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1. Overview

• Stochastic Optimality Theory

• unidirectional learning

• bidirectional learning and iconicity

• Differential Case Marking
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2. Stochastic Optimality Theory (StOT)

• probabilistic grammar

• assigns probability distribution over possible meanings for a given form
(and vice versa)

• Two modifications of standard OT (cf. Boersma 1998)

1. constraint ranking on a continuous scale distance between
constraints matters

2. stochastic evaluation actual ordering of constraints varies, with
probabilities depending on continuous ranking
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• Absolute size of the distance between conflicting constraints deter-
mines their interaction:

◦ difference between mean values > 10 units:

C1 dominates C2 categorically

p(C2 > C1) < 10−10
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• difference ≈ 2:

preference for obeying C1, but obeying C2 is still grammatical

p(C2 > C1) ≈ 30%
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• Both constraints are roughly equally ranked:

free variation

p(C2 > C1) = 50%
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3. The Gradual Learning Algorithm
(GLA)

• Function from (analyzed) corpus to StOT-Grammar

• error-driven

• outputs grammar that reproduces statistical patterns in the training
corpus
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meaning
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Six stages:

• Initial state Constraints begin with a ranking that is hypothesized
by the linguist (and plays no significant role for learning result)

• Step 1: A datum Algorithm is presented with a learning datum—a
fully specified input-output pair 〈i, o〉
• Step 2: Generation

◦ For each constraint, a noise value is drawn from the normal distri-
bution and added to its current ranking. This yields the selection
point.

◦ Constraints are ranked by descending order of the selection points.
This yields a linear order of the constraints.

◦ Based on this constraint ranking, the grammar generates an out-
put o′ for the input i.



10 •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• Step 3: Comparison If o = o′, nothing happens. Otherwise, the
algorithm compares the constraint violations of the learning datum
〈i, o〉 with the self-generated pair 〈i, o′〉.
• Step 5: Adjustment

◦ All constraints that favor 〈i, o〉 over 〈i, o′〉 are increased by some
small predefined numerical amount (“plasticity”).

◦ All constraints that favor 〈i, o′〉 over 〈i, o〉 are decreased by the
plasticity value.

• Final state Steps 1 – 4 are repeated until the constraint values sta-
bilize.
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4. Bidirectionality

4.1. Bidirectional evaluation

• OT-grammar defines ranking of possible forms for a given meaning
and vice versa

• StOT-grammar defines probability distribution over OT-grammars

• licit meaning-form association for a given grammar must be optimal
for both speaker and hearer (cf. Blutner 2000, Zeevat 2000, Beaver
2000)

Definition 1

• A form-meaning pair 〈f,m〉 is hearer-optimal iff 〈f,m〉 ∈ GEN and
there is no alternative meaning m′ such that 〈f,m′〉 ∈ GEN and
〈f,m′〉 < 〈f,m〉.
• A form-meaning pair 〈f,m〉 is optimal iff either it is hearer-optimal

and there is no alternative form f ′ such that 〈f ′,m〉 is hearer-optimal
and 〈f ′,m〉 < 〈f,m〉, or there is no hearer-optimal 〈f ′,m〉, and there
is no 〈f ′,m〉 ∈ GEN such that 〈f ′,m〉 < 〈f,m〉.
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4.2. Bidirectional learning

• unidirectional learning (Tesar and Smolensky, Boersma):

◦ learning triggered by insight: Oops, I hadn’t said it like this!

◦ “luxury problem” (Zeevat, p.c.)

• more urgent trigger for learning:

◦ learning trigger: I don’t understand you guys!

◦ requires comparison of observed with hypothesized interpretation

• together: bidirectional learning
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• Bidirectional GLA (BiGLA):

◦ Evaluation according to bidirectional optimization as above

◦ Both speaker and hearer learn

◦ Speaker compares different forms

◦ Hearer compares different meanings
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• Initial state All constraint values are set to 0.

• Step 1: A datum The algorithm is presented with a learning
datum—a fully specified input-output pair 〈f,m〉.
• Step 2: Generation

◦ For each constraint, a noise value is drawn from a normal distri-
bution and added to its current ranking. This yields the selection
point.

◦ Constraints are ranked by descending order of the selection points.
This yields a linear order of the constraints.

◦ Based on this constraint ranking, the grammar generates two pairs
〈f ′,m〉 and 〈f,m′〉 that are both bidirectionally optimal.
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• Step 3.1: Comparison of forms If f = f ′, nothing happens.
Otherwise, the algorithm compares the constraint violations of the
learning datum 〈f,m〉 with the self-generated pair 〈f ′,m〉.
• Step 3.2: Comparison of meanings If m = m′, nothing happens.

Otherwise, the algorithm compares the constraint violations of the
learning datum 〈f,m〉 with the self-generated pair 〈f,m′〉.
• Step 4: Adjustment

◦ All constraints that favor 〈f,m〉 over 〈f ′,m〉 are increased by the
plasticity value.

◦ All constraints that favor 〈f ′,m〉 over 〈f,m〉 are decreased by
the plasticity value.

◦ All constraints that favor 〈f,m〉 over 〈f,m′〉 are increased by the
plasticity value.

◦ All constraints that favor 〈f,m′〉 over 〈f,m〉 are decreased by
the plasticity value.

• Final state Steps 1 – 4 are repeated until the constraint values sta-
bilize.
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The E/I-model of language evolution

(cf. Kirby and Hurford 2001)

form−meaning pairs

Corpus
prob−dist over

∀m :
∑
f

p(f,m) = const
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The E/I-model of language evolution

(cf. Kirby and Hurford 2001)

form−meaning pairs constraint−ranking

Grammar
stochastic

Corpus
prob−dist over

Learning

BiGLA

Production

random generator

∀m :
∑
f

p(f,m) = const
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4.3. An experiment

• two meanings, a and b

• two forms, 1 and 2

• each form-meaning pair is admitted by GEN

• each form meaning pair is penalized by one constraint

• form 2 is more complex than form 2

• covered by constraint *2 (“Avoid 2!”)

*a1 *a2 *b1 *b2 *2

a1 ∗
a2 ∗ ∗
b1 ∗
b2 ∗ ∗
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• fix frequencies of the four candidates

• run BiGLA on this “training corpus”

• use the acquired grammar to generate sample of the acquired language

• keep the total frequencies of the two meanings constant

http://www.ling.uni-potsdam.de/~jaeger/evolOT

Emergence of Iconicity

freq(a) > freq(b)

;

p(1|a)� p(2|a)

p(2|b)� p(1|b)
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5. Differential Case Marking

• three basic syntactic functions of NPs:

◦ subject of intransitive verb (S)

◦ subject of transitive verb (A)

◦ direct object of transitive verb (O)

• case of S: zero (= nominative/absolutive)

• case of A: zero or ergative

• case O: zero or accusative

• choice zero vs erg and zero vs acc language specific

• Differential Case Marking (DCM): case is correlated with animacy,
definiteness, specificity, person etc.
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• universal tendencies (cf. Aissen 2000)

p(erg|A,-anim) > p(erg|A,+anim)

p(acc|O,+anim) > p(acc|O,-anim)

• similar correlations for definiteness etc.

• functional motivation (cf. Zeevat and Jäger 2002)

• rare forms are more likely to be case marked than frequent ones

freq(A,+anim) > freq(A,−anim)

freq(O,−anim) > freq(O,+anim)
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DCM and OT

• Aissen proposes the following constraint system to deal with DCM:

1. *(su/a/Z): Case mark animate subjects!

2. *(su/i/Z): Case mark inanimate subjects!

3. *(ob/a/Z): Case mark animate objects!

4. *(ob/i/Z): Case mark inanimate objects!

5. *STRUC: Avoid case marking!

• universal case marking patterns correspond to universal constraint sub-
hierarchies.:

*(su/i/z) � *(su/a/z)
*(ob/a/z) � *(ob/i/z)
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Functional OT

• Hypothesis: Aissen’s sub-hierarchies are not innate, but result of func-
tional pressure

• basic intuition: animate subjects are more frequent than inanimate
ones ; animate subjects have stronger impact on learning



24 •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

More experiments

• Suppose: training corpus with

◦ only simple transitive clauses

◦ relative frequencies of clause types wrt. animacy of subject and
object are as in naturally occuring conversations

◦ exactly 50 % of all NPs are (faithfully) case marked (ergative or
accusative)

◦ no statistic correlation between animacy and case marking

• clause type frequencies in SAMTAL (corpus of spoken Swedisch):

subj/anim subj/inanim

obj/anim 300 17
obj/inanim 2648 186
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• additional constraints

6. FAITH: Interpret ergative as subject and accusative as object!

7. *(su/2): NP1 is subject and NP2 object.

8. *(su/1): NP2 is subject and NP1 object.
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• relative frequencies in training corpus (in %)

E-E E-A E-Z A-E A-A A-Z Z-E Z-A Z-Z
su/a-ob/a 0.0 1.19 1.19 0.0 0.0 0.0 0.0 1.19 1.19
su/a-ob/i 0.0 10.50 10.50 0.0 0.0 0.0 0.0 10.50 10.50
su/i-ob/a 0.0 0.07 0.07 0.0 0.0 0.0 0.0 0.07 0.07
su/i-ob/i 0.0 0.74 0.74 0.0 0.0 0.0 0.0 0.74 0.74
ob/a-su/a 0.0 0.0 0.0 1.19 0.0 1.19 1.19 0.0 1.19
ob/a-su/i 0.0 0.0 0.0 0.07 0.0 0.07 0.07 0.0 0.07
ob/i-su/a 0.0 0.0 0.0 10.50 0.0 10.50 10.50 0.0 10.50
ob/i-su/i 0.0 0.0 0.0 0.74 0.0 0.74 0.74 0.0 0.74

E ... ergative
A ... accusative
Z ... zero marking
a ... animate
i ... inanimate
X-Y ... NP1 has features X and NP2 features Y
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The learning process
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• acquired grammar:

*(su/a/Z): −1.58
*(su/i/Z): 1.88
*(ob/a/Z): 1.26
*(ob/i/Z): −1.47
*STRUC: −0.98
FAITH: 7.74
*(su/1): 0.03
*(su/2): −0.03

• Emergence of Aissen’s sub-hierarchies

*(su/i/Z) � *(su/a/Z)
*(ob/a/Z) � *(ob/i/Z)
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• can be used to generate new sample corpus

• probality distribution over meanings from SAMTAL are maintained

E-E E-A E-Z A-E A-A A-Z Z-E Z-A Z-Z
su/a-ob/a 0.0 1.84 0.19 0.0 0.0 0.0 0.0 2.23 0.40
su/a-ob/i 0.0 11.09 7.35 0.0 0.0 0.0 0.0 8.52 15.04
su/i-ob/a 0.0 0.21 0.05 0.0 0.0 0.0 0.0 0.02 0.0
su/i-ob/i 0.0 1.22 1.47 0.0 0.0 0.0 0.0 0.11 0.16
ob/a-su/a 0.0 0.0 0.0 2.0 0.0 2.12 0.25 0.0 0.39
ob/a-su/i 0.0 0.0 0.0 0.18 0.0 0.3 0.07 0.0 0.0
ob/i-su/a 0.0 0.0 0.0 11.15 0.0 8.40 7.69 0.0 14.76
ob/i-su/i 0.0 0.0 0.0 1.17 0.0 0.09 1.47 0.0 0.23
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6. The next generation

• can be repeated:

◦ resulting sample corpus is used as training corpus for next run of
BiGLA

◦ acquired grammar is used to generate next sample corpus

◦ relative frequencies of inputs (meanings) are kept constant

◦ conditional probabilities p(form | meaning) may change from gen-
eration to generation



31 •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

• starting with corpus given above; 200 generations

• long phase of split ergativity, followed by transition toward accusative
system with DOM
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• first subhierarchy *(su/i/Z) � *(su/a/Z)
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• second subhierarchy *(ob/a/Z) � *(ob/i/Z)
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• Spread: initial corpus has no case morphemes (but GEN admits them)
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• Zooming in:

• similar diachronic tendencies as above
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• Pure systems are diachronically stable

• starting with nominative-accusative
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• starting with absolutive-ergative
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• Violations of the Aissen-universals are possible, but extremely unstable

• starting with anti-DCM:
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• starting with obligatory case marking of animate NPs (and no case
marking on inanimate ones):
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7. Conclusion

• Bidirectional GLA is sensitive to probabilities of meanings in training
corpus

• establishes connection between statistical patterns of language use
and competence grammar

• imperfect learning: acquired language might differ slightly from train-
ing language

• diachronic drift

• stable vs. unstable grammars

• can be applied to typology and historical linguistics
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