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Outline of talk

• Unidirectional OT with finite state methods

◦ Binary constraints: Frank and Satta 1998

◦ Gradient constraints: Gerdemann and van Noord 2000

◦ Generalizations

• Bidirectional OT

◦ Basic concepts

◦ Binary constraints

◦ Gradient constraints
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Optimality Theory: The basic picture

• Three components:

1. GEN: (very general) relation between input and output

2. CON: set of ranked violable constraints on input-output pairs

3. EVAL: Choice function that identifies optimal input-output
pairs among a set of candidates (depending on CON)
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Definition 1 (OT-System)

1. An OT-system is a pair O = 〈GEN,CON〉, where GEN is a rela-
tion, and CON = 〈c1, . . . , cp〉, p ∈ N is a linearly ordered sequence
of functions from GEN to N.

2. Let a, b ∈ GEN. a <O b iff there is an i with 1 ≤ i ≤ p such that
ci(a) < ci(b) and for all j < i : cj(a) = cj(b).
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Definition 2 (Unidirectional optimality) Let O = 〈GEN,CON〉 be
an OT-system. Then 〈i, o〉 is unidirectionally optimal with respect to O
iff

1. 〈i, o〉 ∈ GEN

2. there is no o′ such that 〈i, o′〉 ∈ GEN and 〈i, o′〉 <O 〈i, o〉
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• Two types of constraints:

1. Markedness constraints ⇒ refer to output only

◦ “syllables have onsets”, “vowels are oral” ...

2. Faithfulness constraints ⇒ refer to i/o pairing

◦ “don’t delete material”, “don’t add material” ...
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OT and finite state techniques: Frank and Satta 1998

• Naive algorithms only work with finite candidate sets

• Bad news: Set of optimal candidates might be undecidable if can-
didate set is infinite

• Good news: Large subclass of OT systems can even be implemented
by finite state techniques
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Finite state implementation

• Frank and Satta: If

◦ there are no faithfulness constraints,

◦ all constraints are binary (i.e. they don’t count violations),

◦ GEN is a rational relation, and

◦ all constraints can be represented by a regular language,

then the set of optimal input-output pairs is a rational relation
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Some closure properties of regular languages and ra-
tional relations

• Every finite language is regular.

• If L1 and L2 are regular languages, then L1 ∩ L2, L1 ∪ L2, L1 −
L2, L1L2, and L∗1 are also regular languages.

• If R1 and R2 are rational relations, then R1∪R2, R1◦R2, R
∪
1 , R1R2,

and R∗1 are also rational relations.

• If R is a rational relation, then Dom(R) and Rg(R) are regular
languages.

• If L1 and L2 are regular languages, then L1×L2 and IL1
are rational

relations.
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Conditional Intersection

Definition 3
Let R be a relation and L a language. The conditional intersection R ↑ L
of R with L is defined as

R ↑ L .
= (R ◦ IL) ∪ (IDom(R)−Dom(R ◦ IL) ◦R)
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Theorem 1 (Frank and Satta)
Let O = 〈GEN,CON〉 with CON = 〈c1, . . . , cp〉 be an OT-system such
C solely consists of binary output markedness constraints. Then 〈i, o〉 is
unidirectionally optimal iff 〈i, o〉 ∈ GEN ↑ c1 · · · ↑ cp.

Corollary 1
Let O = 〈GEN,CON〉 with CON = 〈c1, . . . , cp〉 be an OT-system
such C solely consists of binary output markedness constraints. Then the
optimal input-output pairing is a rational relation.
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FS implementation of gradient constraints

Basic idea

• Consider the relation (inspired by Gerdemann and van Noord 2000)

GEN◦ <

• Range: set of sub-optimal outputs of GEN

• Rg(GEN)−Rg(GEN◦ <) — set of optimal outputs

• Thus
GEN ◦ I

Rg(GEN)−Rg(GEN◦<)

represents the optimal input-output pairing (it seems)
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Formalization

• Constraint c is called rational with respect to R iff there is a rational
relation S with

{〈x, y〉|c(x) < c(y)} ∩ (R∪ ◦R) = S ∩ (R∪ ◦R)

• Notation: S = relR(c)

• Following operation generalizes conditional intersection to gradient
constraints

Definition 4 (Generalized conditional intersection)

R � S
.
= R ◦ IRg(R)−Rg(R◦S)
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⇒ applicable only under certain restrictions:

Definition 5 Let R and S be relations. Optimality is global with
respect to R and S iff

∀i, o(iRo ∧ ¬∃o′(iRo′ ∧ o′So)→ ¬∃o′(o′ ∈ Rg(R) ∧ o′So))

Fact 1 Let R and S be relations such that optimality is global with
respect to R and S. Then

〈i, o〉 ∈ R � S iff iRo ∧ ¬∃o′(iRo′ ∧ o′So)
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Theorem 2
Let O = 〈GEN,CON〉 with CON = 〈c1, · · · , cp〉 be an OT system such
that all elements of CON are rational markedness constraints and for all
i, optimalitity is global with respect to GEN � rel(c1) · · · � rel(ci−1).
Then 〈i, o〉 is unidirectionally optimal iff

〈i, o〉 ∈ GEN � rel(c1) · · · � rel(cp)

.

Corollary 2
Let O = 〈GEN,CON〉 with CON = 〈c1, · · · , cp〉 be an OT system
such that GEN is a rational relation, all elements of CON are rational
markedness constraints, and for all i, optimalitity is global with respect to
GEN � c1 · · · � ci−1. Then the optimal input-output pairing is a rational
relation.
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Bidirectionality

Application to syntax/semantic

• In phonology/morphology, OT takes the speaker perspective

• applied to syntax/semantics, this means:

1. GEN is given by compositional (underspecified) semantics

2. Markedness constraints only apply to forms, not to meanings

3. A form/meaning pair may be blocked by a better form for the
same meaning, but not the other way round
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Competition/Blocking in semantics and pragmatics

• Competition between forms

◦ Scalar implicatures

◦ Lexical blocking

• But: also competition between meanings

◦ Presupposition resolution (cf. van der Sandt 1992)

◦ Bridging inference

◦ . . .
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Blutner’s OT-formalization

Definition 6 (Bidirectional optimality) Let O = 〈GEN,CON〉 be
an OT-system. Then 〈i, o〉 is bidirectionally optimal iff

1. 〈i, o〉 ∈ GEN,

2. there is no bidirectionally optimal 〈i′, o〉 ∈ GEN such that 〈i′, o〉 <O
〈i, o〉, and

3. there is no bidirectionally optimal 〈i, o′〉 ∈ GEN such that 〈i, o′〉 <O
〈i, o〉.
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Algorithm

OPT = ∅;
BLCKD = ∅;

while (OPT ∪ BLCKD 6= GEN) {
OPT = OPT ∪ {x ∈ GEN− BLCKD|

∀y < x : y ∈ OPT ∪ BLCKD};
BLCKD = BLCKD ∪ {〈i, o〉 ∈ GEN− OPT|

〈i′, o〉 ∈ OPT ∨ 〈i, o′〉 ∈ OPT};
}

return (OPT );

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



 

output 

i 
n 
p 
u 
t 
 

Contents First Last Prev Next Back Close Quit



Extension of Frank and Satta’s construction to Bidi-
rectionality

• Basic idea: implement the algorithm above by means of a cascade
of Frank/Satta constructions!

• Bidirectional OT: competition both between different inputs and
different outputs

• Thus both input markedness constraints and output marked-
ness constraints

• So we also need backward conditional intersection:

R ↓ L .
= (R∪ ↑ L)∪
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Definition 7 (Bidirectional Conditional Intersection)
Let O = 〈GEN, C〉 be an OT-system and ci be a binary markedness
constraint.

R ⇑ ci
.
=


R ◦ IRg(({ε}×Rg(R))↑ci)
if ci is an output markedness constraint

IDom((Dom(R)×{ε})↓ci) ◦R
else
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Lemma 1
Let O = 〈GEN,CON〉 be an OT-system (with binary markedness con-
straints only), where CON = 〈c1, . . . , cp〉. Then

〈i, o〉 ∈ GEN ⇑ c1 · · · ⇑ cp

iff 〈i, o〉 ∈ GEN, and there are no i′, o′ with 〈i′, o′〉 ∈ GEN and 〈i′, o′〉 <
〈i, o〉.

• Notation: RCON .
= R ⇑ c1 · · · ⇑ cn (where CON = c1, . . . , cp)
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Definition 8
Let O = 〈GEN,CON〉 be an OT-system.

OPT0 = ∅
OPTα+1 = OPTα∪

(I
Dom(GEN)−Dom(OPTα) ◦ GEN ◦ I

Rg(GEN)−Rg(OPTα))
CON

OPTβ =
⋃
α<β OPTα (β a limit ordinal)

OPT =
⋃
OPTα

Lemma 2
Let O = 〈GEN,CON〉 be an OT-system. Then 〈i, o〉 ∈ OPT iff 〈i, o〉
is bidirectionally optimal.
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Lemma 3
Let O = 〈GEN,CON〉 be an OT-system with CON = c1, . . . , cp, where
all ci are binary markedness constraints. Then OPT = OPT2p.

Corollary 3
Let O = 〈GEN,CON〉 be an OT-system with CON = 〈c1, . . . , cp〉,
where all ci are binary markedness constraints. Furthermore, let GEN be
a rational relation and let all ci be regular languages. Then the set of
bidirectionally optimal elements of GEN is a rational relation.
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Gradient constraints and bidirectionality

• FS construction for gradient constraints does not carry over to bidi-
rectionality

• consider the following OT system:

◦ O = 〈GEN, C〉
◦ GEN = {〈aibj, akbl〉|i = k ∨ j = l}
◦ C = 〈c1, c2〉
◦ c1(〈i, o〉) = #a(i)

◦ c2(〈i, o〉) = #b(o)

• GEN is rational relation

• both constraints are rational
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• Crucial observation:

OPTn = {〈aiby, azbi〉|i < n ∧ (y = i ∨ z = i)}

• Hence

OPT =
⋃
n∈N

OPTn = {〈anby, azbn〉|y = n ∨ z = n}

• Now: Rg(Iaa∗ ◦OPT ) = {anbn|n > 0}

• Thus OPT is not regular
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Conclusion

• Main results:

◦ Frank and Satta style FS construction carries over to bidirec-
tionality

◦ Gerdemann and van Noord type FS construction does not carry
over to bidirectionality

⇒ Bidirectional OT intrinsically more complex than unidirectional OT
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• Possible applications:

◦ Bidirectionality adds recursive structure that is absent in gen-
erator ; repercussions for architecture of grammar?

◦ Extrapolation to complexity classes beyond the power of FSAs?

◦ Bidirectionality arguably useful also for morphology (Wunder-
lich 2001), practical application in computational morphology?
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