

Cultural language evolution: acquisition or usage?

Gerhard Jäger

gjaeger@stanford.edu

Stanford/Potsdam

Cultural language evolution: acquisition or usage? - p.1

Introduction

- 6 language is self-replicating system
- 6 two modes of replication:
 - 1. (first) language acquisition
 - 2. language usage
- 6 the modes differ in
 - selection pressure
 - source of variation
 - ▲ time scale

How do they interact?

- *replicator:* I-language in its entirety
- *interactors:* "teacher" (adult) and "student" (infant)
- *source of variation:* imperfect learning
- *time scale:* measured in decades

Usage dynamics

- *replicator:* components of I-language (lexical entries, constructions, ...)
- *interactors:* (mainly adult) language users
- *source of variation:* errors, language contact, ...
- *time scale:* detectable even within single text

The Iterated Learning Model

- 6 formal model of acqusition dynamics
- 6 many computational implementations (Hurford, Kirby, Briscoe, Niyogi, Berwick, ...)
- 6 analytical mathematical formulation by Nowak (with various co-authors):

The Iterated Learning Model (cont.)

(1)
$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

(2)
$$f_j(\mathbf{x}) \doteq \sum_k x_k U_{jk}$$

- 6 main components:
 - \checkmark fitness function f
 - \checkmark learning matrix Q

- *Biology:* fitness \doteq expected number of fertile offspring
- *Linguistics:* communicative functionality, efficiency, social prestige, ...

Fitness (cont.)

- 6 first approximation
 - ▲ finite number of languages L_1, \dots, L_n
 - σ_{ij} ... average probability that a speaker using L_i is understood by a listener using L_j
 - c_i ... average complexity of utterances of L_i (length, entropy, whatever)
 - utility of communication between users of L_i and L_j :

$$U_{ij} = \frac{1}{2}(\sigma_{ij} + \sigma_{ji} - r(c_i + c_j))$$

Fitness (cont.)

• x_i ... relative frequency of users of L_i in proportion to total population

$$\sum_{i} x_i = 1$$

- \mathbf{x} ... vector of relative frequencies x_1, x_2, \cdots, x_n
- 6 fitness = average utility:

$$f_j(\mathbf{x}) \doteq \sum_k x_k U_{jk}$$

The learning matrix

- ont every language is perfectly learnable
- 6 Q_{ij} ... probability that an infant growing up in an L_i -environment acquires L_j

$$\sum_{j} Q_{ij} = 1$$

The learning matrix (cont.)

- simplest case:
 - identity matrix
 - infant always acquires language of environment

	L_1	L_2	L_3	• • •
L_1	1	0	0	•••
L_2	0	1	0	•••
L_3	0	0	1	•••
:		:	÷	

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

6 probability to learn L_i from an L_j -environment

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 probability to learn L_i from an L_j -environment
- 6 fitness (= abundance of offspring of users) of L_j

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 probability to learn L_i from an L_j -environment
- 6 fitness (= abundance of offspring of users) of L_j
- 6 abundance of infants that acquire L_i

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 probability to learn L_i from an L_j -environment
- 6 fitness (= abundance of offspring of users) of L_j
- 6 abundance of infants that acquire L_i
- 6 death rate

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 probability to learn L_i from an L_j -environment
- 6 fitness (= abundance of offspring of users) of L_j
- 6 abundance of infants that acquire L_i
- 6 death rate
- 6 velocity of change of abundance of L_i -speakers

$$\frac{dx_i}{dt} = \sum_j x_j f_j(\mathbf{x}) Q_{ji} - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 probability to learn L_i from an L_j -environment
- 6 fitness (= abundance of offspring of users) of L_j
- 6 abundance of infants that acquire L_i
- 6 death rate
- velocity of change of abundance of L_i-speakers
 Selection for learnability and fitness

Iterated language usage

- 6 dynamics of E-language (= population of utterances)
- each utterance is produced and perceived by language users by means of underlying grammars (= I-languages)
- 6 replication via imitation
- dynamics describes development of I-grammar frequencies within population of utterances

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

simplest implementation: replicator dynamics

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

6 fitness of L_i (= expected number of imitations of an utterance from L_i)

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 fitness of L_i (= expected number of imitations of an utterance from L_i)
- 6 abundance of utterances from L_i in next generation

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 fitness of L_i (= expected number of imitations of an utterance from L_i)
- 6 abundance of utterances from L_i in next generation
- 6 abundance of utterances from L_i in current generation

$$\frac{dx_i}{dt} = x_i f_i(\mathbf{x}) - x_i \sum_j x_j f_j(\mathbf{x})$$

- 6 fitness of L_i (= expected number of imitations of an utterance from L_i)
- 6 abundance of utterances from L_i in next generation
- 6 abundance of utterances from L_i in current generation
- 6 velocity of change of abundance of L_i -utterances

- selection only for fitness ignores learnability
- 6 only homogeneous populations can be attractors
- → natural languages display high amount of optionality and non-determinism

Hybrid dynamics

- both modes of replication play a role in (cultural) language evolution
- adequate dynamics should capture both
- 6 fitness of language is arguably negligible as factor for biological reproduction rate (at least on historical time scale)
- 6 acqusition dynamics thus simplifies to

$$\frac{dx_i}{dt} = \sum_j x_j Q_{ji} - x_i$$

Hybrid dynamics (cont.)

- some fraction b ($0 \le b \le 1$) of all utterances are uttered by language acquiring infants
- orest of utterances is uttered by adults and underlies the utterance dynamics
- Ieads to hybrid utterance dynamics:

$$\frac{dx_i}{dt} = (1-b)(x_i f_i - x_i \sum_j x_j f_j) + b(\sum_j x_j Q_{ji} - x_i)$$

selection for functionality and learnability

An example: Binding Theory

- 6 Modern English: restrictions on coreference
- (1) a. Peter_i sees him_j b. *Peter_i sees him_i
 - 6 in Old English, (1b) is okay
 - until a certain age, Modern English learning infants accept/produce structures like (1b)
 - o unlikely that OE infants underwent a stage corresponding to ME
 - 6 ME has less ambiguity and thus higher utility though

6 Q-matrix

	OE	ME
OE	1.0	0.0
ME	0.2	0.8

6 U-matrix

	OE	ME
OE	0.9	0.8
ME	0.8	1

$$b = 0.05$$

- 6 two attractors (i.e. stable states)
 - 1. pure OE
 - 2. predominant ME (with a low probability of OE)

time

- acquisition dynamics also selects for high utility and high learnability
- 6 learnability overrides utility though only one attractor

Typology of case marking

- two kinds of accusative marking languages
 - 1. accusative is obligatory for all direct objects

like Hungarian

- (2) a. Szeretem a könyv**et**. I-LIKE THE BOOK-ACC "I like the book."
 - b. Egy házat akarok.
 A HOUSE-ACC I-WANT "I want a house."

like Hebrew: only definites have accusative

- (3) a. Ha-seret her?a **?et**-ha-milxama THE-MOVIE SHOWED ACC-THE-WAR
 - b. Ha-seret her?a (*?et-)milxama THE-MOVIE SHOWED (*ACC-)WAR (from Aissen 2003)

 utility matrix for competition between Hebrew and Hungarian type (based on corpus studies; see Jäger (2004))

	Hun	Heb
Hun	.1100	.1060
Heb	.1060	.1734

- complicating factor: Hungarian styly production grammar + Hebrew style comprehension grammar is also a possible language
- utility matrix for competition between Hebrew and Hungarian type (based on corpus studies; see Jäger (2004))

	Hun	Hun/Heb	Heb
Hun	.1100	.1100	.1060
Hun/Heb	.1100	.1100	.1417
Heb	.1060	.1417	.1734

o usage dynamics predicts only Hebrew to be stable

time

- Hungarian system ("All objects have accusative!") is arguably simpler than Hebrew system ("All definite objects have accusative!")
- 6 acquistion matrix something like

	Hun	Hun/Heb	Heb
Hun	1.0	0.0	0.0
Hun/Heb	0.0	1.0	0.0
Heb	0.1	0.0	0.9

$$b = 0.1$$

 under hybrid dynamics (as under acqisition dynamics) both Hungarian and Hebrew style case systems are evolutionarily stable

- 6 natural languages are shaped both by selection for learnability and selection for usability
- 6 corresponds to replication via acquisition and replication via usage
- 6 combined dynamics leads to refined typological predictions

Conclusion (cont.)

Question for future research

- 6 How can the parameters of these equations (fitness, learnability matrix) be determined in a non-circular way?
- 6 Can we observe micro-evolution directly (psycholinguistics, corpus linguistics, ...) to validate formal models?

References

- Aissen, J. (2003). Differential object marking: Iconicity vs. economy. *Natural Language and Linguistic Theory*, **21**(3), 435–483.
- Jäger, G. (2004). Evolutionary Game Theory and typology: a case study. manuscript, University of Potsdam and Stanford University, available from www.ling.uni-potsdam.de/~jaeger/games_dcm.pdf.
- Nowak, M. A., Komarova, N. L., and Niyogi, P. (2002). Computational and evolutionary aspects of language. *Nature*, **417**, 611–617.
- van Rooij, R. (2004). Signalling games select Horn strategies. *Linguistics and Philosophy*, **27**, 493–527.