq \exists x($ PHILO' $x \wedge$ (INVITE' x WE' \rightarrow OFFENDED'M'))
c. $\neq \quad \exists x($ PHILO' $x \wedge$ INVITE' x WE $\quad \rightarrow$ OFFENDED'M')
- "Bound Pronoun Problem" of choice function analysis
(7) a. Every girl visited a boy she fancied
b. $=\forall x($ GIRL' $x \rightarrow \exists y($ BOY' $y \wedge$ FANCY' $y x \wedge$ VISIT' $y x$))
c. $\neq \quad \exists f(C h F(f) \wedge \quad \forall x($ GIRL' x
\wedge VISIT $^{\prime} f\left(\lambda y \cdot\right.$ BOY' $^{\prime} y \wedge$ FANCY' $\left.\left.\left.y x\right) x\right)\right)$

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
- "missing" material is identical to antecedent except that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup b. A cup moved, and Bill wonders which cup moved - Syntax:

- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semanties:
- "missing" material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
> o "missing" material is identical to antecedent except that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
> - "missing" material is identical to antecedent except that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
> - "missing" material is identical to antecedent except that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
o "missing" material is identical to antecedent ex-
cept that indefinite is replaced by wh-trace

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:

6. Sluicing

(8) a. A cup moved, and Bill wonders which cup
b. A cup moved, and Bill wonders which cup moved

- Syntax:
- Sluicing involves a bare wh-phrase
- needs a declarative clause containing an indefinite as antecedent
- Semantics:
- "missing" material is identical to antecedent except that indefinite is replaced by wh-trace
- Proposal: which cup has two types (but only one meaning):

- Antecedent clause has exactly the denotation that is needed to complete the elliptical question
- Proposal: which cup has two types (but only one meaning):
(9) a. $q /(s \uparrow n p): \lambda P . ? x$ CUP' $^{\prime} x \wedge P x$
- Antecedent clause has exactly the denotation that is needed to complete the elliptical question
- Proposal: which cup has two types (but only one meaning):
(9) a. $q /(s \uparrow n p): \lambda P . ? x$ CUP' $^{\prime} x \wedge P x$
b. $q \mid(n p \sim s): \lambda P . ? x$ CUP' $^{\prime} x \wedge P x$
- Antecedent clause has exactly the denotation that is needed to complete the elliptical question
- Proposal: which cup has two types (but only one meaning):
(9) a. $q /(s \uparrow n p): \lambda P . ? x$ CUP' $^{\prime} x \wedge P x$ b. $q \mid(n p \sim s): \lambda P . ? x$ CUP' $^{\prime} x \wedge P x$
- Antecedent clause has exactly the denotation that is needed to complete the elliptical question

6.1. Predictions
 Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

- First conjunct has category s
- which cup requires antecedent of category $n p \leadsto s$
- |-elimination not applicable

6.1. Predictions
 Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

- First conjunct has category s
- which cup requires antecedent of category $n p \leadsto s$
- |-elimination not applicable

6.1. Predictions
 Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

- First conjunct has category s
- which cup requires antecedent of category $n p \sim s$
- |-elimination not applicable

6.1. Predictions

Antecedent must contain an indefinite
(10) *The cup moved, and Bill wonders which cup

- First conjunct has category s
- which cup requires antecedent of category $n p \sim s$
- |-elimination not applicable

6.1. Predictions

Antecedent must contain an indefinite

(10) *The cup moved, and Bill wonders which cup

- First conjunct has category s
- which cup requires antecedent of category $n p \sim s$
- |-elimination not applicable

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- N_{0} restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
(11) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one
b. *The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one the administration has issued a statement that it is willing to meet with from Chung, Ladusaw and McCloskey 1995

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- No restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
(11) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one
b. *The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one the administration has issued a statement that it is willing to meet with from Chung, Ladusaw and McCloskey 1095

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- No restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
(11) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one b. *The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one the administration has issued a statement that it is willing to meet with from Chung, Ladusaw and McCloskey 1095

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- No restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
(11) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one b. *The administration has issued a statement that it
is willing to meet with one of the student groups,
but I'm not sure which one the administration has
issued a statement that it is willing to meet with from Chung, Ladusaw and McCloskey 1995

Sluicing is island insensitive

- No transformational connection to non-elliptical counterpart
- No restrictions on scope of indefinites \Rightarrow no restrictions on embedding depth of antecedent indefinites in Sluicing
(11) a. The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one
b. *The administration has issued a statement that it is willing to meet with one of the student groups, but I'm not sure which one the administration has issued a statement that it is willing to meet with from Chung, Ladusaw and McCloskey 1995

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
HE WANTS SOMEONE ${ }_{\text {DAT }}$ FLATTER BUT THEY KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / *\right.$ WHO $\left._{\text {ACC }}\right\}$ 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t) ~ \leadsto$ np(dat)
- clause containing dative indefinite: $n p(d a t) \sim s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
He wants someone dat flatter but they KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / * \mathrm{WHO}_{\mathrm{ACC}}\right\}$ 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t) \leadsto$ np(dat)
- clause containing dative indefinite: $n p(d a t) \sim s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
He wants someone ${ }_{\text {dat }}$ flatter but they KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / * \mathrm{WHO}_{\mathrm{ACC}}\right\}$ 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t)$ $n p(d a t)$
- clause containing dative indefinite: $n p($ dat $) \sim s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
He wants someone dat flatter but they KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / * \mathrm{WHO}_{\mathrm{ACC}}\right\}$ 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t) \leadsto$ $n p$ (dat)
- clause containing dative indefinite: $n p(d a t) \sim s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
He wants someone ${ }_{\text {dat }}$ flatter but they KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / * \mathrm{WHO}_{\mathrm{ACC}}\right\}$ 'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t) \leadsto$ $n p$ (dat)
- clause containing dative indefinite: $n p(d a t) \leadsto s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

Morphological sensitivity

(12) Er will jemandem schmeicheln, aber sie wissen nicht \{wem / *wen\}
He wants someone dat flatter but they KNOW NOT $\left\{\mathrm{WHO}_{\text {DAT }} / * \mathrm{WHO}_{\mathrm{ACC}}\right\}$
'He wants to flatter someone, but they don't know whom'

- morphological information coded in syntactic category
- indefinite NP in dative has category $n p(d a t) \leadsto$ $n p$ (dat)
- clause containing dative indefinite: $n p(d a t) \sim s$
- Sluicing remnant in dative: $q \mid(n p(d a t) \sim s)$

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descrintive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

7. Conclusion

- Indefinites and pronouns are interpreted as (partial) identity functions
- Pronoun binding via syntactic deduction
- existential impact of indefinites is buried in truth definition/semantics of negation etc.
- descriptive content of indefinites is interpreted as domain restriction
- empirical coverage: specificity and sluicing

