The evolution of weak bidirectional OT

Workshop Games and Decisions in Pragmatics October 24-25, 2003 ZAS Berlin

Gerhard Jäger University of Potsdam jaeger@ling.uni-potsdam.de www.ling.uni-potsdam.de/~jaeger/

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

1. Overview

- Weak bidirectional OT: Synchrony and diachrony
- Game theoretic formalization
- Evolutionary Game Theory
- weak bidirectionality and evolutionary stability
- stochastic stability

2. Weak Bidirectionality

Definition 1 (Weak bidirectional optimality) Let $\mathcal{O} = \langle \text{GEN}, \text{CON} \rangle$ be an OT-system. Then $\langle i, o \rangle$ is bidirectionally optimal iff

1. $\langle i, o \rangle \in \operatorname{GEN}$,

2. there is no bidirectionally optimal $\langle i', o \rangle \in \text{GEN}$ such that $\langle i', o \rangle \prec_{\mathcal{O}} \langle i, o \rangle$, and

3. there is no bidirectionally optimal $\langle i, o' \rangle \in \text{GEN}$ such that $\langle i, o' \rangle \prec_{\mathcal{O}} \langle i, o \rangle$.

- predicts iconicity:
 - \circ simple forms go with simple meanings
 - $\circ\,$ complex forms go with complex meanings

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

● First ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

- not a synchronic rule:
 - \circ woman eats banana \prec banana eats woman
 - \circ accusative case \prec dative case
 - \circ for feminine NPs in German, nominative = accusative
 - Still, both (1a) and (b) are translated as (2a), and (2b) is ungrammatical
- (1) a. the banana that the woman eats
 - b. the banana that eats the woman
- (2) a. die Banane die die Frau isst THE BANANA WHICH[NOM/ACC] THE WOMAN[NOM/ACC] EATS
 - b. *die Banane der die Frau isst THE BANANA WHICH[DAT] THE WOMAN[NOM/ACC] EATS

- But it does work in many cases!
- possible explanation (Benz, Blutner, Mattausch, van Rooy, ...):
 - Weak bidirectionality is not a synchronic rule but expresses a diachronic tendency
 - weakly bidirectional pairs are evolutionary stable
- possible formalization by means of *Evolutionary Game Theory*
- van Rooy: for 2-form-2-meaning games weak bidirectionality is in fact the only attractor

3. Game theoretic formalization

- (finite) sets M (meanings) and F (forms)
- relation $\mathbf{GEN} \subseteq M \times F$
- two players (speaker and hearer)
- speaker strategy: function $S \subseteq \mathbf{GEN}$ from M to F
- hearer strategy: function $H \subseteq \mathbf{GEN}^{-1}$ from F to M

- speaker has to decide what to say and how to say it
- only latter decision is linguistically relevant
- idealization:
 - \circ in each game, nature presents the speaker with a meaning m
 - \circ speaker only has to decide how to express m
 - \circ nature chooses meanings according to probability distribution p over M

Utilities

- hearer tries to decode intention of speaker from observed form
- speaker tries to communicate meaning with little effort
- measure of communicative success:

$$\delta_m(S,H) = \left\{ \begin{array}{ll} 1 & \text{iff} \quad H(S(m)) = m \\ 0 & \text{else} \end{array} \right.$$

• hearer's only interest is to get the interpretation right:

$$u_h(m, S, H) = \delta_m(S, H)$$

• complexity of forms measured by means of function

 $cost: F \mapsto (0,\infty)$

- speaker has conflicting interest:
 - \circ communicative success
 - \circ little effort
- captured by speaker utility function

$$u_s(m, S, H) = \delta_m(S, H) - k \times cost(S(m))$$

- k: positive coefficient that captures the preferences of the speaker
- present talk: k is always infinitesimally small

Average utilities

• averaging over many utterance situations:

$$u_{s}(S,H) = \sum_{m} p_{m} \times (\delta_{m}(S,H) - k \times \textit{cost}(S(m)))$$
$$u_{h}(S,H) = \sum_{m} p_{m} \times \delta_{m}(S,H)$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Communication as an asymmetric partnership game

- Note that strategy sets of speaker and hearer are disjoint!
- Communication is thus an asymmetric game
- \bullet speaker utility matrix and hearer utility matrix only differ by $-k\times \mathit{cost}(S(m))$
- depends only on speaker strategy; hearer has no influence on it
- replacing u_h by u_s does not change the decision situation for hearer
- communication can be seen as partnership game
- revised utility function

$$u_s(S,H) = u_h(S,H) = \sum_m p_m \times (\delta_m(S,H) - k \times \textit{cost}(S(m)))$$

4. Evolutionary Game Theory

- two populations of players (in asymmetric two-person game)
- each individual is programmed for a strategy
- strategies with a high average utility increase their share of the population over time
- Evolutionary Stable Strategy pair (ESS):
 - stationary
 - immune against small invasions of mutant strategies

Evolutionary stability in asymmetric games

Definition 2 (Strict Nash Equilibrium) A pair of strategies (s, h) is a Strict Nash Equilibrium *iff*

$$\forall s'(s' \neq s \to u_s(s,h) > u_s(s',h))$$

and

$$\forall h'(h' \neq h \rightarrow u_h(s,h) > u_h(s,h'))$$

Theorem 1 (Reinhard Selten) (s, h) is evolutionary stable if and only if it is a Strict Nash Equilibrium.

• Remark: in asymmetric games only pure strategies can form Strict Nash Equilibria, so we can safely disregard mixed strategies

Bijections are evolutionary stable

- Suppose |F| = |M|.
- Then $\langle s,h
 angle$ is a Strict Nash Equilibrium iff

 $\circ \ s$ and h are 1-1 maps, and $\circ \ s = h^{-1}$

Sketch of proof:

$\bullet \Rightarrow$

- \circ suppose $\langle s,h
 angle$ is a SNE
- then every $f \in F$ must be contained in range of s otherwise every $h' \sim_m h$ would have the same utility as h
- \circ thus s is 1-1
- \circ thus no hearer strategy can be bettern than s^{-1}

$\bullet \Leftarrow$

- \circ suppose s and h are 1-1 maps, and $s = h^{-1}$
- every unilateral deviation would decrease average communicative success

5. Comparison

- weak bidirectionality also tends to favor bijective maps
- but how to relate GT-utilities and OT?
 - \circ OT ordering of forms corresponds to GT costs
 - OT ordering of meanings corresponds to amount of information (in the sense of information theory)

$$egin{array}{lll} \langle m_1, f_1
angle &< \langle m_2, f_2
angle \ & ext{iff} \ -\log(p_{m_1}) imes extbf{cost}(f_1) &< -\log(p_{m_2}) imes extbf{cost}(f_2) \end{array}$$

- suppose p(m2) > p(m1), and cost(f2) < cost(f1)
- **GEN** = $M \times F \{m1, f1\}$
- graphically:

- \bullet There is only one 1-1 map contained in GEN, hence this is the only ESS
- prediction of EGT:

● *First* ● *Prev* ● *Next* ● *Last* ● *Go* Back ● *Full* Screen ● *Close* ● *Quit*

6. Stochastic stability

(developed by Kandory, Mailath and Rob 1993 and Young 1993 in economics)

- EGT usually predicts several ESS
- "evolutionary stable" means "there is an invasion barrier"
- invasion barriers of multiple ESS are usually of varying height
- in finite populations, every invasion barrier is occasionally taken
- "jumping over" low barriers is more likely than jumping over high barriers
- hence system is most likely in the state with the highest invasion barrier
- \bullet this likelihood goes to 1 as the probability of a single mutation goes to 0

A state is *stochastically stable* if its probability converges to a positive value if the mutation probability goes to 0.

- In a 2×2 game, the risk-dominant Strict Nash Equilibrium is the only stochastically stable state (KMR 1993)
- partnership games: risk dominance = Pareto efficiency
- no general recipes for games with more than two strategies per player
- *Conjecture:* in partnership games, Pareto-efficiency and stochastic stability coincide

Stochastic stability and weak bidirectionality

- van Rooy 2002: in simple 2-form-2-meaning game, stochastic stability and weak bidirectionality coincide
- Does this generalize?
 - \circ above example proves the opposite if there is only one ESS, it is stochastically stable
 - but what if weak bidirectionality is a bijection?

Even then weak bidirectionality and stochastic stability need not coincide:

- $M = \{m1, m2, m3\}$
- $F = \{f1, f2, f3\}$
- **GEN** = $M \times F \{\langle m2, f2 \rangle\}$

•
$$p_{m1} = 0.1, p_{m2} = 0.4, p_{m3} = 0.5$$

• cost(f1) = 20, cost(f2) = 11, cost(f3) = 10

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

• weakly bidirectional map:

• Pareto-efficient (and thus stochastically stable) state

m1 () f1

 $u(S,H) = 1 - k \times 11.5$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

- examples all involved deficient GEN
- suppose |F| = |M| and $\mathbf{GEN} = M \times F$
- suppose furthermore that there are no ties:

$$\forall m_1, m_2 : p(m_1) = p(m_2) \rightarrow m_1 = m_2$$

$$\forall f_1, f_2 : \textit{cost}(f_1) = \textit{cost}(f_2) \rightarrow f_1 = f_2$$

• then the isomorphic map (most frequent meaning goes with least costly form etc) is both Pareto-efficient and weakly bidirectionally optimal

7. Conclusion

- initial hypothesis: weak bidirectionality is a diachronic attractor
- formalized in terms of EGT
- first result: in EGT all 1-1 maps between forms and meanings are evolutionary stable
- refinement: stochastic evolution
- conjecture: exactly the Pareto-efficient 1-1-maps are the stochastically stable states
- weak bidirectionality and stochastic stability are guaranteed to coincide only under rather restrictive side conditions
- future work:
 - $\circ\,$ proof of the conjecture on stochastic stability and Pareto-efficiency
 - refined GT formalization of communication beyond simple partnership games

Contents

1	Overview	2
2	Weak Bidirectionality	3
3	Game theoretic formalization	13
4	Evolutionary Game Theory	19
5	Comparison	23
6	Stochastic stability	27
7	Conclusion	35