Specificity: Combining the approaches

Gerhard Jäger ZAS Berlin http://www.ling.uni-potsdam.de/~jaeger

> March 13, 2002 University of Chicago

1

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

• Specificity and scope

- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

- Specificity and scope
- Previous approaches and their problems
- Indefinites as partial variables
- Extension to plural quantifiers
- Conclusion

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence-non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

• Pragmatic ambiguity of indefinite descriptions:

(1) A student in the syntax class cheated in the final exam

• Can be

- statement of existence—non-specific usage
- statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam

• Can be

- statement of existence—non-specific usage
- statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be

statement of existence—non-specific usage

- statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - \circ different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - \circ different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - affinity between specificity and topicality

- Pragmatic ambiguity of indefinite descriptions:
- (1) A student in the syntax class cheated in the final exam
- Can be
 - statement of existence—non-specific usage
 - statement about a particular student—specific usage
- Distinction has impact on pragmatics and discourse (cf. Fodor and Sag 1982, Ludlow and Neale 1991, Prince 1982, Yeom 1998)
 - specificity involves "cognitive contact" (Yeom)
 - \circ different speech acts
 - rich descriptive content favors specific reading (and vice versa)
 - \circ affinity between specificity and topicality

- Quantifier scope is usually clause bounded
 - (2) a. Mary will be happy if every movie is shown $(if > \forall, *\forall > if)$
 - b. Mary will be happy if at most three movies are shown $(if > 3_{\leq}, *3_{\leq} > if)$
 - c. Mary will be happy if at least three movies are shown $(if > 3_{\geq}, *3_{\geq} > if)$
 - d. Mary will be happy if exactly three movies are shown ($if > 3_{=}$, * $3_{=} > if$)

• Quantifier scope is usually clause bounded

2) a. Mary will be happy if every movie is shown $(if > \forall, *\forall > if)$

- b. Mary will be happy if at most three movies are shown $(if > 3_{\leq}, *3_{\leq} > if)$
- c. Mary will be happy if at least three movies are shown $(if > 3_{\geq}, *3_{\geq} > if)$
- d. Mary will be happy if exactly three movies are shown $(if > 3_{=}, *3_{=} > if)$

- Quantifier scope is usually clause bounded
- (2) a. Mary will be happy if every movie is shown $(if > \forall, *\forall > if)$
 - b. Mary will be happy if at most three movies are shown $(if > 3_{\leq}, *3_{\leq} > if)$
 - c. Mary will be happy if at least three movies are shown $(if > 3_{\geq}, *3_{\geq} > if)$
 - d. Mary will be happy if exactly three movies are shown $(if > 3_{=}, *3_{=} > if)$

- Quantifier scope is usually clause bounded
- (2) a. Mary will be happy if every movie is shown ($if > \forall, *\forall > if$)
 - b. Mary will be happy if at most three movies are shown ($if > 3_{\leq}$, * $3_{\leq} > if$)
 - c. Mary will be happy if at least three movies are shown ($if > 3_{\geq}$, * $3_{\geq} > if$)
 - d. Mary will be happy if exactly three movies are shown ($if > 3_{=}$, * $3_{=} > if$)

- Singular indefinites and plain cardinal quantifiers can escape scope islands
- (3) a. Mary will be happy if a/some movie is shown (if > ∃, ∃ > if)
 b. Mary will be happy if three movies are shown (if > 3, 3 > if)

- Singular indefinites and plain cardinal quantifiers can escape scope islands
- (3) a. Mary will be happy if a/some movie is shown (if > ∃, ∃ > if)
 b. Mary will be happy if three movies are shown (if > 3, 3 > if)

- Singular indefinites and plain cardinal quantifiers can escape scope islands
- (3) a. Mary will be happy if a/some movie is shown (if > ∃, ∃ > if)
 b. Mary will be happy if three movies are shown (if > 3, 3 > if)

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)

• Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)

- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian $(\forall > \exists > \forall > \exists)$

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian (∀ > ∃ > ∀ > ∃)

- Exceptional wide scope not restricted to global scope (contra Fodor and Sag 1982)
- intermediate scope readings are possible (Farkas 1981, Abusch 1994)
- (4) a. Every writer overheard the rumor that she didn't write a book she wrote (∀ > ∃ > ¬)
 - b. Every professor got a headache whenever there was a student he hated in class ($\forall > \exists >$ whenever)
- Also possible without bound pronoun inside the restriction
- (5) In every town, every girl that a boy was in love with married an Albanian $(\forall > \exists > \forall > \exists)$

Two questions:

Why can some quantifiers escape scope islands (and others can't)?
 What determines the scope taking behavior of a quantifier?

Two questions:

- 1. Why can some quantifiers escape scope islands (and others can't)?
- 2. What determines the scope taking behavior of a quantifier?

Two questions:

- 1. Why can some quantifiers escape scope islands (and others can't)?
- 2. What determines the scope taking behavior of a quantifier?

2. Solution strategies

2.1. Long QR

• Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

2. Solution strategies

2.1. Long QR

• Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

2. Solution strategies

2.1. Long QR

• Simplest solution:

There are two version of QR (or whatever your favorite scoping mechanism is), one is island sensitive and the other one isn't

• Conceptually unpleasant

- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) | \text{INHERIT'}(I', FORTUNE'))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land ((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', FORTUNE'))))$ \approx There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope

• Conceptually unpleasant

- Empirically wrong:
- (6) a. If three relatives of mine die, l'll inherit a fortune b. QR: |RELATIVE' $\cap \lambda x(\text{DIE}'(x))$
 - INHERIT'(I', FORTUNE'))| ≥ 3 \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(\text{I'}, \text{FORTUNE'})))$ \approx There are three relatives such that if each of them
- Plural specifics have **double scope** (cf. Ruys 1992):
 - \circ wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 b. QR: |RELATIVE' ∩ λx(DIE'(x) INHERIT'(I', FORTUNE'))| ≥ 3
 ≈ There are three relatives such that if one of them ...
 c. correct reading: ∃X(X ⊆ RELATIVE' ∧ |X| = 3∧ ((∀y.y ∈ X → DIE'(y)) → INHERIT'(I', FORTUNE')))
 ≈ There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) |$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$ \approx There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) |$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \geq 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$ \approx There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - \circ wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x))| \ge 3$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$
 - pprox There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) |$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$
 - \approx There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) |$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$ \approx There are three relatives such that if output of them
 - $\approx\,$ There are three relatives such that if $\,{\rm each}$ of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - \circ wide existential scope
 - narrow (clause-bounded) universal scope

- Conceptually unpleasant
- Empirically wrong:
- (6) a. If three relatives of mine die, I'll inherit a fortune
 - b. QR: $|\text{RELATIVE'} \cap \lambda x(\text{DIE'}(x) |$ $|\text{INHERIT'}(I', \text{FORTUNE'}))| \ge 3$ \approx There are three relatives such that if one of them ... c. correct reading: $\exists X(X \subseteq \text{RELATIVE'} \land |X| = 3 \land$ $((\forall y.y \in X \rightarrow \text{DIE'}(y)) \rightarrow \text{INHERIT'}(I', \text{FORTUNE'})))$ \approx There are three relatives such that if each of them ...
- Plural specifics have **double scope** (cf. Ruys 1992):
 - \circ wide existential scope
 - narrow (clause-bounded) universal scope

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
 - (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(WE', x)))$ OFFENDED'(MAX'))
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
 - (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(TOPFENDED'(MAX')))$
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(W OFFENDED'(MAX')))$
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading:
 - $\exists x ((PHILOSOPHER'(x) \land INVITE'(WE', x)) \\ OFFENDED'(MAX'))$
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) \circ OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(WE', x)))$ OFFENDED'(MAX'))
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained ⇒ solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(WE', x)))$ OFFENDED'(MAX'))
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) \circ OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained ⇒ solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(WE', x)))$ OFFENDED'(MAX'))
 - c. real reading: $\exists x (PHILOSOPHER'(x) \land (INVITE'(WE', x) OFFENDED'(MAX')))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Analysis of wide scope indefinites by means of unselective binding (in the sense of Heim 1982):
- (7) a. If we invite some philosopher, Max will be offended
 - b. predicted reading: $\exists x((PHILOSOPHER'(x) \land INVITE'(WE', x)) - OFFENDED'(MAX'))$
 - c. real reading: $\exists x(\text{PHILOSOPHER'}(x) \land (\text{INVITE'}(\text{WE'}, x) \circ \text{OFFENDED'}(\text{MAX'})))$
- Variable binding is not syntactically constrained \Rightarrow solves the scope island puzzle

- Wrong truth conditions
- Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

• Wrong truth conditions

• Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

- Wrong truth conditions
- Known as "Donald Duck Problem" (because the existence of the nonphilosopher Donald Duck is sufficient to make the sentence true)

- Intuition: some movie refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
- (8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

- Intuition: some movie refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
- (8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

- Intuition: some movie refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
- (8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

Reinhart 1992, Reinhart 1997, Winter 1997, Kratzer 1998, Chierchia 2001...:

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set

• I.e. indefinite determiners denote choice functions

(8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
- (8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

- Intuition: *some movie* refers to some movie
- Thus determiner *some* maps the set of movies to an element of this set
- I.e. indefinite determiners denote choice functions
- (8) $CF(f) \leftrightarrow \forall X.X \neq \emptyset \rightarrow f(X) \in X$

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS_SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))$
 - c. $\exists y. \text{MOVIE'} y \land (\text{IS}_SHOWN'(y) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS}_HAPPY'(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

• Technically: indefinite Det denotes variable over choice functions

- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS_SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))$
 - c. $\exists y. \text{MOVIE'} y \land (\text{IS}_SHOWN'(y) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS}_HAPPY'(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
 - (9) a. Every girl will be happy if some movie is shown. b. $\exists f. CF(f) \land IS_SHOWN'(f(MOVIE')) \rightarrow (\forall x.GIRL'(x) \rightarrow IS_HAPPY'(x))$
 - c. $\exists y.\text{MOVIE'}y \land (\text{IS}_\text{SHOWN'}(y) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS}_\text{HAPPY'}(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS}_SHOWN'(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS}_HAPPY'(x))$
 - c. $\exists y.\text{MOVIE'}y \land (\text{IS_SHOWN'}(y) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS_SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))$
 - c. $\exists y.\text{MOVIE'}y \land (\text{IS_SHOWN'}(y) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS_SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))$
 - c. $\exists y. \text{MOVIE'}y \land (\text{IS_SHOWN'}(y) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

- Technically: indefinite Det denotes variable over choice functions
- This variable is (non-deterministically) bound via existential closure at some superordinate level
- (9) a. Every girl will be happy if some movie is shown.
 - b. $\exists f. CF(f) \land \text{IS_SHOWN'}(f(\text{MOVIE'})) \rightarrow (\forall x. \text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x))$
 - c. $\exists y.\text{MOVIE'}y \land (\text{IS_SHOWN'}(y) \rightarrow (\forall x.\text{GIRL'}(x) \rightarrow \text{IS_HAPPY'}(x)))$
- no Donald Duck problem
- double scope behavior can be accommodated

• Empty set problem:

Choice function supplies arbitrary object if applied to empty set
Thus according to CF-approach:
(10) A cup moved ⊭ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• CF-approach predicts a reading (b), which is equivalent to (c)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Empty set problem:

Choice function supplies arbitrary object if applied to empty set
Thus according to CF-approach:
(10) A cup moved ⊭ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

 $\circ\,$ Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

Choice function supplies arbitrary object if applied to empty set
Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

○ Choice function supplies arbitrary object if applied to empty set
○ Thus according to CF-approach:
(10) A cup moved ⊭ There exists a cup

• Bound pronoun problem:

- \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP
- (11) a. At most three girls_i visited a boy that they_i fancied.
 - b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF(f) \land |\lambda x. Girl'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

 \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP

(11) a. At most three girls_i visited a boy that they_i fancied.

- b. $\exists f. CF'(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
- c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

- \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP
- (11) a. At most three girls_i visited a boy that they_i fancied.
 - b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

- \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP
- (11) a. At most three girls_i visited a boy that they_i fancied.
 - b. $\exists f. CF(f) \land |\lambda x. Girl'(x) \land Visit'(x, f(\lambda y. Boy'(y) \land Fancy'(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

- \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP
- (11) a. At most three girls_i visited a boy that they_i fancied.
 - b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

• Empty set problem:

• Choice function supplies arbitrary object if applied to empty set

• Thus according to CF-approach:

(10) A cup moved $\not\models$ There exists a cup

• Bound pronoun problem:

- \circ Arises if indefinite NP contains a pronoun that is bound from outside the NP
- (11) a. At most three girls_i visited a boy that they_i fancied.
 - b. $\exists f. CF(f) \land |\lambda x. GIRL'(x) \land VISIT'(x, f(\lambda y. BOY'(y) \land FANCY'(x, y)))| \leq 3$
 - c. $|\lambda x.\text{GIRL'}(x) \land \forall y.\text{BOY'}(y) \land \text{FANCY'}(x,y) \rightarrow \text{VISIT'}(x,y)| \leq 3$

2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation

2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation

2.4. Specificity as presupposition accommodation

Chresti 1995, Reniers 1997, van Geenhoven 1998, Krifka 1998, Yeom 1998, Geurts 1999, maybe more:

- Specific indefinites are presupposition triggers
- Wide scope is result of accommodation

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

• Preference for global scope:

- Classical presupposition trigger
- (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed a certain diva in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed **a certain diva** in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Preference for global scope:
 - Classical presupposition trigger
 - (12) a. Every Italian watched a film that showed **the king** in his childhood
 - b. = There is a (salient?) king_i and every Italian watched a film that showed him_i in his_i childhood

- (13) a. Every Italian watched a program that showed **a certain diva** in her youth
 - b. = There is a certain diva_i and every Italian watched a program that showed her_i in her_i youth

- Presupposition trigger
- (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited

- (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

• Presupposition trigger

(14) a. Every girl_i visited her_i boyfriend

- b. = Every girl has a boyfriend and visited him
- c. \Rightarrow There is a boyfriend that every girl visited

- (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

• Presupposition trigger

(14) a. Every girl_i visited her_i boyfriend

- b. = Every girl has a boyfriend and visited him
- c. \Rightarrow There is a boyfriend that every girl visited

- (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

• Presupposition trigger

(14) a. Every girl_i visited her_i boyfriend

- b. = Every girl has a boyfriend and visited him
- c. \Rightarrow There is a boyfriend that every girl visited

- (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him

c. \Rightarrow There is a boy that every girl visited

- "Trapping": bound pronouns cannot become unbound
 - Presupposition trigger
 - (14) a. Every girl_i visited her_i boyfriend
 - b. = Every girl has a boyfriend and visited him
 - c. \Rightarrow There is a boyfriend that every girl visited
 - Specific indefinite
 - (15) a. Every girl_i visited a certain boy she_i fancied
 - b. = Every girl fancies a boy and visited him
 - c. \Rightarrow There is a boy that every girl visited

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

• "Local informativity": Accommodation/wide scope must not make substructures redundant

- Presupposition trigger
- (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
- Specific indefinite
- (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. ≠ There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

• avoids all shortcomings of above mentioned approaches

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house

avoids all shortcomings of above mentioned approaches

- "Local informativity": Accommodation/wide scope must not make substructures redundant
 - Presupposition trigger
 - (16) a. If France is a kingdom, the king of France is bald
 - b. \neq There is a king of France, and if France is a kingdom, he is bald
 - Specific indefinite
 - (17) a. If John is not a single child, a certain sibling of him will inherit his house.
 - b. \neq John has a sibling and if he is not a single child, this sibling will inherit his house
- avoids all shortcomings of above mentioned approaches

• Unlike "ordinary" presuppositions, specifics cannot be bound

- (18) a. If a man walks, the man talksb. *can mean:* If a man; walks, he; talks
- (19) a. If a man walks, a (certain) man talksb. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Unlike "ordinary" presuppositions, specifics cannot be bound
- (18) a. If a man walks, the man talks
 - b. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

• Unlike "ordinary" presuppositions, specifics cannot be bound

(18) a. If a man walks, the man talks

- b. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Unlike "ordinary" presuppositions, specifics cannot be bound
- (18) a. If a man walks, the man talks
 b. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks
 b. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Unlike "ordinary" presuppositions, specifics cannot be bound
- (18) a. If a man walks, the man talksb. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks
 b. cannot mean: If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Unlike "ordinary" presuppositions, specifics cannot be bound
- (18) a. If a man walks, the man talksb. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks b. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Unlike "ordinary" presuppositions, specifics cannot be bound
- (18) a. If a man walks, the man talksb. *can mean:* If a man_i walks, he_i talks
- (19) a. If a man walks, a (certain) man talks b. *cannot mean:* If a man_i walks, he_i talks
- only formally spelled out theory of accommodation—van der Sandt 1992—is non-compositional

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

3.1. The idea

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context		does not exist if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	
		if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

- Heim style DRT, choice function approach, and specificity-aspresupposition each contain sound intuition
- should be seen as complementary rather than mutually exclusive
- the denotation of an indefinite as as cup

DRT	CF	Presup.
is supplied by context	is some cup	does not exist if it is not a cup

• Denotation of *a cup* is a **partial variable**: $a cup \rightsquigarrow [x|CUP'(x)]$

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

• Denotation of *a cup* is a **partial variable**:

- partial variables only denote if the restriction is true
- otherwise they behave like ordinary variables
- optional existential closure of free (partial) variables at some superordinate level
- \exists turns definedness conditions into part of truth conditions

•
$$\|[x|\varphi]\|_g = \begin{cases} g(x) \text{ iff } \|\varphi\|_g = 1\\ \text{undefined else} \end{cases}$$

•
$$\|\exists x\varphi\|_g = \begin{cases} 1 \text{ iff for some } a : \|\varphi\|_{g[a/x]} = 1 \\ 0 \text{ else} \end{cases}$$

•
$$\|[x|\varphi]\|_g = \begin{cases} g(x) & \text{iff } \|\varphi\|_g = 1\\ \text{undefined else} \end{cases}$$

• $\|\exists x\varphi\|_g = \begin{cases} 1 & \text{iff for some } a : \|\varphi\|_{g[a/x]} = \\ 0 & \text{else} \end{cases}$

•
$$\|[x|\varphi]\|_g = \begin{cases} g(x) \text{ iff } \|\varphi\|_g = 1\\ \text{undefined else} \end{cases}$$

• $\|\exists w_g\|_g = \int 1 \text{ iff for some } a : \|\varphi\|_{g[a/s]}$

•
$$\|[x|\varphi]\|_g = \begin{cases} g(x) & \text{iff } \|\varphi\|_g = 1\\ undefined & \text{else} \end{cases}$$

• $\|\exists x\varphi\|_g = \begin{cases} 1 & \text{iff for some } a : \|\varphi\|_{g[a/x]} = 1\\ 0 & \text{else} \end{cases}$

•
$$\|[x|\varphi]\|_g = \begin{cases} g(x) \text{ iff } \|\varphi\|_g = 1\\ \text{undefined else} \end{cases}$$

• $\|\exists x\varphi\|_g = \begin{cases} 1 \text{ iff for some } a : \|\varphi\|_{g[a/x]} = 1\\ 0 \text{ else} \end{cases}$

(20) a. A cup moved

b. $\exists x. \text{MOVE'}([x|\text{CUP'}(x)])$

c.
$$\|\operatorname{MOVE'}([x|\operatorname{CUP'}(x)])\|_g = \begin{cases} 1 \text{ iff } g(x) \in \|\operatorname{CUP'}\|_g \& g(x) \in \|\operatorname{MOVE'}\|_g \\ 0 \text{ iff } g(x) \in \|\operatorname{CUP'}\|_g \& g(x) \notin \|\operatorname{MOVE'}\|_g \\ \text{undefined iff } g(x) \notin \|\operatorname{CUP'}\|_g \end{cases}$$

d. $\|\exists x. \text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases} 1 & \text{iff} \\ 0 & \text{else} \end{cases} \text{MOVE'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset$

(20) a. A cup moved

b. $\exists x. \text{MOVE'}([x| \text{CUP'}(x)])$

c.
$$\|\text{MOVE'}([x|\text{CUP'}(x)])\|_g = \begin{cases} 1 \text{ iff } g(x) \in \|\text{CUP'}\|_g \& g(x) \in \|\text{MOVE'}\|_g \\ 0 \text{ iff } g(x) \in \|\text{CUP'}\|_g \& g(x) \notin \|\text{MOVE'}\|_g \\ \text{undefined iff } g(x) \notin \|\text{CUP'}\|_g \end{cases}$$

d. $\|\exists x. \text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases} 1 & \text{iff} \\ 0 & \text{else} \end{cases} \quad \|\text{CUP'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset$

(20) a. A cup moved

b. $\exists x.move'([x|cup'(x)])$

c.
$$\|\operatorname{MOVE'}([x|\operatorname{CUP'}(x)])\|_g = \begin{cases} 1 \text{ iff } g(x) \in \|\operatorname{CUP'}\|_g \& g(x) \in \|\operatorname{MOVE'}\|_g \\ 0 \text{ iff } g(x) \in \|\operatorname{CUP'}\|_g \& g(x) \notin \|\operatorname{MOVE'}\|_g \\ \text{undefined iff } g(x) \notin \|\operatorname{CUP'}\|_g \end{cases}$$

d. $\|\exists x. \text{MOVE'}([x|\text{CUP'}(x)])\| = \begin{cases} 1 & \text{iff} \\ 0 & \text{else} \end{cases} \quad \|\text{CUP'}\|_g \cap \|\text{MOVE'}\|_g \neq \emptyset$

(20) a. A cup moved

b. $\exists x.move'([x|cup'(x)])$

$$\mathsf{c.} \quad \|\mathrm{MOVE'}([x|\mathrm{CUP'}(x)])\|_g = \begin{cases} 1 \text{ iff } g(x) \in \|\mathrm{CUP'}\|_g \& g(x) \in \|\mathrm{MOVE'}\|_g \\ 0 \text{ iff } g(x) \in \|\mathrm{CUP'}\|_g \& g(x) \notin \|\mathrm{MOVE'}\|_g \\ \text{undefined iff } g(x) \notin \|\mathrm{CUP'}\|_g \end{cases}$$

 $\mathsf{d}. \quad \|\exists x. \mathrm{MOVE'}([x|\mathrm{CUP'}(x)])\| = \begin{cases} 1 & \mathrm{iff} \\ 0 & \mathrm{else} \end{cases} \mathrm{MOVE'}\|_g \cap \|\mathrm{MOVE'}\|_g \neq \emptyset$

(20) a. A cup moved

b. $\exists x.move'([x|cup'(x)])$

c.
$$\|\operatorname{MOVE}'([x|\operatorname{CUP}'(x)])\|_g = \begin{cases} 1 \text{ iff } g(x) \in \|\operatorname{CUP}'\|_g \& g(x) \in \|\operatorname{MOVE}'\|_g \\ 0 \text{ iff } g(x) \in \|\operatorname{CUP}'\|_g \& g(x) \notin \|\operatorname{MOVE}'\|_g \\ \text{undefined iff } g(x) \notin \|\operatorname{CUP}'\|_g \end{cases}$$

d.
$$\|\exists x.MOVE'([x|CUP'(x)])\| = \begin{cases} 1 & \text{iff} \\ 0 & \text{else} \end{cases} MOVE'\|_g \cap \|MOVE'\|_g \neq \emptyset$$

- Suppose there are no cups
- \circ Then restriction on variable $[x|_{CUP}'(x)]$ is always false
- Thus [x|CUP'(x)] never denotes
- Hence the sentence as a whole becomes false

- Suppose there are no cups
- \circ Then restriction on variable $[x|_{CUP}'(x)]$ is always false
- Thus [x|CUP'(x)] never denotes
- \circ Hence the sentence as a whole becomes false

\circ Suppose there are no cups

- \circ Then restriction on variable $[x|_{CUP}'(x)]$ is always false
- Thus [x|CUP'(x)] never denotes
- Hence the sentence as a whole becomes false

- \circ Suppose there are no cups
- Then restriction on variable [x|CUP'(x)] is always false
- Thus [x|CUP'(x)] never denotes
- \circ Hence the sentence as a whole becomes false

- \circ Suppose there are no cups
- Then restriction on variable [x|CUP'(x)] is always false
- Thus [x|CUP'(x)] never denotes
- Hence the sentence as a whole becomes false

- \circ Suppose there are no cups
- Then restriction on variable [x|CUP'(x)] is always false
- Thus [x|CUP'(x)] never denotes
- \circ Hence the sentence as a whole becomes false

(21) a. If a cup moved the ghost is present

- b. $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
- c. $\|\text{MOVE'}([x|\text{CUP'}(x)]) \to \text{GHIP'}\|_g =$

d.
$$\|(b)\|_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in \|\text{CUP'}\|_g \land (a \in \|\text{MOVE'}\|_g \Rightarrow \|\text{GHIP'}\|_g = 1) \\ 0 & \text{else} \end{cases}$$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- (21) a. If a cup moved the ghost is present
 - **b.** $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
 - c. $\|\text{MOVE'}([x|\text{CUP'}(x)]) \to \text{GHIP'}\|_g =$

d.
$$||(b)||_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in ||\text{CUP'}||_g \land (a \in ||\text{MOVE'}||_g \Rightarrow ||\text{GHIP'}||_g = 1) \\ 0 & \text{else} \end{cases}$$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- (21) a. If a cup moved the ghost is present
 - **b.** $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
 - $\mathsf{c}. \quad \|\mathrm{MOVE'}([x|\mathrm{CUP'}(x)]) \to \mathrm{GHIP'}\|_g =$

d.
$$||(b)||_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in ||\text{CUP'}||_g \land (a \in ||\text{MOVE'}||_g \Rightarrow ||\text{GHIP'}||_g = 1) \\ 0 & \text{else} \end{cases}$$

- no **island sensitivity**: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- (21) a. If a cup moved the ghost is present
 - **b**. $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
 - $\mathsf{c}. \quad \|\mathrm{MOVE'}([x|\mathrm{CUP'}(x)]) \to \mathrm{GHIP'}\|_g =$

$$\mathsf{d.} \quad \|(b)\|_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in \|\mathsf{CUP'}\|_g \land (a \in \|\mathsf{MOVE'}\|_g \Rightarrow \|\mathsf{GHIP'}\|_g = 1) \\ 0 & \text{else} \end{cases}$$

- no **island sensitivity**: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- (21) a. If a cup moved the ghost is present
 - **b**. $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
 - $\mathsf{c}. \quad \|\mathrm{MOVE'}([x|\mathrm{CUP'}(x)]) \to \mathrm{GHIP'}\|_g =$

$$\mathsf{d.} \quad \|(b)\|_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in \|\mathsf{CUP'}\|_g \land (a \in \|\mathsf{MOVE'}\|_g \Rightarrow \|\mathsf{GHIP'}\|_g = 1) \\ 0 & \text{else} \end{cases}$$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- (21) a. If a cup moved the ghost is present
 - **b**. $\exists x (\text{MOVE'}([x | \text{CUP'}(x)]) \rightarrow \text{GHIP'})$
 - $\mathsf{c}. \quad \|\mathrm{MOVE'}([x|\mathrm{CUP'}(x)]) \to \mathrm{GHIP'}\|_g =$

$$\mathsf{d}. \quad \|(b)\|_g = \begin{cases} 1 & \text{iff} \quad \exists a.a \in \|\mathsf{CUP'}\|_g \land (a \in \|\mathsf{MOVE'}\|_g \Rightarrow \|\mathsf{GHIP'}\|_g = 1) \\ 0 & \text{else} \end{cases}$$

- no island sensitivity: variable binding is syntactically unbounded
- no Donald Duck problem: existential quantification and projection of definedness conditions into truth conditions happens at the same scope level

- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- \bullet Thus no coindexation \rightsquigarrow accommodation is only option

• restrictions on variables comparable to presuppositions

- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- \bullet Thus no coindexation \rightsquigarrow accommodation is only option

- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- \bullet Thus no coindexation \rightsquigarrow accommodation is only option

- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \rightsquigarrow accommodation is only option

- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- Thus no coindexation \rightsquigarrow accommodation is only option

- restrictions on variables comparable to presuppositions
- existential closure amounts to accommodation
- Presupposition **binding** corresponds to coindexation with a discourse-familiar variable
- specific indefinites are subject to Heim's Novelty Condition
- \bullet Thus no coindexation \rightsquigarrow accommodation is only option

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- Can be solved by using sequences of *n*-ary assignment function rather than single functions, cf. appendix

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- Can be solved by using sequences of *n*-ary assignment function rather than single functions, cf. appendix

• Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)

(22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$

• Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- Can be solved by using sequences of *n*-ary assignment function rather than single functions, cf. appendix

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- Can be solved by using sequences of n-ary assignment function rather than single functions, cf. appendix

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- Can be solved by using sequences of *n*-ary assignment function rather than single functions, cf. appendix

- Wide scope existential closure leads to reading (b) for (a), which is equivalent to (c)
- (22) a. Every girl visited a boy she fancied b. $\exists y \forall x. \text{GIRL}'(x) \rightarrow \text{VISIT}'(x, [y|\text{BOY}'(y) \land \text{FANCY}'(x, y)])$ c. $\exists y. \text{BOY}'(y) \land \forall x. \text{FANCY}'(x, y) \land (\text{GIRL}'(x) \rightarrow \text{VISIT}'(x, y))$
- \bullet Can be solved by using sequences of $n\text{-}{\rm ary}$ assignment function rather than single functions, cf. appendix

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present

(24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

Three cups moved \equiv At least three cups moved

• Yet the former can be specific, the latter not

- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was presentb. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was present
 - b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

• three cups and at least three cups have same truth-conditional content

- Yet the former can be specific, the latter not
- (23) a. If three cups moved, the ghost was present
 - b. *Can mean:* There are three cups, and if they all moved, the ghost was present
- (24) a. If at least three cups moved, the ghost was present
 - b. *Cannot mean:* There are at least three cups, and if they all moved, the ghost was present

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
- (25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

- (26) At least three cups moved. They (= the cups that moved) turned black
 - All cups that moved turned black

Exhaustivity and Specificity

• Szabolcsi 1997: Difference in anaphora licensing:

(25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

(26) At least three cups moved. They (= the cups that moved) turned black

All cups that moved turned black

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
- (25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

- (26) At least three cups moved. They (= the cups that moved) turned black
 - All cups that moved turned black

Exhaustivity and Specificity

- Szabolcsi 1997: Difference in anaphora licensing:
- (25) Three cups moved. They (= the three cups) turned black

Perhaps there are more cups that moved which did turn black

- (26) At least three cups moved. They (= the cups that moved) turned black
 - All cups that moved turned black

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved
 - b. $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \to \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \rightarrow \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved
 - b. $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \to \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \rightarrow \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved
 - b. $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \to \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y (y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \rightarrow \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved b. $\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \to \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved
 - **b.** $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \to \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \to \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved
 - **b.** $\forall y (y \in [X | X \subseteq \text{CUP'} \land |X| = 3] \to \text{MOVE'}(y))$

(28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \rightarrow \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved b. $\forall y (y \in [X | X \subseteq \text{CUP}' \land |X| = 3] \rightarrow \text{MOVE}'(y))$
- (28) a. At least three cups moved b. $\forall y (y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \rightarrow \text{MOVE}'(y))$

- In current framework, anchors for anaphors correspond to free partial variables
- Plural anaphors correspond to set variables (X, Y, Z, ...)
- Combination of plural variable with singular predicate (like *move*, *break*) requires insertion of a distribution operator (tacit *each*)
- (27) a. Three cups moved b. $\forall y(y \in [X|X \subseteq \text{CUP}' \land |X| = 3] \rightarrow \text{MOVE}'(y))$
- (28) a. At least three cups moved b. $\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \ge 3] \to \text{MOVE}'(y))$

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present

Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present

Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

- Difference becomes truth conditionally relevant if we do wide scope existential closure
- (29) a. If three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X \subseteq \text{CUP'} \land |X| = 3] \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X \subseteq \text{CUP'} \land |X| = 3 \land \forall y(y \in X \to \text{MOVE'}(y)) \to \text{GHWP'})$
 - d. = There are three cups, and if they all moved, the ghost was present
- Wide scope interpretation is possible

(30) a. If at least three cups moved, the ghost was present

- b. $\exists X (\forall y (y \in [X | X = CUP' \cap MOVE' \land |X| \geq 3) \rightarrow MOVE'(y)) \rightarrow GHWP')$
- c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \ge 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
- d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

(30) a. If at least three cups moved, the ghost was present

- b. $\exists X(\forall y(y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \geq 3) \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}')$
- c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \ge 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
- d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X (\forall y (y \in [X|X = \text{CUP}' \cap \text{MOVE}' \land |X| \geq 3) \rightarrow \text{MOVE}'(y)) \rightarrow \text{GHWP}')$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X (\forall y (y \in [X | X = CUP' \cap MOVE' \land |X| \geq 3] \rightarrow MOVE'(y)) \rightarrow GHWP')$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3) \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \ge 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X (\forall y (y \in [X | X = CUP' \cap MOVE' \land |X| \geq 3] \rightarrow MOVE'(y)) \rightarrow GHWP')$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \ge 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X(\forall y(y \in [X|X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3) \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'})$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \ge 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

- (30) a. If at least three cups moved, the ghost was present
 - b. $\exists X (\forall y (y \in [X | X = CUP' \cap MOVE' \land |X| \geq 3] \rightarrow MOVE'(y)) \rightarrow GHWP')$
 - c. $\exists X(X = \text{CUP'} \cap \text{MOVE'} \land |X| \geq 3 \land \forall y(y \in X \rightarrow \text{MOVE'}(y)) \rightarrow \text{GHWP'}$
 - d. = There are at least three cups that moved, and if they moved, the ghost was present
- Antecedent of conditional would become redundant under wide scope interpretation
- Thus ruled out by "Local Informativity Constraint": Avoid redundant substructures

• "Local informativity" is violated iff VP becomes part of the restriction of a partial variable

 \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustive	non-exhaustive
at least three cups	a cup
at most three cups	three cups
exactly three cups	some cups
every cup	
most cups	

• "Local informativity" is violated iff VP becomes part of the restriction of a partial variable

 \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustivenon-exhaustiveat least three cupsa cupat most three cupsthree cupsexactly three cupssome cupsevery cupmost cups

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
- \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustive	non-exhaustive
at least three cups	a cup
at most three cups	three cups
exactly three cups	some cups
every cup	
most cups	

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
- \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustivenon-exhaustiveat least three cupsa cupat most three cupsthree cupsexactly three cupssome cupsevery cupmost cups

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
- \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustivenon-exhaustiveat least three cupsa cupat most three cupsthree cupsexactly three cupssome cupsevery cupmost cups

- "Local informativity" is violated iff VP becomes part of the restriction of a partial variable
- \Rightarrow Generalization

A quantifier has a specific reading iff it is not exhaustive.

• Gives correct classification of quantifiers

exhaustive	non-exhaustive
at least three cups	a cup
at most three cups	three cups
exactly three cups	some cups
every cup	
most cups	

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

• specific indefinites are interpreted as partial variables

- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

- specific indefinites are interpreted as partial variables
- existential impact via unselective closure operation
- combines advanteges of DRT, CF, and presuppsositional analyses of the phenomena
- predicts correlation betweeen exhaustivity and impossibility of a specific reading of plural quantifiers

- What about non-specific indefinites (lexical ambiguity vs. local accommodation)
- Role of intermediate accommodation/genericity
- bare plurals

Contents

1	The phenomenon	3
2	Solution strategies 2.1 Long QR 2.2 Unselective binding 2.3 Indefinites as choice functions 2.4 Specificity as presupposition accommodation	10 12
3	Combining the approaches3.1The idea3.2Technical implementation	
4	Plurals	28
5	Conclusion	34