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Typological distributions

• common practice since Greenberg (1963):
• collect a sample of languages
• classify them according to some typological feature

⇒ skewed distribution indicates something interesting going on

• Problem: languages are not independent samples
• skewed distribution may reflect

• skewed diversification rate across families
• properties of an ancestral bottleneck

• balanced sampling mitigates the first, but not the second problem
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Typological distributions

Maslova (2000):
“If the A-distribution for a given typology can-
not be assumed to be stationary, a distributional
universal cannot be discovered on the basis of
purely synchronic statistical data.”

“In this case, the only way to discover a dis-
tributional universal is to estimate transition
probabilities and as it were to ‘predict’ the sta-
tionary distribution on the basis of the equations
in (1).”
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A case study: Typological word order correlations

Distribution of verb-object/object verb vs. noun-relative clause/relative clause-noun



VO vs. NRc

this study:
• word-order data from WALS
• 1,060 languages
• 94 families + 81 isolates = 175 lineages



Dunn et al. (2011)
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Dunn et al. (2011)

• all 28 pairs of 8 word-order features considered
• 4 language families: Austronesian, Bantu,

Indo-European, and Uto-Aztecan
• main finding: wildly different results between

families
• conclusion:

word-order correlations are lineage-specific

“Evolved structure of language shows lineage-specific trends in word-order universals ”
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Steps of (Bayesian) model validation

• exploratory data analysis → descriptive statistics
• specification of (a) generative probabilistic model(s)
• prior predictive simulation
• model fitting
• posterior predictive simulation
• model comparison

(cf., eg., Gelman et al. 2014)
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Descriptive statistics

• each language can be represented as a binary vector over 4 variables (for the four
combinations of OV/VO and NRc/RcN)

• the total variance is the sum of the variance of those four binary variables
• the mean lineage-wise variance is the average total variance per lineage
• the between-family variance is the total variance between the centroids for each family
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Descriptive statistics



Defining models

• feature values evolve according to a continuous time Markov chain (CTMC)
• evolution along a phylogeny
• phylogenetic tree is only partially known - represented here as posterior distribution of

Bayesian phylogenetic inference from lexical data (from ASJP)
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Markov process Phylogeny

Figure: Schematic structure of the phylogenetic CTMC model. Independent but identical instances of
a CTMC run on the branches of a phylogeny
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Figure: a. CTMC b. Equilibrium distribution c. Fully specified history of a phylogenetic Markov chain
d. Marginalizing over events at branches e. Marginalizing over states at internal nodes
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Markov process Phylogenies

Figure: Phylogenetic Markov CTMC with a collection of phylogenies
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OV/ANVO/ANVO/

VO/NAVO/NA

OV/NA

Figure: CTMC for a possibly correlated feature pair
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VO/NACTMC

lineages lineages

VO/NAVO/NA VO/NA VO/NA

CTMC 1 CTMC 2 CTMC 3 CTMC 4

universal model lineage-specific model

Figure: Universal vs. lineage-specific model
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Workflow

(data from all 94 families in data base; ca. 1,060 languages in total)
• estimate posterior tree distributions with MrBayes for each family, using Glottolog as

constraint tree
• estimate transition rates
• estimate stationary distribution of major word order categories
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Phylogenetic tree sample
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Prior predictive check

• all models use the same prior for rates:

ratei ∼ LogNormal(0, 1)

• universal models: one set of rates across lineages
• lineage-dependent models: different set of rates for each lineage
• dependent features model: 8 rates per set
• independent features model: 4 rates per set
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universal model

lineage-specific model

Figure: Prior predictive simulations
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Run MCMC to infer posterior distribution

• here: done with Johannes Wahle’s Julia package MCPhylo
• based on Mamba

(https://mambajl.readthedocs.io/en/latest/)
• https://github.com/erathorn/MCPhylo.jl

21 / 56

https://github.com/erathorn/MCPhylo.jl


Posterior predictive check

• use parameters from posterior sample
• simulate mock data using these parameters
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Figure: Posterior predictive simulations: total variance. Horizontal lines indicate the empirical value.
The thick vertical lines show the 50% highest-density intervals and the thin lines the 95%
highest-density intervals of the posterior predictive distributions.
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Model comparison
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Figure: Posterior equilibrium probabilities and linear regression
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Figure: Correlation coefficients for feature pairs. White dots indicate the median, thick lines the 50%
and thin lines the 95% HPD intervals.
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NA

NDNRc

VS

Figure: Feature-pairs with credible evidence for a correlation.
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Reflections

• All these techniques assess the predictive performance of models
• A good predictive model may be a poor scientific model though.
• Good predictive performance is a necessary but not a sufficient condition for model

evaluation.
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Major word orders
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Statistics of major word order distribution
• data: WALS intersected with ASJP
• 1,045 languages, 211 lineages, 32 families with at least 5 languages

Raw numbers

SOV SVO VSO VOS OVS OSV
491 442 79 19 11 3

47.0% 42.3% 7.6% 1.8% 1.1% 0.3%
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Weighted by lineages

SOV SVO VSO VOS OVS OSV
139.1 49.3 11.8 4.7 4.5 0.8
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Previous approaches

• Gell-Mann and Ruhlen (2011):
• Proto-world was SOV
• general pathway: SOV → SVO ↔ VSO/VOS
• minor pathway: SOV → OVS/OSV
• exceptions due to diffusion

• Ferrer-i-Cancho (2015):

• permutation circle

SOV

SVO

VSO

VOS

OVS

OSV

• transition probability inversely related to path length
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Previous approaches

• Maurits and Griffiths (2014):
• Bayesian rate estimation, based on five families and NJ-trees
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Phylogenetic non-independence
• languages are phylogenetically structured
• if two closely related languages display the same pattern, these are not two independent

data points
⇒ we need to control for phylogenetic dependencies

V1

Vmed

Vfin

NAdj

AdjN
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Phylogenetic non-independence
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Estimating word-order transition patterns
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Workflow

(data from all 32 families with ≥ 5 languages in data base; 778 languages in total)
• estimate posterior tree distributions with MrBayes for each family, using Glottolog as

constraint tree
• test whether universal or lineage-specific model gives a better fit
• estimate transition rates with best model
• estimate stationary distribution of major word order categories
• apply stochastic character mapping (SIMMAP; Bollback 2006)
• estimate expected number of mutations for each transition type
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Estimating posterior tree distributions

• using characters extracted from ASJP data (Jäger 2018)
• Glottolog as constraint tree
• Γ-distributed rates
• ascertainment bias correction
• relaxed molecular clock (IGR)
• uniform tree prior
• stop rule: 0.01, samplefreq=1000
• if convergence later than after 1,000,000 steps, sample 1,000 trees from posterior
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Estimating transition rates

• totally unrestricted model, all 30
transition rates are estimed
independently

• implementation using RevBayes
(Höhna et al., 2016)
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Reconstruction history with SIMMAP

• estimated frequency of mutations within the 32 families under consideration (posterior
mean, 100 iterations)

SOV SVO VSO VOS OVS OSV
SOV − 20.2 3.2 0.5 3.3 0.4
SVO 17.6 − 23.9 14.5 1.5 1.1
VSO 1.5 19.9 − 2.5 1.8 0.4
VOS 1.0 5.4 2.3 − 0.9 0.3
OVS 2.8 0.9 0.6 0.4 − 0.2
OSV 0.5 0.5 0.4 0.3 0.5 −
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Refining the model with Reversibly Jump MCMC

• Estimating 30 transition rates is a tall order, given that the data possibly only reflect
about 130 transition events

• hand-crafted sub-model construction: time consuming, subjective and error prone
• solution: posterior sampling over sub-models using Reversible Jump Markov Chain Monte

Carlo (RJMCMC, Green 1995)

RJMCMC
RJMCMC assumes a prior distribution over sub-models (where some transition rates are set to
0) and simultaneously samples from the set of sub-models and the parameter spaces of the
sub-models.
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Model comparison

model marginal likelihood AICM
lineage-specific −423.0 ± 0.08 926.4 ± 0.5
circular GTR −420.0 ± 1.72 851.7 ± 1.6
circular −414.2 ± 0.72 851.6 ± 2.1
RJ/GTR −413.4 ± 2.96 855.9 ± 4.7
unrestricted −406.7 ± 0.78 846.4 ± 2.5
unrestricted GTR −404.4 ± 0.89 843.5 ± 3.6
RJ −398.0 ± 0.57 827.2 ± 2.1
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Refining the model with Reversibly Jump MCMC
Number of active transition rates: posterior distribution
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Refining the model with Reversibly Jump MCMC
Probabilities of active transition rates: posterior distribution
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Refining the model with Reversibly Jump MCMC
Probabilities of active transition rates: posterior distribution
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Reconstruction history with SIMMAP

• estimated frequency of mutations within the 32 families under consideration (posterior
mean, 99 iterations)

SOV SVO VSO VOS OVS OSV
SOV − 23.1 [14; 30] 0.5 [0; 6] 0.1 [0; 0] 1.9 [0; 9] 0.1 [0; 0]
SVO 20.3 [16; 28] − 33.0 [20; 45] 2.2 [0; 29] 3.4 [0; 11] 1.2 [0; 7]
VSO 0.0 [0; 0] 3.8 [0; 25] − 29.7 [0; 46] 1.5 [0; 9] 0.5 [0; 4]
VOS 0.1 [0; 0] 38.3 [19; 54] 6.2 [0; 13] − 0.9 [0; 5] 0.4 [0; 2]
OVS 4.0 [0; 10] 0.5 [0; 3] 0.9 [0; 6] 0.2 [0; 1] − 1.1 [0; 6]
OSV 0.7 [0; 6] 0.3 [0; 3] 0.4 [0; 3] 0.6 [0; 5] 0.9 [0; 7] −
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Reconstruction history with SIMMAP
Expected frequencies of transitions: posterior mean

SOV
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Posterior distributions
Empirical vs. estimated distribution
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Posterior distributions
Expected distribution of Proto-languages
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Posterior distributions
Expected probabilities of Proto-World, given that we can demonstrate SOV for all
proto-languages

50 kyr 100 kyr

500 kyr 1,000 kyr
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Posterior distributions
Waiting times

expected waiting time in 1,000 years 50 / 56



Posterior distributions
Number of state changes
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Ancestral state reconstruction

Austronesian
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Examples for unexpected transitions
SVO → OVS
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Examples for unexpected transitions
OVS → SOV
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Examples for unexpected transitions

OVS → SOV
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Summary

• no evidence for general preference of SOV → SVO over the reverse
• SVO is currently over-represented due to recent spread of Austronesian and

Atlantic-Congo, but not excessively so
• multiple counter-evidence to Ramon-i-Ferrer’s and Gell-Mann & Ruhlen’s models

56 / 56



Jonathan P. Bollback. SIMMAP: stochastic character mapping of discrete traits on
phylogenies. BMC Bioinformatics, 7(1):88, 2006.

Michael Dunn, Simon J. Greenhill, Stephen Levinson, and Russell D. Gray. Evolved structure of
language shows lineage-specific trends in word-order universals. Nature, 473(7345):79–82,
2011.

Ramon Ferrer-i-Cancho. Kauffman’s adjacent possible in word order evolution. arXiv preprint
arXiv:1512.05582, 2015.

Murray Gell-Mann and Merritt Ruhlen. The origin and evolution of word order. Proceedings of
the National Academy of Sciences, 108(42):17290–17295, 2011.

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin. Bayesian
Data Analysis. CRC Press, Boca Raton, 2014.

Peter J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82(4):711–732, 1995.

Joseph Greenberg. Some universals of grammar with special reference to the order of
meaningful elements. In Universals of Language, pages 73–113. MIT Press, Cambridge, MA,
1963.

Sebastian Höhna, Michael J. Landis, Tracy A. Heath, Bastien Boussau, Nicolas Lartillot,
Brian R. Moore, John P. Huelsenbeck, and Frederik Ronquist. RevBayes: Bayesian
phylogenetic inference using graphical models and an interactive model-specification
language. Systematic biology, 65(4):726–736, 2016.

56 / 56



Gerhard Jäger. Global-scale phylogenetic linguistic inference from lexical resources.
arXiv:1802.06079, 2018.

Gerhard Jäger. Global-scale phylogenetic linguistic inference from lexical resources. Scientific
Data, 5, 2018. doi: 10.1038/sdata.2018.189.

Elena Maslova. A dynamic approach to the verification of distributional universals. Linguistic
Typology, 4(3):307–333, 2000.

Luke Maurits and Thomas L. Griffiths. Tracing the roots of syntax with Bayesian phylogenetics.
Proceedings of the National Academy of Sciences, 111(37):13576–13581, 2014.

Søren Wichmann, Eric W. Holman, and Cecil H. Brown. The ASJP database (version 18).
http://asjp.clld.org/, 2018.

56 / 56


	dunnetal11
	Major word orders
	Estimating word-order transition patterns
	References

