Evolutionary Optimality Theory

Stanford University December 6, 2002

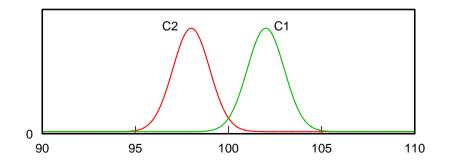
Gerhard Jäger Zentrum für Allgemeine Sprachwissenschaft Berlin University of Potsdam jaeger@zas.gwz-berlin.de www.ling.uni-potsdam.de/~jaeger/

1. Overview

- Stochastic Optimality Theory
- unidirectional learning
- bidirectional learning and iconicity
- Differential Case Marking

2. Stochastic Optimality Theory (StOT)

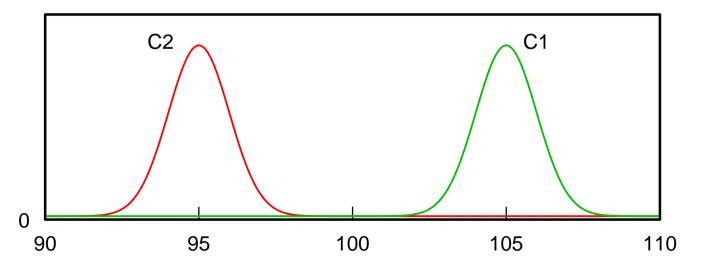
- probabilistic grammar
- assigns probability distribution over possible meanings for a given form (and vice versa)
- Two modifications of standard OT (cf. Boersma 1998)
 - 1. **constraint ranking on a continuous scale** distance between constraints matters
 - 2. **stochastic evaluation** actual ordering of constraints varies, with probabilities depending on continuous ranking



• Absolute size of the distance between conflicting constraints determines their interaction:

 \circ difference between mean values > 10 units:

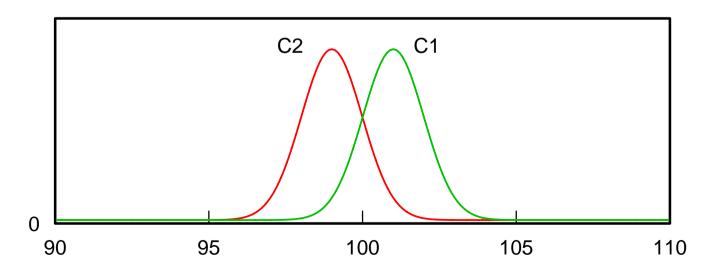
 C_1 dominates C_2 categorically $p(C_2 > C_1) < 10^{-10}$



• difference ≈ 2 :

preference for obeying C_1 , but obeying C_2 is still grammatical

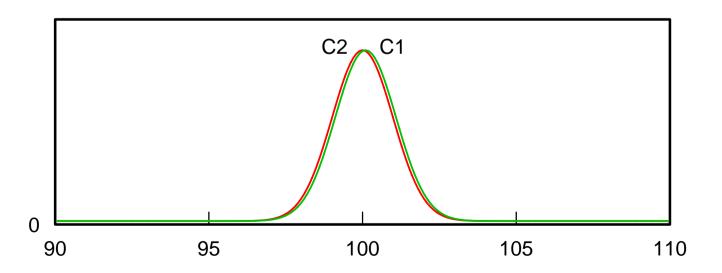
 $p(C_2 > C_1) \approx 30\%$



• Both constraints are roughly equally ranked:

free variation

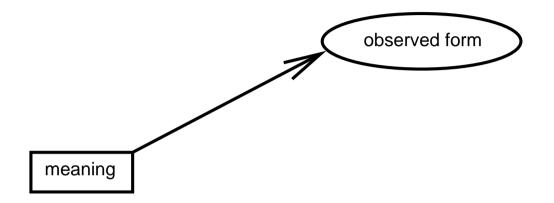
$$p(C_2 > C_1) = 50\%$$

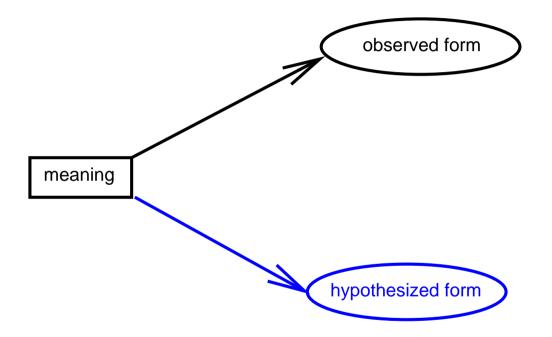


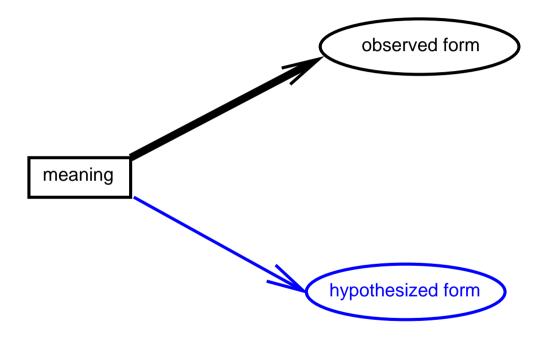
3. The Gradual Learning Algorithm (GLA)

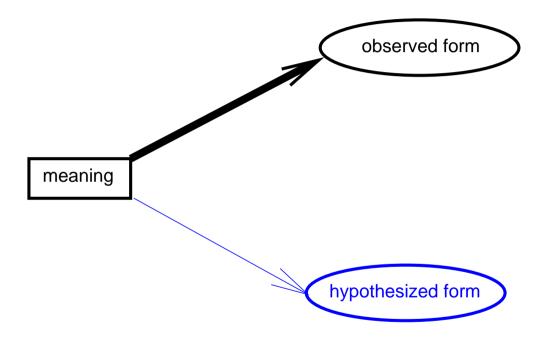
- Function from (analyzed) corpus to StOT-Grammar
- error-driven
- outputs grammar that reproduces statistical patterns in the training corpus

meaning









Six stages:

- Initial state Constraints begin with a ranking that is hypothesized by the linguist (and plays no significant role for learning result)
- Step 1: A datum Algorithm is presented with a learning datum—a fully specified input-output pair $\langle i, o \rangle$

• Step 2: Generation

- For each constraint, a noise value is drawn from the normal distribution and added to its current ranking. This yields the *selection point*.
- Constraints are ranked by descending order of the selection points. This yields a linear order of the constraints.
- \circ Based on this constraint ranking, the grammar generates an output o' for the input i.

• Step 3: Comparison If o = o', nothing happens. Otherwise, the algorithm compares the constraint violations of the learning datum $\langle i, o \rangle$ with the self-generated pair $\langle i, o' \rangle$.

• Step 5: Adjustment

- All constraints that favor $\langle i, o \rangle$ over $\langle i, o' \rangle$ are *increased* by some small predefined numerical amount ("plasticity").
- \circ All constraints that favor $\langle i, o' \rangle$ over $\langle i, o \rangle$ are *decreased* by the plasticity value.
- Final state Steps 1 4 are repeated until the constraint values stabilize.

4. Bidirectionality

4.1. Bidirectional evaluation

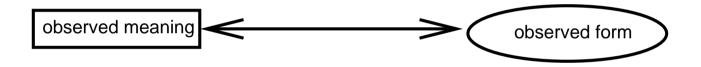
- OT-grammar defines ranking of possible forms for a given meaning and vice versa
- StOT-grammar defines probability distribution over OT-grammars
- licit meaning-form association for a given grammar must be optimal for both speaker and hearer (cf. Blutner 2000, Zeevat 2000, Beaver 2000)

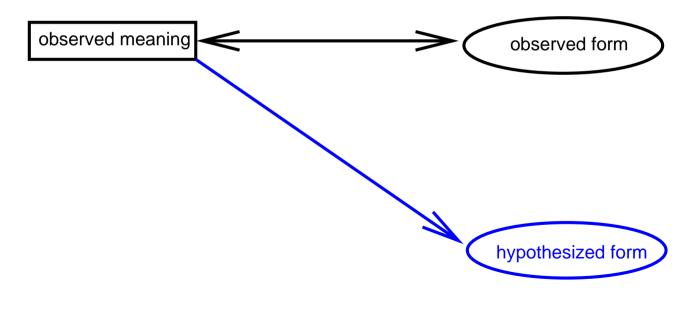
Definition 1

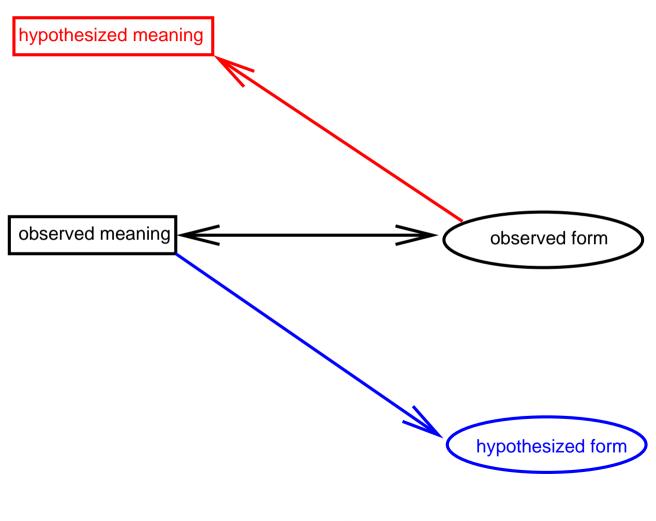
- A form-meaning pair $\langle f, m \rangle$ is hearer-optimal iff $\langle f, m \rangle \in \mathbf{GEN}$ and there is no alternative meaning m' such that $\langle f, m' \rangle \in \mathbf{GEN}$ and $\langle f, m' \rangle < \langle f, m \rangle$.
- A form-meaning pair $\langle f, m \rangle$ is optimal iff either it is hearer-optimal and there is no alternative form f' such that $\langle f', m \rangle$ is hearer-optimal and $\langle f', m \rangle < \langle f, m \rangle$, or there is no hearer-optimal $\langle f', m \rangle$, and there is no $\langle f', m \rangle \in \mathbf{GEN}$ such that $\langle f', m \rangle < \langle f, m \rangle$.

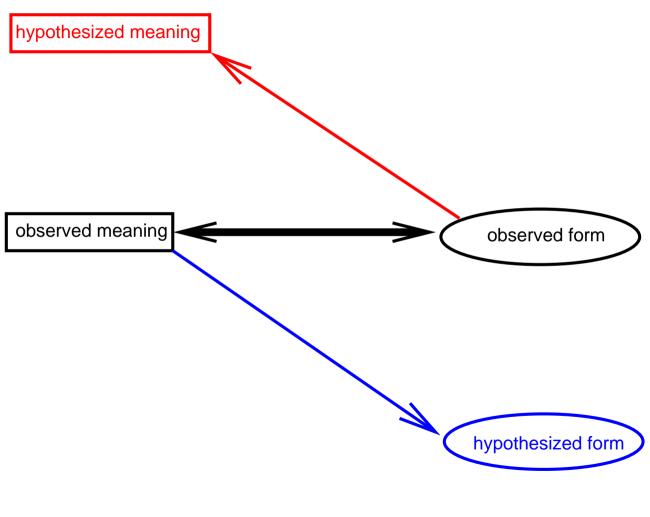
4.2. Bidirectional learning

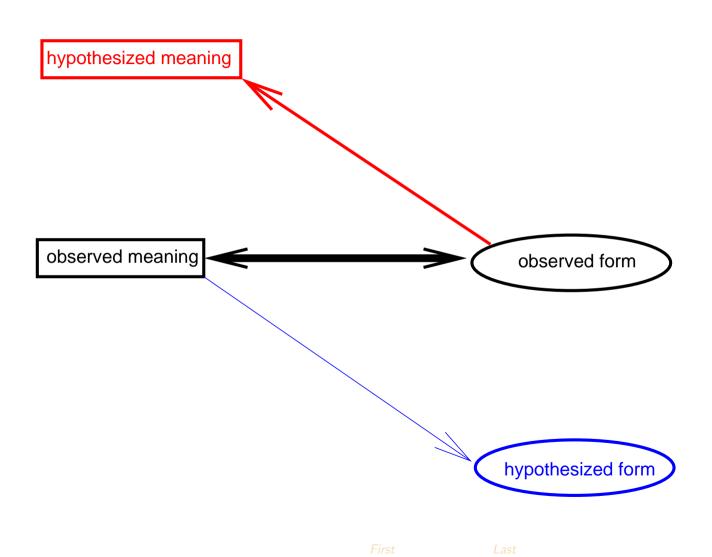
- unidirectional learning (Tesar and Smolensky, Boersma):
 - learning triggered by insight: Oops, I hadn't said it like this!
 - "luxury problem" (Zeevat, p.c.)
- more urgent trigger for learning:
 - learning trigger: I don't understand you guys!
 - \circ requires comparison of observed with hypothesized interpretation
- together: bidirectional learning

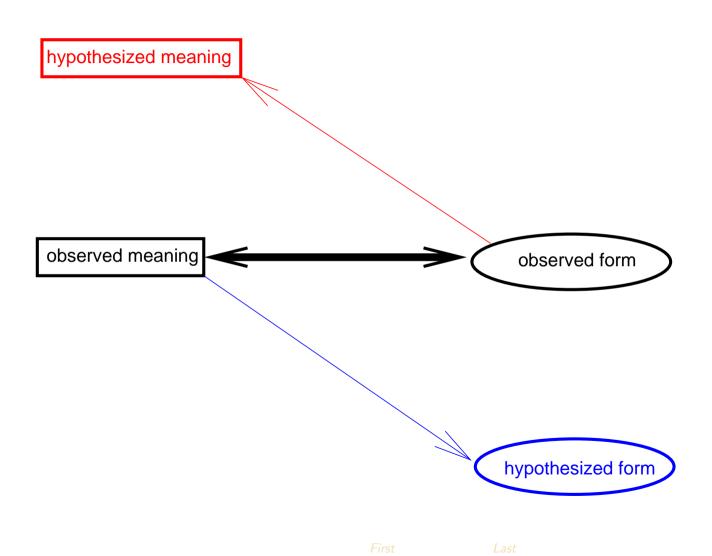












- Bidirectional GLA (BiGLA):
 - $\circ\,$ Evaluation according to bidirectional optimization as above
 - \circ Both speaker and hearer learn
 - \circ Speaker compares different forms
 - $\circ\,$ Hearer compares different meanings

- Initial state All constraint values are set to 0.
- Step 1: A datum The algorithm is presented with a learning datum—a fully specified input-output pair $\langle f, m \rangle$.

• Step 2: Generation

- For each constraint, a noise value is drawn from a normal distribution and added to its current ranking. This yields the *selection point*.
- Constraints are ranked by descending order of the selection points. This yields a linear order of the constraints.
- $\circ\,$ Based on this constraint ranking, the grammar generates two pairs $\langle f',m\rangle\,$ and $\langle f,m'\rangle\,$ that are both bidirectionally optimal.

- Step 3.1: Comparison of forms If f = f', nothing happens. Otherwise, the algorithm compares the constraint violations of the learning datum $\langle f, m \rangle$ with the self-generated pair $\langle f', m \rangle$.
- Step 3.2: Comparison of meanings If m = m', nothing happens. Otherwise, the algorithm compares the constraint violations of the learning datum $\langle f, m \rangle$ with the self-generated pair $\langle f, m' \rangle$.

• Step 4: Adjustment

- \circ All constraints that favor $\langle f,m\rangle$ over $\langle f',m\rangle$ are increased by the plasticity value.
- \circ All constraints that favor $\langle f',m\rangle$ over $\langle f,m\rangle$ are decreased by the plasticity value.
- \circ All constraints that favor $\langle f,m\rangle$ over $\langle f,m'\rangle$ are increased by the plasticity value.
- \circ All constraints that favor $\langle f,m'\rangle$ over $\langle f,m\rangle$ are decreased by the plasticity value.
- Final state Steps 1 4 are repeated until the constraint values stabilize.

The E/I-model of language evolution

(cf. Kirby and Hurford 2001)

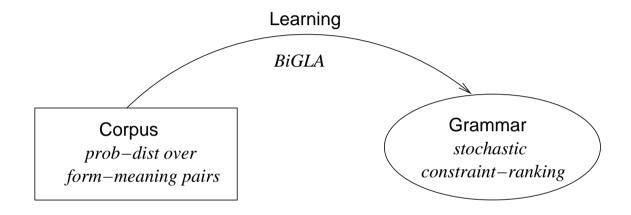
Corpus prob-dist over form-meaning pairs

$$\forall m: \quad \sum_f p(f,m) = \mathrm{const}$$

16

The E/I-model of language evolution

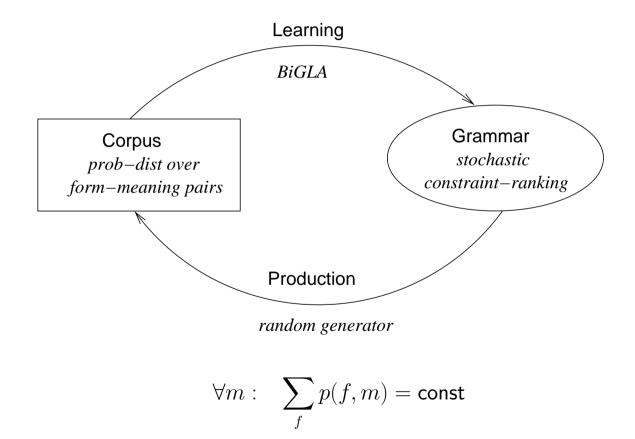
(cf. Kirby and Hurford 2001)



$$\forall m: \quad \sum_f p(f,m) = \mathrm{const}$$

The E/I-model of language evolution

(cf. Kirby and Hurford 2001)



First

4.3. An experiment

- \bullet two meanings, a and b
- \bullet two forms, 1 and 2
- each form-meaning pair is admitted by GEN
- each form meaning pair is penalized by one constraint
- form 2 is more complex than form 2
- covered by constraint *2 ("Avoid 2!")

	*a1	*a2	*b1	*b2	*2
a1	*				
a2		*			*
<i>b</i> 1			*		
<i>b</i> 2				*	*

- fix frequencies of the four candidates
- run BiGLA on this "training corpus"
- use the acquired grammar to generate sample of the acquired language
- keep the total frequencies of the two meanings constant

http://www.ling.uni-potsdam.de/~jaeger/evolOT

Emergence of Iconicity

 $\begin{aligned} \textit{freq}(a) &> \textit{freq}(b) \\ & \leadsto \\ p(1|a) \gg p(2|a) \\ p(2|b) \gg p(1|b) \end{aligned}$

5. Differential Case Marking

- three basic syntactic functions of NPs:
 - \circ subject of intransitive verb (S)
 - \circ subject of transitive verb (A)
 - \circ direct object of transitive verb (O)
- case of S: zero (= nominative/absolutive)
- case of A: zero or ergative
- case O: zero or accusative
- choice zero vs erg and zero vs acc language specific
- Differential Case Marking (DCM): case is correlated with animacy, definiteness, specificity, person etc.

• universal tendencies (cf. Aissen 2000)

$$\begin{split} p(\text{erg}|\text{A,-anim}) &> p(\text{erg}|\text{A,+anim}) \\ p(\text{acc}|\text{O,+anim}) &> p(\text{acc}|\text{O,-anim}) \end{split}$$

- similar correlations for definiteness etc.
- functional motivation (cf. Zeevat and Jäger 2002)
- rare forms are more likely to be case marked than frequent ones

 $\begin{aligned} &\textit{freq}(A, +anim) > \textit{freq}(A, -anim) \\ &\textit{freq}(O, -anim) > \textit{freq}(O, +anim) \end{aligned}$

DCM and OT

- Aissen proposes the following constraint system to deal with DCM:
- 1. *(su/a/Z): Case mark animate subjects!
- 2. *(su/i/Z): Case mark inanimate subjects!
- 3. *(ob/a/Z): Case mark animate objects!
- 4. *(ob/i/Z): Case mark inanimate objects!
- 5. *STRUC: Avoid case marking!
- universal case marking patterns correspond to universal constraint subhierarchies.:

$$(su/i/z) \gg (su/a/z) = (ob/a/z) \gg (ob/i/z)$$

Functional OT

- Hypothesis: Aissen's sub-hierarchies are not innate, but result of functional pressure
- basic intuition: animate subjects are more frequent than inanimate ones → animate subjects have stronger impact on learning

More experiments

- Suppose: training corpus with
 - \circ only simple transitive clauses
 - relative frequencies of clause types wrt. animacy of subject and object are as in naturally occuring conversations
 - exactly 50 % of all NPs are (faithfully) case marked (ergative or accusative)
 - \circ no statistic correlation between animacy and case marking
- clause type frequencies in SAMTAL (corpus of spoken Swedisch):

	subj/anim	subj/inanim
obj/anim	300	17
obj/inanim	2648	186

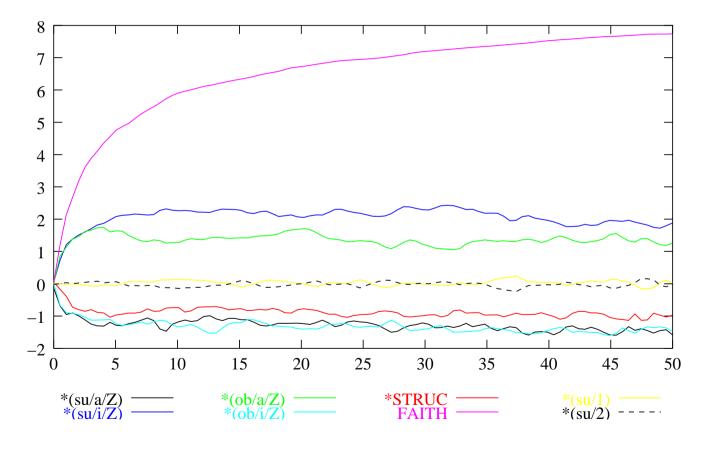
- additional constraints
- 6. FAITH: Interpret ergative as subject and accusative as object!
- 7. *(su/2): NP1 is subject and NP2 object.
- 8. *(su/1): NP2 is subject and NP1 object.

• relative frequencies in training corpus (in %)

	E-E	E-A	E-Z	A-E	A-A	A-Z	Z-E	Z-A	Z-Z
su/a-ob/a	0.0	1.19	1.19	0.0	0.0	0.0	0.0	1.19	1.19
su/a-ob/i	0.0	10.50	10.50	0.0	0.0	0.0	0.0	10.50	10.50
su/i-ob/a	0.0	0.07	0.07	0.0	0.0	0.0	0.0	0.07	0.07
su/i-ob/i	0.0	0.74	0.74	0.0	0.0	0.0	0.0	0.74	0.74
ob/a-su/a	0.0	0.0	0.0	1.19	0.0	1.19	1.19	0.0	1.19
ob/a-su/i	0.0	0.0	0.0	0.07	0.0	0.07	0.07	0.0	0.07
ob/i-su/a	0.0	0.0	0.0	10.50	0.0	10.50	10.50	0.0	10.50
ob/i-su/i	0.0	0.0	0.0	0.74	0.0	0.74	0.74	0.0	0.74

- E ... ergative
- A ... accusative
- Z ... zero marking
- a ... animate
- i ... inanimate
- X-Y \ldots NP1 has features X and NP2 features Y

The learning process



• acquired grammar:

• Emergence of Aissen's sub-hierarchies

$$*(su/i/Z) \gg *(su/a/Z)$$

 $*(ob/a/Z) \gg *(ob/i/Z)$

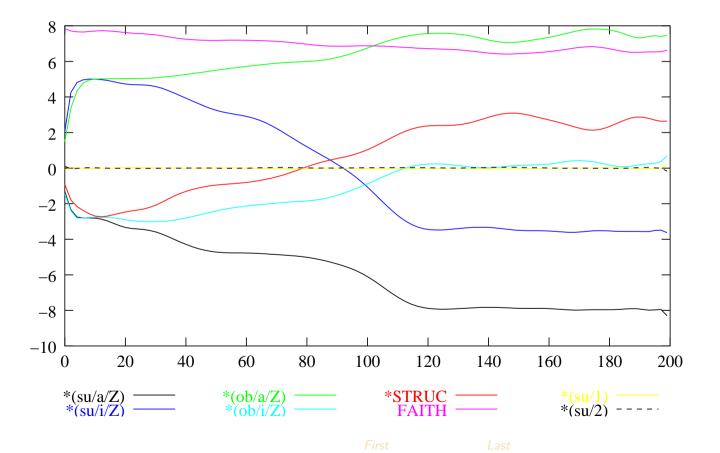
- can be used to generate new sample corpus
- probality distribution over meanings from SAMTAL are maintained

	E-E	E-A	E-Z	A-E	A-A	A-Z	Z-E	Z-A	Z-Z
su/a-ob/a	0.0	1.84	0.19	0.0	0.0	0.0	0.0	2.23	0.40
su/a-ob/i	0.0	11.09	7.35	0.0	0.0	0.0	0.0	8.52	15.04
su/i-ob/a	0.0	0.21	0.05	0.0	0.0	0.0	0.0	0.02	0.0
su/i-ob/i	0.0	1.22	1.47	0.0	0.0	0.0	0.0	0.11	0.16
ob/a-su/a	0.0	0.0	0.0	2.0	0.0	2.12	0.25	0.0	0.39
ob/a-su/i	0.0	0.0	0.0	0.18	0.0	0.3	0.07	0.0	0.0
ob/i-su/a	0.0	0.0	0.0	11.15	0.0	8.40	7.69	0.0	14.76
ob/i-su/i	0.0	0.0	0.0	1.17	0.0	0.09	1.47	0.0	0.23

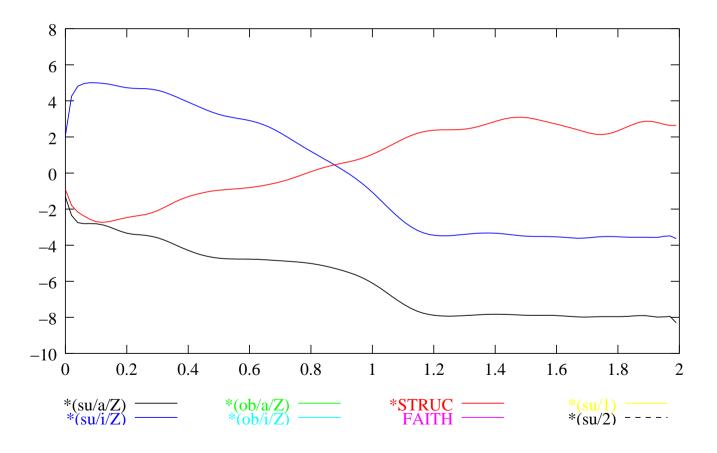
6. The next generation

- can be repeated:
 - \circ resulting sample corpus is used as training corpus for next run of <code>BiGLA</code>
 - \circ acquired grammar is used to generate next sample corpus
 - \circ relative frequencies of inputs (meanings) are kept constant
 - \circ conditional probabilities p(form \mid meaning) may change from generation to generation

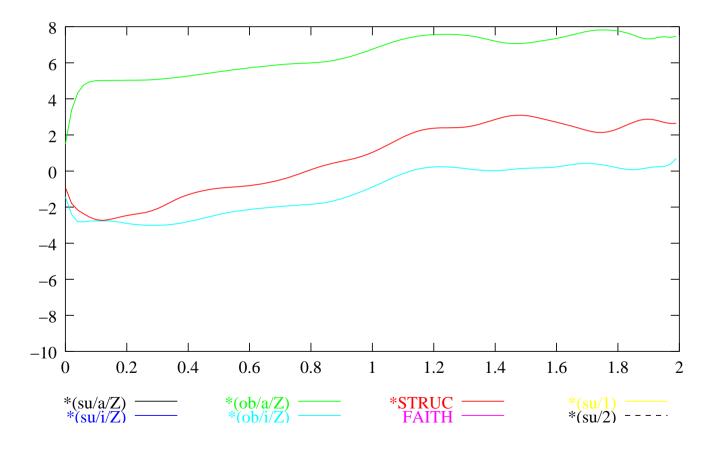
- starting with corpus given above; 200 generations
- long phase of split ergativity, followed by transition toward accusative system with DOM



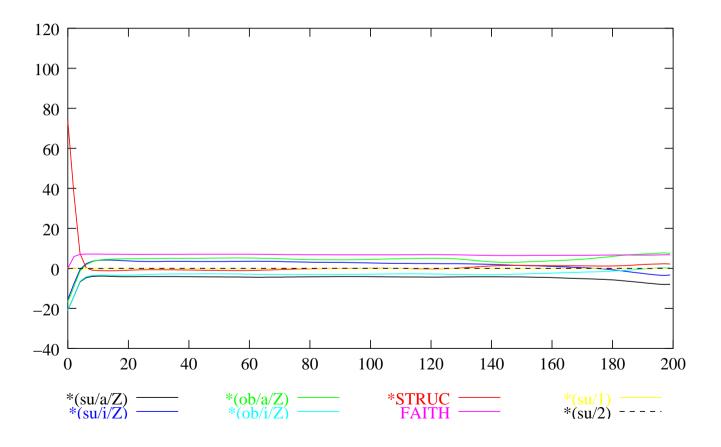
• first subhierarchy $(su/i/Z) \gg (su/a/Z)$



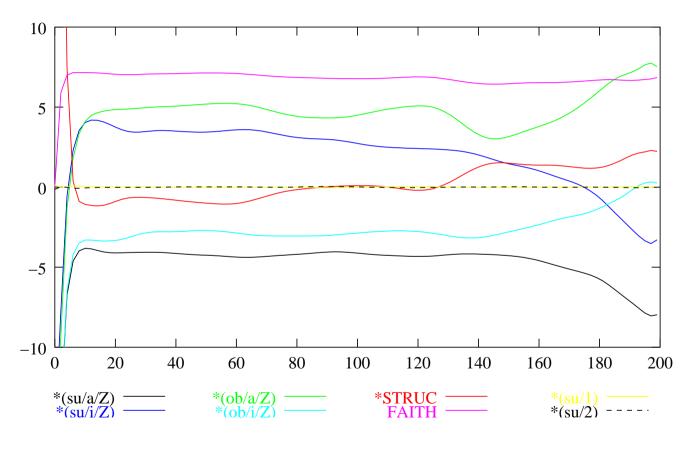
• second subhierarchy $(ob/a/Z) \gg (ob/i/Z)$



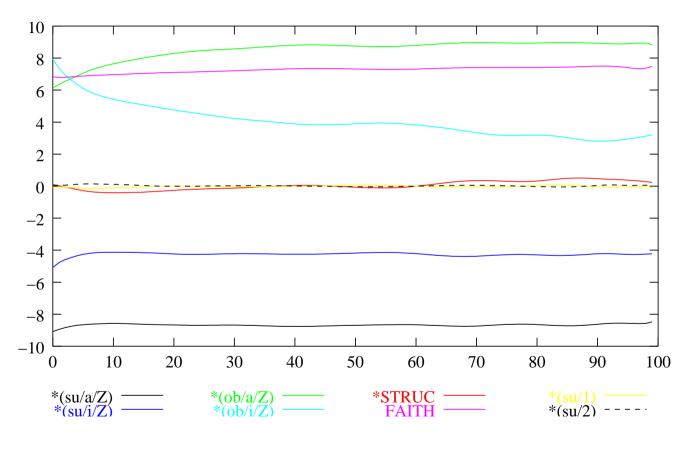
• Spread: initial corpus has no case morphemes (but GEN admits them)



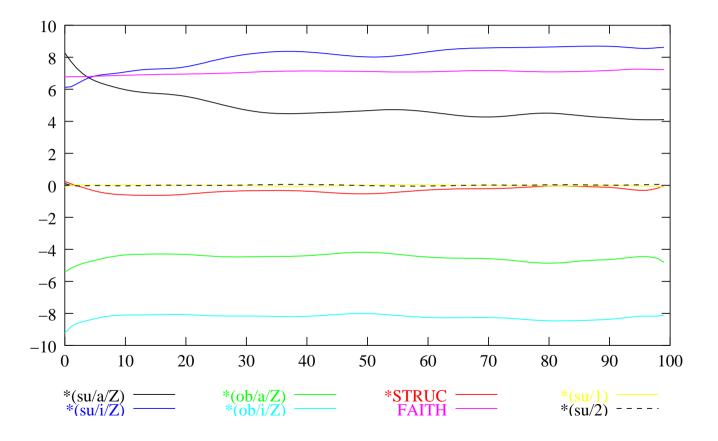
- Zooming in:
- similar diachronic tendencies as above



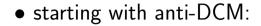
- Pure systems are diachronically stable
- starting with nominative-accusative

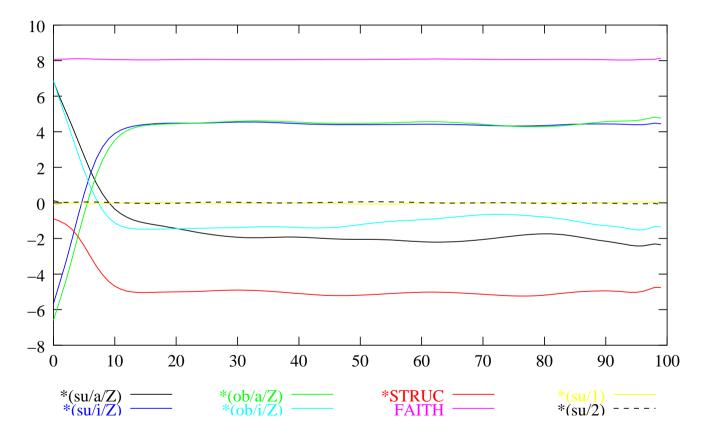


• starting with absolutive-ergative

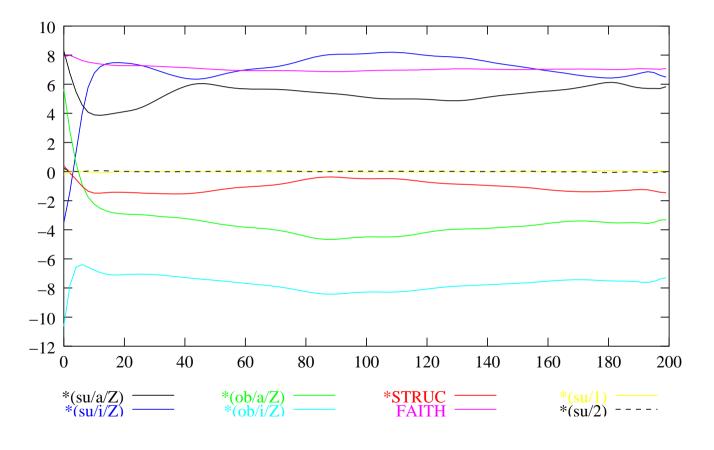


• Violations of the Aissen-universals are possible, but extremely unstable





• starting with obligatory case marking of animate NPs (and no case marking on inanimate ones):



7. Conclusion

- Bidirectional GLA is sensitive to probabilities of meanings in training corpus
- establishes connection between statistical patterns of language use and competence grammar
- imperfect learning: acquired language might differ slightly from training language
- diachronic drift
- stable vs. unstable grammars
- can be applied to typology and historical linguistics

Contents

1	Overview	2					
2	2 Stochastic Optimality Theory (StOT)						
3 The Gradual Learning Algorithm (GLA)							
4	Bidirectionality 4.1 Bidirectional evaluation 4.2 Bidirectional learning 4.3 An experiment	12					
5	Differential Case Marking	20					
6	The next generation	30					
7	Conclusion	40					