Specificity: Combining the approaches

Gerhard Jäger
ZAS Berlin
http://www.ling.uni-potsdam.de/~jaeger
March 13, 2002
University of Chicago

Outline of talk

\author{

- Specificity and scope
 - Previous approaches and their problems
 - Indefinites as partial variables
 - Extension to plural quantifiers
 - Conclusion
}

Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

Outline of talk

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
o statement of existence-non-specific usage
o statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
o specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
o affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence -non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
o statement of existence -non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa) - affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

1. The phenomenon

- Pragmatic ambiguity of indefinite descriptions:
(1) A student in the syntax class cheated in the final exam
- Can be
- statement of existence-non-specific usage
- statement about a particular student-specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
- specificity involves "cognitive contact" (Yeom)
- different speech acts
- rich descriptive content favors specific reading (and vice versa)
- affinity between specificity and topicality

Specificity and scope

- Quantifier scope is usually clause bounded

(2) a. Mary will be happy if every movie is shown (if $>\forall, * \forall>i f)$
b. Mary will be happy if at most three movies are shown (if $>3_{\leq}$, $* 3_{\leq}>i f$)
c. Mary will be happy if at least three movies are shown (if >3, * $3 \geq>i f$)
d. Mary will be happy if exactly three movies are shown (if $>3_{=}$, *3= $>i f$)

Specificity and scope

- Quantifier scope is usually clause bounded
(2) a. Mary will be happy if every movie is shown (if $>\forall$, * $\forall>i f$)
b. Mary will be happy if at most three movies are shown (if $>3_{\leq}$,
c. Mary will be happy if at least three movies are shown (if >3,
d. Mary will be happy if exactly three movies are shown (if $>3_{=}$, $* 3=>i f)$

Specificity and scope

- Quantifier scope is usually clause bounded
(2) a. Mary will be happy if every movie is shown (if $>\forall, * \forall>i f)$
b. Mary will be happy if at most three movies are shown (if $>3_{<}$,
c. Mary will be happy if at least three movies are shown (if $>3_{\geq}$,
d. Mary will be happy if exactly three movies are shown (if $>3=$, *3 $=>i f$)

Specificity and scope

- Quantifier scope is usually clause bounded
(2) a. Mary will be happy if every movie is shown (if $>\forall, * \forall>i f$)
b. Mary will be happy if at most three movies are shown (if $>3_{\leq}$, $*_{3 \leq}>i f$)
c. Mary will be happy if at least three movies are shown (if $>3_{\geq}$, $\left.*_{3}>i f\right)$
d. Mary will be happy if exactly three movies are shown (if $>3_{=}$, ${ }^{*} 3_{=}>i f$)
- Singular indefinites and plain cardinal quantifiers can escape scope islands
(3) a. Mary will be happy if a/some movie is shown (if $>\exists, \exists>$ if) b. Mary will be happy if three movies are shown (if $>3,3>$ if)
- Singular indefinites and plain cardinal quantifiers can escape scope islands
(3) a. Mary will be happy if a/some movie is shown (if $>\exists, \exists>$ if) b. Mary will be happy if three movies are shown (if $>3,3>$ if)
- Singular indefinites and plain cardinal quantifiers can escape scope islands
(3) a. Mary will be happy if a/some movie is shown (if $>\exists, \exists>$ if)
b. Mary will be happy if three movies are shown (if $>3,3>$ if)
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction

In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$
- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
(4) a. Every writer overheard the rumor that she didn't write a book she wrote $(\forall>\exists>\neg)$
b. Every professor got a headache whenever there was a student he hated in class ($\forall>\exists>$ whenever)
- Also possible without bound pronoun inside the restriction
(5) In every town, every girl that a boy was in love with married an Albanian $(\forall>\exists>\forall>\exists)$

Two questions:

1. Why can some quantifiers escape scope islands (and others can't)?
2. What determines the scope taking behavior of a quantifier?

Two questions:

1. Why can some quantifiers escape scope islands (and others can't)?
2. What determines the scope taking behavior of a quantifier?

Two questions:

1. Why can some quantifiers escape scope islands (and others can't)?
2. What determines the scope taking behavior of a quantifier?

2. Solution strategies
 2.1. Long QR

- Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

2. Solution strategies
 2.1. Long QR

- Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

2. Solution strategies
 2.1. Long QR

- Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$

INHERIT'(I', FORTUNE'))| ≥ 3 \approx There are three relatives such that if one of them ..
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$ $\left(\left(\forall y . y \in X \rightarrow \operatorname{DIE}^{\prime}(y)\right) \rightarrow \operatorname{INHERIT}^{\prime}\left(I^{\prime}\right.\right.$, FORTUNE' $\left.\left.)\right)\right)$ \approx There are three relatives such that if each of them

- Plural specifics have double scope (cf. Ruys 1992):
- mide existential scone
- narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\right.$ DIE $^{\prime}(x)$

INHERIT'(I', FORTUNE')) $\mid \geq 3$ \approx There are three relatives such that if one of them
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$

\approx There are three relatives such that if each of them

- Plural specifics have double scope (cf. Ruys 1992):
- wide existential scope
o narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6)
a. If three relatives of mine die, I'll inherit a fortune
b. QR :

INHERIT' (I', FORTUNE')) $\mid>3$
\approx There are three relatives such that if one of them
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$

\approx There are three relatives such that if each of them

- Plural specifics have double scope (cf. Ruys 1992):
o wide existential scope
o narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, l'll inherit a fortune
\approx There are three relatives such that if one of them c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$

\approx There are three relatives such that if each of them
- Plural specifics have double scope (cf. Ruys 1992):
o wide existential scone
o narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$

INHERIT'(I', FORTUNE')) $\mid \geq 3$
\approx There are three relatives such that if one of them ...
c. correct reading
\approx There are three relatives such that if each of them

- Plural specifics have double scope (cf. Ruys 1992):
- wide existential scone
- narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$
inherit' (I', FORTUNE')) $\mid \geq 3$
\approx There are three relatives such that if one of them ...
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$
$\left(\left(\forall y . y \in X \rightarrow\right.\right.$ DIE $\left.^{\prime}(y)\right) \rightarrow$ INHERIT $^{\prime}\left(\mathrm{I}^{\prime}\right.$, FORTUNE' $\left.\left.)\right)\right)$
\approx There are three relatives such that if each of them ...
- Plural specifics have double scope (cf. Ruys 1992):
o wide existential scope
o narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$
inherit' (I', Fortune')) $\mid \geq 3$
\approx There are three relatives such that if one of them ...
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$
$\left(\left(\forall y . y \in X \rightarrow \operatorname{DIE}^{\prime}(y)\right) \rightarrow\right.$ INHERIT $^{\prime}\left(\mathrm{I}^{\prime}\right.$, FORTUNE' $\left.\left.)\right)\right)$
\approx There are three relatives such that if each of them ...
- Plural specifics have double scope (cf. Ruys 1992):
o wide existential scope
o narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$
inherit' (I', Fortune')) $\mid \geq 3$
\approx There are three relatives such that if one of them ...
c. correct reading: $\exists X\left(X \subseteq\right.$ RELATIVE ${ }^{\prime} \wedge|X|=3 \wedge$
$\left(\left(\forall y . y \in X \rightarrow \operatorname{DIE}^{\prime}(y)\right) \rightarrow\right.$ INHERIT $^{\prime}\left(\mathrm{I}^{\prime}\right.$, FORTUNE' $\left.\left.)\right)\right)$
\approx There are three relatives such that if each of them ...
- Plural specifics have double scope (cf. Ruys 1992):
- wide existential scope
- narrow (clause-bounded) universal scope

Problems

- Conceptually unpleasant
- Empirically wrong:
(6) a. If three relatives of mine die, I'll inherit a fortune
b. QR: |RELATIVE' $\cap \quad \lambda x\left(\operatorname{DIE}^{\prime}(x)\right.$
inherit' (I', Fortune')) $\mid \geq 3$
\approx There are three relatives such that if one of them ...
c. correct reading: $\exists X(X \subseteq$ RELATIVE' $\wedge|X|=3 \wedge$
$\left(\left(\forall y . y \in X \rightarrow \operatorname{DIE}^{\prime}(y)\right) \rightarrow\right.$ INHERIT $^{\prime}\left(\mathrm{I}^{\prime}\right.$, FORTUNE' $\left.\left.)\right)\right)$
\approx There are three relatives such that if each of them ...
- Plural specifics have double scope (cf. Ruys 1992):
- wide existential scope
- narrow (clause-bounded) universal scope

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading: $\exists x\left(\left(\right.\right.$ PHILOSOPHER' $(x) \wedge \operatorname{INVITE}^{\prime}($ WE',$\left.x)\right)$
OFFENDED'(MAX'))
C. real reading:
$\exists x\left(\right.$ PHILOSOPHER ${ }^{\prime}(x) \quad \wedge \quad\left(\right.$ INVITE $^{\prime}\left(\mathrm{WE}^{\prime}, x\right) \quad \rightarrow$ OFFENDED'(MAX')))
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended b. predicted reading $\exists x$ ((PHILOSOPHER' (x) OFFENDED'(MAX')
C. real reading $\exists x\left(\right.$ PHILOSOFHER ${ }^{\prime}(x) \quad \wedge \quad$ (INVITE ${ }^{\prime}\left(\mathrm{WE}^{\prime}, x\right)$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading: $\exists x$ ((PHILOSOPHER' (x) OFFENDED'(MAX'))
C. real reading $\exists x\left(\right.$ PHILOSOPHER' $(x) \quad \wedge \quad\left(\right.$ INVITE $^{\prime}\left(\mathrm{WE}^{\prime}, x\right)$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
c. real reading
$\exists x$ (PHILOSOPHER' $(x) \quad \wedge \quad$ (INVITE' $\left.{ }^{(W E)}, x\right)$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
$\exists x\left(\left(\right.\right.$ PHILOSOPHER' $\left.^{\prime}(x) \quad \wedge \quad \operatorname{INVITE}^{\prime}\left(\mathrm{WE}^{\prime}, x\right)\right)$ OFFENDED'(MAX'))
c. real reading
$\exists x$ (PHILOSOPHER' $(x) \quad \wedge \quad$ (INVITE' ${ }^{\prime}$ WE',$\left.x\right)$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
$\exists x\left(\left(\operatorname{PHILOSOPHER}^{\prime}(x) \quad \wedge \quad \operatorname{INVITE}^{\prime}\left(\mathrm{WE}^{\prime}, x\right)\right)\right.$ OFFENDED'(MAX'))
c. real reading:
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
$\exists x\left(\left(\operatorname{PHILOSOPHER}^{\prime}(x) \quad \wedge \quad \operatorname{INVITE}^{\prime}\left(\mathrm{WE}^{\prime}, x\right)\right)\right.$ offended' (mAx'))
c. real reading:
$\exists x\left(\right.$ PHILOSOPHER' $^{\prime}(x) \quad \wedge \quad\left(\right.$ INVITE $^{\prime}\left(\mathrm{WE}^{\prime}, x\right)$ offended'(MAX')))
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

2.2. Unselective binding

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
(7) a. If we invite some philosopher, Max will be offended
b. predicted reading:
$\exists x\left(\left(\right.\right.$ PHILOSOPHER' $\left.^{\prime}(x) \quad \wedge \quad \operatorname{INVITE}^{\prime}\left(\mathrm{WE}^{\prime}, x\right)\right)$ OFFENDED'(MAX'))
c. real reading:
$\exists x\left(\right.$ PHILOSOPHER' $^{\prime}(x) \quad \wedge \quad\left(\right.$ INVITE $^{\prime}\left(\mathrm{WE}^{\prime}, x\right)$ OFFENDED'(MAX')))
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

Problems

> - Wrong truth conditions
> - Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

Problems

- Wrong truth conditions
- Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

Problems

- Wrong truth conditions
- Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

2.3. Indefinites as choice functions

```
Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia
2001..
- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this
    set
- I.e. indefinite determiners denote choice functions
(8) CF}(f)\leftrightarrowVXXX\not=\emptyset->\int(X)\in
```


2.3. Indefinites as choice functions

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: some movie refers to some movie
- Thus determiner some mans the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
(8) $C F(f) \leftrightarrow \forall X X \neq \emptyset \rightarrow f(X) \in X$

2.3. Indefinites as choice functions

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this set
- I.e indefinite determiners denote choice functions

2.3. Indefinites as choice functions

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions (8) $C F(f) \leftrightarrow \forall X . X \neq \emptyset \rightarrow f(X) \in X$

2.3. Indefinites as choice functions

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions

2.3. Indefinites as choice functions

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: some movie refers to some movie
- Thus determiner some maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
(8) $\quad C F(f) \leftrightarrow \forall X . X \neq \emptyset \rightarrow f(X) \in X$
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown.
b. $\exists f . C F(f) \wedge$ IS_SHOWN ${ }^{\prime}\left(f\left(\right.\right.$ MOVIE $\left.\left.^{\prime}\right)\right) \rightarrow\left(\forall x\right.$. GIRL' $^{\prime}(x) \rightarrow$ IS HAPPY $(x))$
c. $\exists y$. MOVIE' $^{\prime} \wedge\left(\right.$ IS_SHOWN $^{\prime}(y) \quad \rightarrow \quad\left(\forall x \cdot\right.$ GIRL' $^{\prime}(x) \quad \rightarrow$ IS_HAPPY' $(x))$)
- no Donald Duck problem
- double scope behavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown. b. $\exists f . C F(f) \wedge$ IS_SHOWN $^{\prime}\left(f\left(\right.\right.$ MOVIE' $\left.\left.^{\prime}\right)\right) \rightarrow\left(\forall x \cdot\right.$ GIRL $^{\prime}(x) \rightarrow$ IS_HAPPY $\left.{ }^{\prime}(x)\right)$ c. $\exists y \cdot M O V I E ' y \wedge\left(\right.$ IS_SHOWN ${ }^{\prime}(y) \quad \rightarrow\left(\forall x \cdot \operatorname{GIRL}^{\prime}(x) \longrightarrow\right.$
- no Donald Duck problem
- double scone behavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level

- no Donald Duck problem
- double scope behavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown.
- no Donald Duck problem
- double scope behavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown.
b. $\exists f . C F(f) \wedge$ IS_SHOWN' $\left(f\left(\right.\right.$ MOVIE $\left.\left.^{\prime}\right)\right) \rightarrow\left(\forall x \cdot \operatorname{GIRL}^{\prime}(x) \rightarrow\right.$ IS_HAPPY' $(x))$
c. $\exists y . \mathrm{MOVIE}^{\prime} y \wedge\left(\mathrm{IS}_{-} \mathrm{SHOWN}^{\prime}(y) \quad \rightarrow \quad\left(\forall x . \mathrm{GIRL}^{\prime}(x) \quad \rightarrow\right.\right.$ IS_HAPPY' $(x))$)
- no Donald Duck problem
- double scone hehavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown.
b. $\exists f . C F(f) \wedge$ IS_SHOWN' $\left(f\left(\right.\right.$ MOVIE $\left.\left.^{\prime}\right)\right) \rightarrow\left(\forall x . \operatorname{GIRL}^{\prime}(x) \rightarrow\right.$ IS_HAPPY' $(x))$
c. $\exists y . \mathrm{MOVIE}^{\prime} y \wedge\left(\mathrm{IS}_{-} \mathrm{SHOWN}^{\prime}(y) \quad \rightarrow \quad\left(\forall x . \mathrm{GIRL}^{\prime}(x) \quad \rightarrow\right.\right.$ IS_HAPPY' $(x))$)
- no Donald Duck problem
- double scope behavior can be accommodated
- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
(9) a. Every girl will be happy if some movie is shown.
b. $\exists f . C F(f) \wedge$ IS_SHOWN' $\left(f\left(\right.\right.$ MOVIE $\left.\left.^{\prime}\right)\right) \rightarrow\left(\forall x . \operatorname{GIRL}^{\prime}(x) \rightarrow\right.$ IS_HAPPY' $(x))$
c. $\exists y$.MOVIE' $y \wedge\left(\right.$ IS_SHOWN $^{\prime}(y) \quad \rightarrow \quad\left(\forall x \cdot\right.$ GIRL' $^{\prime}(x) \quad \rightarrow$ IS_HAPPY' $(x))$)
- no Donald Duck problem
- double scope behavior can be accommodated

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved \forall There exists a cup
- Bound pronoun problem:
- Arises if indefinite ND contains a pronoun that is bound from outside the NP
(11) a. At most three girls ${ }_{i}$ visited a boy that they ${ }_{i}$ fancied. b. $\exists f . C F(f) \wedge \mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \operatorname{VISIT}^{\prime}\left(x, f\left(\lambda y \cdot \mathrm{BOY}^{\prime}(y) \wedge\right.\right.$ FANCY' $(x, y))) \mid \leq 3$
c. $\mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \forall y \cdot \operatorname{BOY}^{\prime}(y) \wedge \operatorname{FANCY}^{\prime}(x, y) \rightarrow$ $\operatorname{VISIT}^{\prime}(x, y) \mid \leq 3$
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:

```
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved \(\not \vDash\) There exists a cup
```

- Bound pronoun problem:
- Arises if indefinite NIP contains a pronoun that is bound from outside the NP
(11) a. At most three girls ${ }_{i}$ visited a boy that they ${ }_{i}$ fancied. b. $\exists f . C F(f) \wedge \mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \operatorname{VISIT}^{\prime}\left(x, f\left(\lambda y \cdot\right.\right.$ BOY $^{\prime}(y) \wedge$ $\left.\left.\operatorname{FANCY}^{\prime}(x, y)\right)\right) \mid \leq 3$ c. $\mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \forall y \cdot \operatorname{BOY}^{\prime}(y) \wedge \operatorname{FANCY}^{\prime}(x, y)$ $\operatorname{VISIT}^{\prime}(x, y) \mid \leq 3$
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set - Thus according to CF-approach:
(10) A cup moved \forall There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set - Thus according to CF-approach:
(10) A cup moved $\forall=$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girlsi visited a boy that they ${ }_{i}$ fancied.
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.
- CF-approach predicts a reading (b), which is equivalent to (c)

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.

Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.

```
b. \(\exists f . C F(f) \wedge \mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \operatorname{VISIT}^{\prime}\left(x, f\left(\lambda y\right.\right.\). BOY \(^{\prime}(y) \wedge\)
FANCY' \(\left.^{\prime}(x, y)\right) \mid \leq 3\)
```


Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.

```
b. \(\exists f . C F(f) \wedge \mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \operatorname{VISIT}^{\prime}\left(x, f\left(\lambda y \cdot\right.\right.\) BOY \(^{\prime}(y) \wedge\)
FANCY' \((x, y))) \mid \leq 3\)
c. \(\mid \lambda x \cdot\) GIRL' \(^{\prime}(x) \wedge \forall y \cdot\) BOY' \(^{\prime}(y) \wedge \operatorname{FANCY}^{\prime}(x, y)\)
\(\operatorname{VISIT}^{\prime}(x, y) \mid \leq 3\)
```


Problems

- Empty set problem:
- Choice function supplies arbitrary object if applied to empty set
- Thus according to CF-approach:
(10) A cup moved $\not \models$ There exists a cup
- Bound pronoun problem:
- Arises if indefinite NP contains a pronoun that is bound from outside the NP
(11) a. At most three girls visited a boy that they $_{i}$ fancied.
b. $\exists f . C F(f) \wedge \mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \operatorname{VISIT}^{\prime}\left(x, f\left(\lambda y \cdot \operatorname{BOY}^{\prime}(y) \wedge\right.\right.$ FANCY' $(x, y))) \mid \leq 3$
c. $\mid \lambda x \cdot \operatorname{GIRL}^{\prime}(x) \wedge \forall y \cdot$ BOY' $^{\prime}(y) \wedge \operatorname{FANCY}^{\prime}(x, y)$ $\operatorname{VISIT}^{\prime}(x, y) \mid \leq 3$
- CF-approach predicts a reading (b), which is equivalent to (c)
2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation
2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation
2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation

Obvious parallels

```
- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his
    childhood
    b. = There is a (salient?) kingi and every Italian watched a
    film that showed him}\mp@subsup{\mp@code{in}}{i}{\mathrm{ in his}}\mp@subsup{\mp@code{c}}{\mathrm{ childhood}}{
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain
    diva in her youth
    b. = There is a certain diva}\mp@subsup{}{i}{}\mathrm{ and every Italian watched a pro-
        gram that showed heri in her i youth
```


Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king $_{i}$ and every Italian watched a film that showed him_{i} in his_{i} childhood
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain diva in her youth
b. = There is a certain diva_{i} and every Italian watched a program that showed her ${ }_{i}$ in her $_{i}$ youth

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) kingi and every Italian watched a film that showed him ${ }_{i}$ in his childhood
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain diva in her youth
b. = There is a certain diva i_{i} and every Italian watched a program that showed her ${ }_{i}$ in her r_{i} youth

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king $_{i}$ and every Italian watched a film that showed him in his ${ }_{i}$ childhood
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain diva in her youth
b. = There is a certain diva i_{i} and every Italian watched a program that showed her ${ }_{i}$ in her r_{i} youth

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king_{i} and every Italian watched a film that showed him ${ }_{i}$ in his ${ }_{i}$ childhood

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king_{i} and every Italian watched a film that showed him ${ }_{i}$ in his ${ }_{i}$ childhood
- Specific indefinite

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king_{i} and every Italian watched a film that showed him ${ }_{i}$ in his ${ }_{i}$ childhood
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain diva in her youth
b. = There is a certain diva; and every Italian watched a program that showed her ${ }_{i}$ in her ${ }_{i}$ youth

Obvious parallels

- Preference for global scope:
- Classical presupposition trigger
(12) a. Every Italian watched a film that showed the king in his childhood
b. = There is a (salient?) king_{i} and every Italian watched a film that showed him ${ }_{i}$ in his ${ }_{i}$ childhood
- Specific indefinite
(13) a. Every Italian watched a program that showed a certain diva in her youth
b. = There is a certain diva_{i} and every Italian watched a program that showed her ${ }_{i}$ in her ${ }_{i}$ youth
- "Trapping" : bound pronouns cannot become unbound
- Presumposition trigger
(14) a. Every girl ${ }_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl ${ }_{i}$ visited a certain boy she e_{i} fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited $^{\text {her }}{ }_{i}$ boyfriend
b. E Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Fvery girl, visited a certain boy she fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl ${ }_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl ${ }_{i}$ visited a certain boy she ${ }_{i}$ fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl_{i} visited $^{\text {her }}{ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
- Specific indefinite
(15) a. Every girl ${ }_{i}$ visited a certain boy she fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited 2 her $_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she ${ }_{i}$ fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited 2 her $_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she ${ }_{i}$ fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she ${ }_{i}$ fancied
> b. = Every girl fancies a boy and visited him c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she ${ }_{i}$ fancied b. = Every girl fancies a boy and visited him c. \nRightarrow There is a boy that every girl visited
- "Trapping": bound pronouns cannot become unbound
- Presupposition trigger
(14) a. Every girl $_{i}$ visited her ${ }_{i}$ boyfriend
b. = Every girl has a boyfriend and visited him
c. \nRightarrow There is a boyfriend that every girl visited
- Specific indefinite
(15) a. Every girl $_{i}$ visited a certain boy she ${ }_{i}$ fancied
b. = Every girl fancies a boy and visited him
c. \nRightarrow There is a boy that every girl visited
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant

```
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
    b. }\not=\mathrm{ There is a king of France, and if France is a kingdom, he
    is bald
- Specific indefinite
(17) a If John is not a single child, a certain sibling of him will
    inherit his house.
    b. }\not=\mathrm{ John has a sibling and if he is not a single child, this
    sibling will inherit his house
```

- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger

- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches
- "Local informativity": Accommodation/wide scope must not make substructures redundant
- Presupposition trigger
(16) a. If France is a kingdom, the king of France is bald
b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
(17) a. If John is not a single child, a certain sibling of him will inherit his house.
b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches

Problems

```
- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
    b. can mean: If a \(\operatorname{man}_{i}\) walks, he \(i_{i}\) talks
(19) a. If a man walks, a (certain) man talks
    b. cannot mean: If a \(\operatorname{man}_{i}\) walks, he \({ }_{i}\) talks
- only formally spelled out theory of accommodation—van der Sandt
    1992-is non-compositional
```


Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man_{i} walks, he ${ }_{i}$ talks
(10) a. If a man walks, a (certain) man talks
b. cannot mean: If a man walks, $^{\text {he }}{ }_{i}$ talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man ${ }_{i}$ walks, he i_{i} talks
(19) a. If a man walks, a (certain) man talks
b. cannot mean: If a man walks, he $_{i}$ talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man $_{i}$ walks, he i_{i} talks
(19) a. If a man walks, a (certain) man talks
b. cannot mean: If a man walks, he $_{i}$ talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man $_{i}$ walks, he ${ }_{i}$ talks
(19) a. If a man walks, a (certain) man talks
b. cannot mean: If a mani walks, hei talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man $_{i}$ walks, he i_{i} talks
(19) a. If a man walks, a (certain) man talks
b. cannot mean: If a man $_{i}$ walks, he ${ }_{i}$ talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

Problems

- Unlike "ordinary" presuppositions, specifics cannot be bound
(18) a. If a man walks, the man talks
b. can mean: If a man $_{i}$ walks, he ${ }_{i}$ talks
(19) a. If a man walks, a (certain) man talks
b. cannot mean: If a man $_{i}$ walks, he ${ }_{i}$ talks
- only formally spelled out theory of accommodation-van der Sandt 1992-is non-compositional

3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist
		if it is not a cup

3. Combining the approaches

3.1. The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

if it is not a cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist

if it is not a cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist

if it is not a cup

3. Combining the approaches

3.1. \quad The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

3.2. Technical implementation

- Denotation of a cup is a partial variable:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

- partial variables only denote if the restriction is true
- othermise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

$$
\text { a cup } \leadsto\left[x \mid \operatorname{CUP}^{\prime}(x)\right]
$$

- partial variables only denote if the restriction is true
- othermise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- I turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

$$
\text { a cup } \leadsto\left[x \mid \operatorname{CUP}^{\prime}(x)\right]
$$

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

$$
\text { a cup } \leadsto\left[x \mid \operatorname{CUP}^{\prime}(x)\right]
$$

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

$$
\text { a cup } \leadsto\left[x \mid \operatorname{CUP}^{\prime}(x)\right]
$$

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

3.2. Technical implementation

- Denotation of a cup is a partial variable:

$$
\text { a cup } \leadsto\left[x \mid \operatorname{CUP}^{\prime}(x)\right]
$$

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions
- If x is a variable of type α and φ is a formula of type t, then $[x \mid \varphi]$ is a partial variable of type α
- $\|[x \mid \varphi]\|_{g}=\left\{\begin{array}{l}g(x) \text { iff }\|\varphi\|_{g}=1 \\ \text { undefined else }\end{array}\right.$
- $\|\exists x \varphi\|_{g}=\left\{\begin{array}{l}1 \text { iff for some } a:\|\varphi\|_{g[a / x]}=1 \\ 0 \text { else }\end{array}\right.$
- Othernise an expression only has a denotation if each of its immediate subexpressions has a denotation
- If x is a variable of type α and φ is a formula of type t, then $[x \mid \varphi]$ is a partial variable of type α

- $\|\exists x \varphi\|_{g}=\left\{\begin{array}{l}1 \text { iff for some } a:\|\varphi\|_{g[a / x]}=1 \\ 0 \text { else }\end{array}\right.$
- Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
- If x is a variable of type α and φ is a formula of type t, then $[x \mid \varphi]$ is a partial variable of type α
- $\|[x \mid \varphi]\|_{g}=\left\{\begin{array}{l}g(x) \text { iff }\|\varphi\|_{g}=1 \\ \text { undefined else }\end{array}\right.$
- $\|\exists x \varphi\|_{g}=\left\{\begin{array}{l}1 \text { iff for some } a:\|\varphi\|_{g[a / x]}=1 \\ 0 \text { else }\end{array}\right.$
- Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
- If x is a variable of type α and φ is a formula of type t, then $[x \mid \varphi]$ is a partial variable of type α
- $\|[x \mid \varphi]\|_{g}=\left\{\begin{array}{l}g(x) \text { iff }\|\varphi\|_{g}=1 \\ \text { undefined else }\end{array}\right.$
- $\|\exists x \varphi\|_{g}=\left\{\begin{array}{l}1 \text { iff for some } a:\|\varphi\|_{g[a / x]}=1 \\ 0 \text { else }\end{array}\right.$
- Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation
- If x is a variable of type α and φ is a formula of type t, then $[x \mid \varphi]$ is a partial variable of type α
- $\|[x \mid \varphi]\|_{g}=\left\{\begin{array}{l}g(x) \text { iff }\|\varphi\|_{g}=1 \\ \text { undefined else }\end{array}\right.$
- $\|\exists x \varphi\|_{g}=\left\{\begin{array}{l}1 \text { iff for some } a:\|\varphi\|_{g[a / x]}=1 \\ 0 \text { else }\end{array}\right.$
- Otherwise an expression only has a denotation if each of its immediate subexpressions has a denotation

An example

(20) a. A cup moved
 b. $\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left\lceil x \mid \operatorname{CUP}^{2}(x)\right\rceil\right)$

```
0 iff \(g(x) \in \|\) CUP \(^{\prime}\left\|_{g} \& g(x) \notin\right\|\) MOVE \(^{\prime} \|_{g}\)
undefined iff \(g(x) \notin \|\) CUP' \(^{\prime} \|_{g}\)
```

d. $\left\|\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right)\right\|=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \|\right.$ CUP $^{2}\left\|_{g} \cap\right\| \operatorname{MOVE}^{\prime} \|_{g} \neq \emptyset$

An example

(20) a. A cup moved

An example

(20) a. A cup moved
b. $\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CuP}^{\prime}(x)\right]\right)$

d. $\left\|\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right)\right\|= \begin{cases}1 & \text { iff } \\ 0 & \text { else }\end{cases}$

An example

(20) a. A cup moved
b. $\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CuP}^{\prime}(x)\right]\right)$
c. $\quad\left\|\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right)\right\|_{g}=\left\{\begin{array}{l}1 \text { iff } g(x) \in \| \text { CUP }^{\prime}\left\|_{g} \& g(x) \in\right\| \text { MOVE }^{\prime} \|_{g} \\ 0 \text { iff } g(x) \in \| \text { CUP }^{\prime}\left\|_{g} \& g(x) \notin\right\| \text { MOVE }^{\prime} \|_{g} \\ \text { undefined iff } g(x) \notin \| \text { CUP }^{\prime} \|_{g}\end{array}\right.$

An example

(20) a. A cup moved
b. $\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CuP}^{\prime}(x)\right]\right)$
c. $\quad\left\|\operatorname{MOVE}^{\prime}([x \mid \operatorname{CUP} '(x)])\right\|_{g}=\left\{\begin{array}{l}1 \text { iff } g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \& g(x) \in \| \text { MOVE' }^{\prime} \|_{g} \\ 0 \text { iff } g(x) \in\left\|\operatorname{CUP}^{\prime}\right\|_{g} \& g(x) \notin \| \text { MOVE }^{\prime} \|_{g} \\ \text { undefined iff } g(x) \notin\|\operatorname{CUP}\|_{g}\end{array}\right.$
d. $\quad\left\|\exists x \cdot \operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right)\right\|=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \|\right.$ CUP $^{\prime}\left\|_{g} \cap\right\| \operatorname{MOVE}^{\prime} \|_{g} \neq \emptyset$

- no empty set problem:

- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $[x \mid$ CUP' $(x)]$ never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $\left[x \mid\right.$ CUP $\left.^{\prime}(x)\right]$ never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $\left[x \mid\right.$ CUP $\left.{ }^{\prime}(x)\right]$ never denotes
- Hence the sentence as a whole becomes false
- no empty set problem:
- Suppose there are no cups
- Then restriction on variable $\left[x \mid \operatorname{CUP}^{\prime}(x)\right]$ is always false
- Thus $\left[x \mid\right.$ CUP $\left.{ }^{\prime}(x)\right]$ never denotes
- Hence the sentence as a whole becomes false
(21) a. If a cup moved the ghost is present

c. $\left\|\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime}\right\|_{g}=$

d. $\|(b)\|_{g}=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \exists a . a \in \|\right.$ GUP $^{2} \|_{g} \wedge\left(a \in \|\right.$ MOVE $^{2}\left\|_{g} \Rightarrow\right\|$ GHIP $\left.^{2} \|_{g}=1\right)$
- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x\left(\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow\right.$ GHIP' $\left.^{\prime}\right)$

> - no island sensitivity: variable binding is syntactically unbounded
> - no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x\left(\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow\right.$ GHIP' $\left.^{\prime}\right)$
c. $\left\|\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime}\right\|_{g}=$

$$
\left\{\begin{array}{lll}
1 & \text { iff } & g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \&\left(g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right) \\
0 & \text { iff } & g(x) \in\|\mathrm{CUP}\|_{g} \& g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \&\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=0 \\
\text { undefined } & \text { iff } & g(x) \notin\left\|\mathrm{CUP}^{\prime}\right\|_{g}
\end{array}\right.
$$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x\left(\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow\right.$ GHIP' $\left.^{\prime}\right)$
c. $\|$ Move' $^{\prime}\left(\left[x \mid \operatorname{CUP}{ }^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime} \|_{g}=$

$$
\left\{\begin{array}{lll}
1 & \text { iff } & g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \&\left(g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right) \\
0 & \text { iff } & g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \& g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \&\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=0 \\
\text { undefined } & \text { iff } & g(x) \notin\left\|\mathrm{CUP}^{\prime}\right\|_{g}
\end{array}\right.
$$

d. $\|(b)\|_{g}=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \exists a . a \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \wedge\left(a \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right)\right.$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x\left(\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime}\right)$
c. $\|$ Move' $^{\prime}\left(\left[x \mid\right.\right.$ CUP' $\left.\left.^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime} \|_{g}=$

$$
\left\{\begin{array}{lll}
1 & \text { iff } & g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \&\left(g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right) \\
0 & \text { iff } & g(x) \in\|\mathrm{CUP}\|_{g} \& g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \&\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=0 \\
\text { undefined } & \text { iff } & g(x) \notin\|\mathrm{CUP}\|_{g}
\end{array}\right.
$$

d. $\|(b)\|_{g}=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \exists a . a \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \wedge\left(a \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right)\right.$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
(21) a. If a cup moved the ghost is present
b. $\exists x\left(\operatorname{MOVE}^{\prime}\left(\left[x \mid \operatorname{CUP}^{\prime}(x)\right]\right) \rightarrow\right.$ GHIP' $\left.^{\prime}\right)$
c. $\|$ Move $^{\prime}\left(\left[x \mid \operatorname{CUP}{ }^{\prime}(x)\right]\right) \rightarrow \operatorname{GHIP}^{\prime} \|_{g}=$

$$
\left\{\begin{array}{lll}
1 & \text { iff } & g(x) \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \&\left(g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right) \\
0 & \text { iff } & g(x) \in\|\mathrm{CUP}\|_{g} \& g(x) \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \&\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=0 \\
\text { undefined } & \text { iff } & g(x) \notin \| \mathrm{CUP}
\end{array}\right.
$$

d. $\|(b)\|_{g}=\left\{\begin{array}{ll}1 & \text { iff } \\ 0 & \text { else }\end{array} \quad \exists a . a \in\left\|\mathrm{CUP}^{\prime}\right\|_{g} \wedge\left(a \in\left\|\mathrm{MOVE}^{\prime}\right\|_{g} \Rightarrow\left\|\mathrm{GHIP}^{\prime}\right\|_{g}=1\right)\right.$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \leadsto accommodation is only option
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \leadsto accommodation is only option
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \leadsto accommodation is only option
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \leadsto accommodation is only option
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation $~$ accommodation is only option
- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition binding corresponds to coindexation with a discoursefamiliar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \leadsto accommodation is only option
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x \cdot \operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}\left(x,\left[y \mid \mathrm{BOY}^{\prime}(y) \wedge \mathrm{FANCY}^{\prime}(x, y)\right]\right)$
c. $\exists y \cdot \operatorname{BOY}^{\prime}(y) \wedge \forall x \cdot$ FANCY $^{\prime}(x, y) \wedge\left(\operatorname{GiRL}^{2}(x) \rightarrow \operatorname{VISIT}^{\prime}(x, y)\right)$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x \cdot \operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}\left(x,\left[y \mid \operatorname{BOY}^{\prime}(y) \wedge\right.\right.$ FANCY' $\left.\left.(x, y)\right]\right)$
c. $\exists y \cdot \operatorname{BOY}^{\prime}(y) \wedge \forall x \cdot$ FANCY $^{\prime}(x, y) \wedge\left(\operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}(x, y)\right)$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x \cdot \operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}\left(x,\left[y \mid \operatorname{BOY}^{\prime}(y) \wedge \operatorname{FANCY}^{\prime}(x, y)\right]\right)$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x \cdot$ GIRL' $^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}\left(x,\left[y \mid\right.\right.$ BOY $^{\prime}(y) \wedge$ FANCY $\left.\left.^{\prime}(x, y)\right]\right)$
c. $\exists y \cdot \operatorname{BOY}^{\prime}(y) \wedge \forall x \cdot \mathrm{FANCY}(x, y) \wedge\left(\operatorname{GIRL}^{\prime}(x) \rightarrow\right.$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix
- Bound pronoun problem remains:
- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
(22) a. Every girl visited a boy she fancied
b. $\exists y \forall x \cdot \operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}\left(x,\left[y \mid \mathrm{BOY}^{\prime}(y) \wedge\right.\right.$ FANCY' $\left.\left.^{\prime}(x, y)\right]\right)$
c. $\exists y \cdot \operatorname{BOY}^{\prime}(y) \wedge \forall x$. FANCY $^{\prime}(x, y) \wedge\left(\operatorname{GIRL}^{\prime}(x) \rightarrow \operatorname{VISIT}^{\prime}(x, y)\right)$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
(23) a. If three cups moved, the ghost was present
b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
(23) a. If three cuns moved the ghost was present b. Can mean: There are three cups, and if they all moved, the ghost was present
> (24) a. If at least three cups moved, the ghost was present b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
(23) a If three cuns moved the ghost was present b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

$$
\text { Three cups moved } \equiv \text { At least three cups moved }
$$

- Yet the former can be specific, the latter not
> (23) a. If three cups moved, the ghost was present b. Can mean: There are three cups, and if they all moved, the ghost was present
> (24) a. If at least three cups moved, the ghost was present b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

$$
\text { Three cups moved } \equiv \text { At least three cups moved }
$$

- Yet the former can be specific, the latter not
(23) a. If three cups moved, the ghost was present
b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
(23) a. If three cups moved, the ghost was present
b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present
b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

$$
\text { Three cups moved } \equiv \text { At least three cups moved }
$$

- Yet the former can be specific, the latter not
(23) a. If three cups moved, the ghost was present
b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present moved, the ghost was present

4. Plurals

The puzzle

- three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
(23) a. If three cups moved, the ghost was present
b. Can mean: There are three cups, and if they all moved, the ghost was present
(24) a. If at least three cups moved, the ghost was present
b. Cannot mean: There are at least three cups, and if they all moved, the ghost was present

Exhaustivity and Specificity

> - Szabolcsi 1997: Difference in anaphora licensing:
> (25) Three cups moved. They (= the three cups) turned black

> Perhaps there are more cups that moved which did turn black
> (26) At least three cups moved. They (= the cups that moved) turned black

> All cups that moved turned black

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
(25) Three cups moved. They ($=$ the three cups) turned black

Perhaps there are more cups that moved which did turn black
(26) At least three cups moved. They (- the cups that moved) turned black

All cups that moved turned black

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

(26) At least three cups moved. They ($=$ the cups that moved) turned black
 All cups that moved turned black

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black
(26) At least three cups moved. They (= the cups that moved) turned black

All cups that moved turned black

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
b. $\forall y\left(y \in\left[X\left|X \subseteq \mathrm{CUP}^{\prime} \wedge\right| X \mid=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$
(28) a. At least three cups moved
b. $\forall y\left(y \in\left[X \mid X=\right.\right.$ CUP' $\left.\left.^{\prime} \cap \operatorname{MOVE}^{\prime} \wedge|X| \geq 3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
b. $\forall y\left(y \in\left[X\left|X \subseteq \mathrm{CUP}^{\prime} \wedge\right| X \mid=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$
(28) a. At least three cups moved
b. $\forall y\left(y \in\left[X\left|X=\mathrm{CUP}^{\prime} \cap \mathrm{MOVE}^{\prime} \wedge\right| X \mid \geq 3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cuns moved
b. $\forall y\left(y \in\left[X \mid X \subseteq\right.\right.$ CuP' $\left.\left.^{\prime} \wedge|X|=3\right] \rightarrow \operatorname{Move}^{\prime}(y)\right)$
(28) a. At least three cups moved b. $\forall y\left(y \in\left[X \mid X=\right.\right.$ CUP' $\left.\left.\cap \operatorname{MOVE}{ }^{\prime} \wedge|X| \geq 3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27)
a. Three cups moved
(28) a. At least three cups moved

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
(28) a. At least three cups moved

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
b. $\forall y\left(y \in\left[X\left|X \subseteq \operatorname{CuP}^{\prime} \wedge\right| X \mid=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$
(28) a. At least three cups moved
b. $\forall y\left(y \in\left[X \mid X=\right.\right.$ CUP' $\left.\left.\cap \operatorname{MOVE}{ }^{\prime} \wedge|X| \geq 3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
b. $\forall y\left(y \in[X \mid X \subseteq\right.$ CUP' $\left.\wedge|X|=3] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$
(28) a. At least three cups moved

Formalization

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, \ldots)
- Combination of plural variable with singular predicate (like move, break) requires insertion of a distribution operator (tacit each)
(27) a. Three cups moved
b. $\forall y\left(y \in\left[X\left|X \subseteq \operatorname{CUP}^{\prime} \wedge\right| X \mid=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$
(28) a. At least three cups moved
b. $\forall y\left(y \in\left[X \mid X=\right.\right.$ CUP $\left.\left.^{\prime} \cap \operatorname{MOVE} ' \wedge|X| \geq 3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right)$

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure

- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure
(29) a. If three cups moved, the ghost was present
d. $=$ There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure
(29) a. If three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X \subseteq\right.\right.\right.$ CUP $\left.\left.^{\prime} \wedge|X|=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
d. $=$ There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure
(29) a. If three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X \subseteq\right.\right.\right.$ CUP $\left.^{\prime} \wedge|X|=3\right] \rightarrow$ MOVE' $\left.^{\prime}(y)\right) \rightarrow$ GHWP')
c. $\exists X\left(X \subseteq\right.$ CUP $^{\prime} \wedge|X|=3 \wedge \forall y\left(y \in X \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure
(29) a. If three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X \subseteq\right.\right.\right.$ CUP $\left.\left.^{\prime} \wedge|X|=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
c. $\exists X\left(X \subseteq \operatorname{CUP}{ }^{\prime} \wedge|X|=3 \wedge \forall y\left(y \in X \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow\right.$ GHWP')
d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

Specific interpretation

- Difference becomes truth conditionally relevant if we do wide scope existential closure
(29) a. If three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X \subseteq\right.\right.\right.$ CUP $\left.\left.^{\prime} \wedge|X|=3\right] \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
c. $\exists X\left(X \subseteq \operatorname{CUP}{ }^{\prime} \wedge|X|=3 \wedge \forall y\left(y \in X \rightarrow \operatorname{MOVE}^{\prime}(y)\right) \rightarrow\right.$ GHWP')
d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible
- Compare to:
(30) a. If at least three cups moved, the ghost was present
 $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
c. $\exists X\left(X=\right.$ CUP' $^{\prime} \cap$ MOVE $' \wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \longrightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
 MOVE' $(y)) \rightarrow$ GHWP')
c. $\exists X\left(X=\right.$ CUP $^{\prime} \cap \operatorname{MOVE}{ }^{\prime} \wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ MOVE $\left.{ }^{\prime}(y)\right) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present

- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X=\right.\right.\right.$ CUP' $\left.\cap \operatorname{mOVE}{ }^{\prime} \wedge|X| \geq 3\right] \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')

MOVE' $(y)) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present

- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
b. $\exists X(\forall y(y \in[X \mid X=$ CUP' \cap move' $\wedge|X| \geq 3] \rightarrow$ MOVE' $(y)) \rightarrow$ GHWP')
c. $\exists X\left(X=\right.$ CuP $^{\prime} \cap$ move' $^{\prime} \wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
b. $\exists X\left(\forall y\left(y \in\left[X \mid X=\right.\right.\right.$ CUP' $\left.\cap \operatorname{mOVE}{ }^{\prime} \wedge|X| \geq 3\right] \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP')
c. $\exists X(X=$ CUP' \cap move' $\wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ MOVE $\left.^{\prime}(y)\right) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
b. $\exists X(\forall y(y \in[X \mid X=$ CUP' \cap mOVE' $\wedge|X| \geq 3] \rightarrow$ MOVE' $(y)) \rightarrow$ GHWP')
c. $\exists X\left(X=\right.$ CUP' \cap move' $^{\prime} \wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures
- Compare to:
(30) a. If at least three cups moved, the ghost was present
b. $\exists X(\forall y(y \in[X \mid X=$ CUP' \cap move' $\wedge|X| \geq 3] \rightarrow$ MOVE' $(y)) \rightarrow$ GHWP')
c. $\exists X\left(X=\right.$ CUP' \cap move' $^{\prime} \wedge|X| \geq 3 \wedge \forall y(y \in X \rightarrow$ $\left.\operatorname{MOVE}^{\prime}(y)\right) \rightarrow$ GHWP'
d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
\Rightarrow Generalization
A quantifier has a specific reading iff it is not exhaustive.
- Gives correct classification of quantifiers

```
exhaustive non-exhaustive
at least three cuns a cup
at most three cups three cups
exactly three cups some cups
every cup
most cups
```


The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable

\Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

- Gives correct classification of quantifiers

```
exhaustive non-exhaustive
at least three cuns a cup
at most three cups three cups
exactly three cups some cups
every cup
most cups
```


The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
\Rightarrow Generalization
A quantifier has a specific reading iff it is not exhaustive.
- Gives correct classification of quantifiers

```
exhaustive non-exhaustive
at least three cuns a cup
at most three cups three cups
exactly three cups some cups
every cup
most cups
```


The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
\Rightarrow Generalization
A quantifier has a specific reading iff it is not exhaustive.
- Gives correct classification of quantifiers

The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
\Rightarrow Generalization
A quantifier has a specific reading iff it is not exhaustive.
- Gives correct classification of quantifiers

The generalization

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
\Rightarrow Generalization
A quantifier has a specific reading iff it is not exhaustive.
- Gives correct classification of quantifiers

exhaustive	non-exhaustive
at least three cups	a cup
at most three cups	three cups
exactly three cups	some cups
every cup	
most cups	

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about nor-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

5. Conclusion

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

Open questions

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

Contents

1 The phenomenon 3
2 Solution strategies 8
2.1 Long QR 8
2.2 Unselective binding 10
2.3 Indefinites as choice functions 12
2.4 Specificity as presupposition accommodation 15
3 Combining the approaches 20
3.1 The idea 20
3.2 Technical implementation 21
4 Plurals 28
5 Conclusion 34

