Evolutionary OT and the Emergence of Possession Splits

Workshop "Logic, Neural Networks, and Optimality Theory" **7AS** Berlin July 24, 2003

Gerhard Jäger University of Potsdam www.ling.uni-potsdam.de/~jaeger/

Anette Rosenbach University of Düsseldorf jaeger@ling.uni-potsdam.de ar@phil-fak.uni-duesseldorf.de

Overview

- 1. The phenomenon of possession splits
- 2. Harmonic alignment and Stochastic OT
- 3. The Iterated Learning Model of Language Evolution
- 4. The statistical patterns of possessive constructions in spoken English
- 5. Simulating the emergence of harmonic alignment via iterated learning
- 6. Conclusion

2.1. Aissen and Bresnan: Harmonic Alignment

• structural scale (nominal scale):

$$SPEC > NON-SPEC$$

(basically: prenominal position is more prominent than post-nominal position

- substantive markedness scale
 - animacy hierarchy

human > animate > inanimate

o definiteness scale

pronoun > proper N > def > indef

- harmonic alignment of structural/nominal and substantive scales
- leads to two universal sub-hierarchies

```
*SPEC/inanimate >> *SPEC/animate >> *SPEC/human
```

- *non-SPEC/inanimate ≫ *non-SPEC/animate ≫ *non-SPEC/human
 - ignoring category "human" for simplicity gives

```
*SPEC/inanimate >> *SPEC/animate
```

*non-SPEC/animate ≫ *non-SPEC/inanimate

- six possible rankings (respecting the universal sub-hierarchies above)
- 1. *Spec/inanim \gg *Spec/anim \gg *NSpec/anim \gg *NSpec/inanim
- 2. *Spec/inanim \gg *NSpec/anim \gg *Spec/anim \gg *NSpec/inanim
- 3. *Spec/inanim \gg *NSpec/anim \gg *NSpec/inanim \gg *Spec/anim
- 4. *NSpec/anim >> *Spec/inanim >> *Spec/anim >> *NSpec/inanim
 5. *NSpec/anim >> *Spec/inanim >> *NSpec/inanim >> *Spec/anim
- 6. *NSpec/anim ≫ *NSpec/inanim≫ *Spec/inanim ≫ *Spec/anim

- predicts three language types
 - A. all possessors are realized postnominally (ranking 1)
 - B. animate possessors are prenominal, inanimates one postnominal (ranking 2–5)
 - C. all possessors are realized prenominally (ranking 6)
- implicative universal:

 If possessors of a substantive category C are realized prenominally, then all possessors of a more prominent category are also realized prenominally.

2.2. Stochastic Optimality Theory (StOT)

- probabilistic grammar
- assigns probability distribution over possible meanings for a given form (and vice versa)
- Two modifications of standard OT (cf. Boersma 1998)
 - 1. **constraint ranking on a continuous scale** distance between constraints matters
 - 2. **stochastic evaluation** actual ordering of constraints varies, with probabilities depending on continuous ranking

- Absolute size of the distance between conflicting constraints determines their interaction:
 - \circ difference between mean values > 10 units:

 C_1 dominates C_2 categorically

$$p(C_2 > C_1) < 10^{-10}$$

• difference ≈ 2 :

preference for obeying C_1 , but obeying C_2 is still grammatical

$$p(C_2 > C_1) \approx 30\%$$

• Both constraints are roughly equally ranked:

free variation

$$p(C_2 > C_1) = 50\%$$

2.3. Stochastic reinterpretation of harmonic alignment

- "universal sub-hierarchies" do not exist in StOT
- every constraint can outrank any other constraint with a positive probability
- stochastic interpretation of sub-hierarchies:
 - $C1 \gg C2$ universally means:
 - In each language, the average rank of C1 is higher than the avererage rank of C2.
 - \circ In other words: In all languages, C1 \gg C2 is more likely than C2 \gg C1
- harmonic alignment for possessor realization boils down to down to:

$$P(\mathsf{Spec}|\mathsf{human}) > P(\mathsf{Spec}|\mathsf{anim}) > P(\mathsf{Spec}|\mathsf{inanim})$$

$$P(\mathsf{Spec}|\mathsf{pron}) > P(\mathsf{Spec}|\mathsf{defNP}) > P(\mathsf{Spec}|\mathsf{indefNP})$$

2.4. StOT and iterated learning

- similarity between language and biological systems
 - grammar is self-replicating system (like genome)
 - replication (via language acquisition and language use) is subject to random variation
 - o differential replicative success of competing variants
 - determined by differential adaptation to environment (i.e. learning and usage)

3.1. Iterated Learning

3.2. Filtered learning

• Kirby:

- only successfully parsed observations have an effect on learning
- parser sometimes fails
- o input for learning algorithm thus not raw performance data
- parser acts as a filter
- \circ high parsing complexity lowers \approx low impact on learning (and vice versa)

4.2. Filters

- 1. parsing complexity (in the sense of Hawkins' EIC metric)
 - favors uniform directionality of heads
 - VO-languages: prenominal poss. more complex than postnominal
 - OV-languages: prenominal poss. less complex than postnominal
- 2. semantic processing complexity
 - if possessive NP is definite:
 - o possessor is referential anchor
 - referent of possessor must be processed before referent of possessive phrase as a whole is processed
 - o prenominal position of possessor facilitates processing
 - does not apply to indefinite possessive NPs
 - cross-linguistically not parameterized

5.1. Learning bias

VO-language pattern

definite head

pld ... pld ...

- constraint inventory not sensitive to definiteness of the head
- however, statistical correlation

definite head \approx animate/definite possessor indefinite head \approx inanimate/indefinite possessor

learning bias towards possession split

5.2. Bidirectional Gradual Learning Algorithm

- Gradual Learning Algorithm (Boersma):
 - o gradually adjusts constraint rankings on basis of observations
 - converges towards a stochastic ranking that matches the probability distribution of the observed data
- Bidirectional Gradual Learning Algorithm (BiGLA):
 - o variant of GLA
 - o simultaneous production- and interpretation-oriented learning
 - converges towards stochastic constraint ranking that approximates the empirical conditional probability distribution P(form|meaning) and P(meaning|form)

5.3. Asymmetric Bidirectional Evaluation

- variant of Bidirectional OT
- Intuition: speaker tries to maximize his chance of getting his message across (first priority) while minimizing the constraint violation profile (second priority)
- related proposals by Boersma, Beaver, Vogel, ...

Definition 1 (AB-optimality)

- A form-meaning pair $\langle f, m \rangle$ is hearer-optimal iff $\langle f, m \rangle \in \mathbf{GEN}$ and there is no alternative meaning m' such that $\langle f, m' \rangle \in \mathbf{GEN}$ and $\langle f, m' \rangle < \langle f, m \rangle$.
- A form-meaning pair $\langle f, m \rangle$ is optimal iff either it is hearer-optimal and there is no alternative form f' such that $\langle f', m \rangle$ is hearer-optimal and $\langle f', m \rangle < \langle f, m \rangle$, or there is no hearer-optimal $\langle f', m \rangle$, and there is no $\langle f', m \rangle \in \mathbf{GEN}$ such that $\langle f', m \rangle < \langle f, m \rangle$.

5.4. The experiment

• Generator:

- \circ eight meanings (head: +/- definite, possessor: +/-definite, +/- animate)
- three forms (possessor can be prenominal and postnominal, in the latter case the article can be definite or indefinite)
- definiteness of head must be compatible with overt article (if present)

Constraints:

- o eight alignment constraints
- two interpretive constraints determining the definiteness of the head in the absence of an overt determiner

• Filter:

- o prenominal possessor: 2% are filtered out
- o definite head with postnominal possessor: 3% are filtered out

- Frequencies in 0th generation:
 - o relative frequencies of meanings as found in ICE corpus
 - o pre- and postnominal genitives equally probable

head	possessor	possessor	prenominal	postnomina	l possessor
definite?	definite?	animate?	possessor	the	а
yes	yes	yes	1739	1739	_
yes	yes	no	210	210	_
yes	no	yes	47	47	_
yes	no	no	230	230	_
no	yes	yes	119	_	119
no	yes	no	248	_	248
no	no	yes	90	_	90
no	no	no	546	_	546

• Frequencies in 100th generation:

head	possessor	possessor	prenominal	postnomina	l possessor
definite?	definite?	animate?	possessor	the	а
yes	yes	yes	1649	1829	_
yes	yes	no	277	143	_
yes	no	yes	46	48	_
yes	no	no	327	133	_
no	yes	yes	0	_	238
no	yes	no	0	_	496
no	no	yes	0	_	180
no	no	no	0	_	1092

• Frequencies in 200th generation:

head	possessor	possessor	prenominal	postnomina	l possessor
definite?	definite?	animate?	possessor	the	а
yes	yes	yes	2604	874	_
yes	yes	no	373	47	_
yes	no	yes	53	41	_
yes	no	no	368	92	_
no	yes	yes	0	_	238
no	yes	no	0	_	496
no	no	yes	0	_	180
no	no	no	2	_	1090

• Frequencies in 300th generation:

head	possessor	possessor	prenominal	postnomina	l possessor
definite?	definite?	animate?	possessor	the	а
yes	yes	yes	3448	30	_
yes	yes	no	356	64	_
yes	no	yes	69	25	_
yes	no	no	121	339	_
no	yes	yes	0	_	238
no	yes	no	0	_	496
no	no	no	0	_	180
no	no	no	0	_	1092

Development of animacy-related constraints

Development of definitess-related constraints

6. Conclusion

- possession splits are evolutionary stable
- iterated learning defines dynamics over space of learnable grammars (UG)
- only attainable grammars are expected to occur
- iterated learning makes predictions about which grammars are attainable and which aren't
- predictions about typology and language universals

Universal Grammar

Universal Grammar

attainable languages

a possible trajectory

