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Introduction

» large portion of current work in the field consists of model fitting
» common models:

» continuous time Markov chain

> mixed-effects regression

> birth-death tree distributions with relaxed molecular clock

> pair-Hidden Markov Models (tacitly underly many alignment studies)
>

» comparatively little attention to model criticism and model checking in
our field

» We can learn something from other fields, such as psychology!



A case study: Typological word order correlations

Distribution of verb-object/object verb vs. noun-relative clause/relative
clause-noun
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VO vs. NRc
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this study:
» word-order data from WALS
» 1,060 languages
» 94 families + 81 isolates = 175
lineages




Steps of (Bayesian) model validation

» exploratory data exploration — descriptive statistics
specification of (a) generative probablistic model(s)
prior predictive simulation
model fitting
posterior predictive simulation

» model comparison
(cf., eg., Gelman et al. 2014)
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Descriptive statistics

» each language can be represented as a binary vector over 4 variables
(for the four combinations of OV/VO and NRc/RcN)

» the total variance is the sum of the variance of those for binary
variables

» the mean lineage-wise variance is the average total variance per
lineage

» the between-family variance is the total variance between the
centroids for each family



Descriptive statistics
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Defining models
» feature values evolve according to a continuous time Markov chain
(CTMC)
» evolution along a phylogeny

» phylogenetic tree is only partially known - represented here as
posterior distribution of Bayesian phylogenetic inference from lexical
data (from ASJP)



Phylogenies

» 1,000 trees from a MrBayes run
for each family

» degenerate 1-node tree for
isolates
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CTMC

Independent model Dependent model

?

(following Pagel and Meade 2006; Dunn et al. 2011)



CTMC

Markov process Phylogeny
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Lineage dependeny
two types of models

universal lineage specific
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Prior predictive check
» all models use the same prior for rates:

rate; ~ LogNormal(0, 1)

» universal models: one set of rates across lineages

» lineage-dependent models: different set of rates for each lineage
» dependent features model: 8 rates per set

» independent features model: 4 rates per set



universal rates, dependent features
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lineage-dependent rates, dependent features

total variance mean lineage-wise variance variance between lineage centroids
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universal rates, independent features

total variance

mean lineage-wise variance variance between lineage centroids




lineage-dependent rates, independent features

total variance mean lineage-wise variance variance between lineage centroids
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Run MCMC to infer posterior distribution

» here: done with Johannes Wahle’s Julia
package Julia_Tree

» currently under submission

» If you want to give it a try yourself, get in touch
with Johannes




Posterior predictive check



PPC: universal rates, dependent features

total variance

mean lineage-wise variance

variance between lineage centroids
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PPC: lineage-dependent rates, dependent features

total variance mean lineage-wise variance variance between lineage centroids
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PPC: universal rates, independent features
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PPC: lineage-dependent rates, independent features

total variance mean lineage-wise variance variance between lineage centroids
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Model comparison

Bayes factor

(determined via bridge sampling)

rates features BF to best model

universal  dependent 0.0

universal independent -19.4
lineage-dependent  dependent -24.3
lineage-dependent independent -31.7

Strong evidence for model with universal rates and dependent features.



Leave-one-out cross-validation
» computationally too expensive to carry out

» can be approximated via *Pareto-smoothe leave-one-out
cross-validation* (Aki Vehtari, Andrew Gelman, and Jonah Gabry,
2016, “Efficient implementation of leave-one-out cross-validation and
WAIC for evaluating fitted Bayesian models”, implemented in
R-package /oo)

» approximation depends on conditional independence of observations

» can be interpreted in two ways here

» Each language is an observation. To achieve conditional
indendence, we have to sample from posterior distribution of
ancestral states. Can be done via simmap.

» Each lineage (family or isolate) is an observation. Conditional
independence for mcmc posterior sample.



LOO over languages

rates features A expected log-pointwise density

universal dependent 102.4
universal independent 0.0
lineage-dependent  dependent 202.8

lineage-dependent independent 217 1



LOO over lineages

rates features A expected log-pointwise density

universal dependent 0.0
universal independent 54.7
lineage-dependent dependent 75.5

lineage-dependent independent 90.0
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Reflections

» prior and posterior descriptive checks, as well as model comparison
clearly favors universal rates over lineage-dependent ones

» to predict the feature values of a language from all other languages
(including those in the same family), the independent model is the best

» to predict the distribution in an unknown family from the behavior of
known families, dependent features do a better job.

» the latter question is of greater linguistic interest, so we can cautiously
conclude that there is a correlation between verb-object order and
noun-relative clause order

Gerhard Jéager - MaEiQCL |27
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Reflections

» All these techniques assess the predictive performance of models
» A good predictive model may be a poor scientific model though.

» Good predictive performance is a necessary but not a sufficient
condition for model evaluation.

Gerhard Jéager - MaEiQCL
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