Phylogenetic linguistic inference from acoustic speech data: Ideas for a novel research paradigm

Gerhard Jäger

gerhard.jaeger@uni-tuebingen.de

May 8, 2024

University of Zurich

Objectives and Overview

- Objectives:
 - Provide insights into phylogenetic linguistic inference
 - Explore feature extraction with deep learning
 - Investigate potential inferences from acoustic speech data
- Overview:
 - Introduction to Phylogenetic Linguistics
 - State-of-the-Art Methods
 - Novel Research Paradigm with Acoustic Data
 - Project Steps & Future Directions

Phylogenetic linguistics

• main goal: infer phylogenetic tree from lexical data

showing 1 to 38 of 38 entries			← Previous 1	Next	0			
No.	Meaning	Concepticon	Word	0 Loan 0	Agerier			
Search	Search		Search	any				
	1	e	n3k	False	Coordinates & WCS84	Leafer © OpenSheetWap contributor 35°10'N_A*58'W		
	2 you	C THOU	k3j	False		35.31, -4.96		
	3 we	C WE	nucna	False	number of speakers	10.000		
1	1 one	C ONE	yan	False	status	alive		
1	2 two	C TWO	zuZ	True				
11	B person	C PERSON	insan	True				
11	9 fish	C FISH	amal3h	True	Classification			
2	1 dog	C DOG	ayda	False	WALS Al-> Berber Globbiog Afro Asistic > Berber > Kabylo Atlasberber > Atlasberber > Northweathermorroccarborher Elbrologue Afro Asistic > Berber > Northern > Zanali > Chomara			
2:	3 tree	C TREE	tagig3t	False				
21	5 leaf	C LEAF	afraw	False				
21	8 skin	C SKIN	IZ3Id	True				
31	0 blood	C BLOOD	a83m	False				
3	1 bone	C BONE	ax3s	Falso				
34	4 hom	C HORN (ANATOMY)	as3kaw	False				
31	9 ear	C EAR	am3zux	False				
41	0 eye	C EYE	tit	False	Sources			
4	1 nose	C NOSE	tax3nfurt	True	El Managarda 2010			
4	3 tooth	C TOOTH	asan	False	Arabic influence in Ghomara Berber, M.A. thesis, Leiden Univers			
4	4 tongue	C TONGUE	i3s	False				
4	7 knee	C KNEE	afud	False				
5	1 breast	C BREAST	sd3r	True				
5	3 liver	C LIVER	13fwad	True				
5	4 drink	C DRINK	su	False				
5	7 500	C SEE	zar	False				
51	8 hear	C HEAR	831	False				
6	1 die	C DIE	mu8	False				

- main goal: infer phylogenetic tree from lexical data
- input: manual cognate classification
- example (*dunnielex* from Lexibank)

Row	Language_ID	Parameter_ID	Segments	Cognateset_ID	
	String15?	String15?	String?	Int64?	
1	urdu	180_tooth	dãt	328	
2	catalan	180_tooth	den	328	
3	armenianmod	180_tooth	atam	328	
4	bretonst	180_tooth	dãnt	328	
5	czech	180_tooth	zʊp	502	
6	german	180_tooth	ts a: n	328	
7	italian	180_tooth	dɛnte	328	
8	swedish	180_tooth	tand	328	
9	greekmod	180_tooth	ðǫndi	328	
10	marathi	180_tooth	dat	328	
11	polish	180_tooth	zõp	502	
12	portuguesest	180_tooth	dẽti	328	
13	russian	180_tooth	zub	502	
14	spanish	180_tooth	djente	328	
15	danish	180_tooth	dʰ/dʰ a n	328	
16	dutchlist	180_tooth	tant	328	
17	english	180_tooth	tu:θ	328	
18	french	180_tooth	dã	328	
19	russian	180_tooth	desna	328	
20	bihari	180_tooth	dãt	328	
21	oriya	180_tooth	danto	328	

intermediate step: convert cognate classification into binary matrix

TNG.ENGAN.MAIBI TNG. ENGAN. POLE TNG.ENGAN.SAU TNG. ENGAN. YARIBA TNG.FASU.FASU TNG, FASU, NAMUMI TNG.FINISTERRE-HUON.AWARA TNG. FINISTERRE-HUON. BORONG TNG.FINISTERRE-HUON.BURUM TNG.FINISTERRE-HUON.BURUM MIND TNG, FINISTERRE-HUON, DEDUA TNG.FINISTERRE-HUON.HUBE TNG.FINISTERRE-HUON.KATE TNG.FINISTERRE-HUON.KOMBA TNG, FINISTERRE-HUON, KOSORONG TNG.FINISTERRE-HUON.MAPE TNG.FINISTERRE-HUON.MAPE 2 TNG. ETNTSTERRE-HUON. MTGABAC TNG.FINISTERRE-HUON.MINDIK TNG.FINISTERRE-HUON.MOMOLILI TNG.FINISTERRE-HUON.NABAK TNG. FINISTERRE-HUON. NANKINA TNG.FINISTERRE-HUON.NEK TNG, FINISTERRE-HUON, NUKNA TNG.FINISTERRE-HUON.ONO TNG. FINISTERRE-HUON, SELEPET TNG.FINISTERRE-HUON.TIMBE TNG. FINISTERRE-HUON. TOBO TNG.FINISTERRE-HUON.WANTOAT TNG.FINISTERRE-HUON.YOPNO TNG, GOTLALAN, AFOA TNG.GOILALAN.KUNIMAIPA TNG.GOILALAN.MAFULU

• **output:** phylogenetic tree (here: Dravidian languages according to Kolipakam et al. 2018)

Phylomilia

Applications

- control for common ancestry in statistical models (Jäger and Wahle 2021, ...)
- estimate time depth and geographic location of ancestral populations (Bouckaert et al 2012)
- reconstruct properties of ancestral populations (Cathcart et al 2021, Carling and Cathcart 2021a,b, ...)
- statistic identification of patterns of language change (Blasi et al. 2019)

• ...

from word lists to trees

- perform cognate classification (manual or automatic)
- 2 construct binary character matrix
- It computer search the tree(s) that best explain(s) the distribution of 0s and 1s in the character matrix

Manual cognate detection

Manual cognate detection

- labor intensive
- available data are geographically skewed
- requires tons of prior classical historical linguistics work

Automatic cognate detection

- lot of computational research over the past years to automate the process
- results are usable but far from perfect

Phylogenetic signal below cognacy

• sound change and morpological change contains relevant phylogenetic information

1	urdu	180_tooth	dař	328
2	catalan	180_tooth	den	328
3	armenianmod	180_tooth	atam	328
4	bretonst	180_tooth	dãnt	328
5	german	180_tooth	ts a: n	328
6	italian	180_tooth	dɛnte	328
7	swedish	180_tooth	tand	328
8	greekmod	180_tooth	ðǫndi	328
9	marathi	180_tooth	dat	328
10	portuguesest	180_tooth	dẽti	328
11	spanish	180_tooth	djente	328
12	danish	180_tooth	dʰ/dʰ a n	328
13	dutchlist	180_tooth	tant	328
14	english	180_tooth	tu:θ	328
15	french	180_tooth	dã	328
16	russian	180_tooth	desna	328
17	bihari	180_tooth	dãt	328
18	oriya	180_tooth	danto	328
19	czech	180_tooth	zʊp	502
20	polish	180_tooth	zõp	502
21	russian	180_tooth	zub	502

Feature extraction with deep learning

- idea: use deep learning to extract features from word lists rather than doing manual annotation or traditional machine learning
- pilot studies are quite encouraging

manual cognate classification

Feature extraction with deep learning

- idea: use deep learning to extract features from word lists rather than doing manual annotation or traditional machine learning
- pilot studies are quite encouraging

Working with speech data

- idea: start with speech data rather than word lists
- advantages:
 - sidesteps all the human decision-making involved in compiling dictionaries
 - applicable to low-resource languages
 - potentially accesses phylogenetically relevant information not easily accessible to introspection

• challenges:

- get hold of a sufficient amount of data
- develop methods to extract features from speech data
- if it works: understand what the machine is doing

Workflow

Automatic speech recognition

- major advances in the past years
- important steps:
 - wav2vec (Schneider et al., 2019)
 - wav2vec 2.0 (Baevski et al., 2020)
 - wav2vec-u (Baevski et al., 2021)

Wav2vec 2.0

Wav2vec 2.0

First phase: unsupervised: pretrain a model to predict the context of a speech segment

Second phase: supervised: fine-tune the model to predict the phonemes of a speech segment

Wav2vec 2.0

(image from https://www.youtube.com/watch?v=EQOBE7sJSJY)

Phylomilia

Wav2vec 2.0: Cross-linguistic transfer

(image from https://www.youtube.com/watch?v=EQOBE7sJSJY)

Gerhard Jäger (May 8, 2024)

Wav2vec 2.0: Cross-linguistic transfer

PCA visualization of latent discrete representations from the multilingual codebook

Similar languages tend to share discrete tokens and thus cluster together

(image from https://www.youtube.com/watch?v=EQOBE7sJSJY)

Wav2vec-u

• *u* stands for *unsupervised*

(image from Baevski et al. 2021)

Wav2vec-u: Low-resource setting

Data availability

- Common Voice (Mozilla)
 - **Open Dataset**: Common Voice provides a freely accessible and diverse multilingual dataset, covering over 70 languages, for developing voice-enabled technologies.
 - **Community Contributions**: The project is community-driven, relying on global volunteers for voice donations and data validation.
 - Ethical and Accessible: Emphasizing privacy and accessibility, Mozilla aims to enhance voice technology inclusivity for underrepresented languages and dialects.

Data availability

Languages to be covered in phylomilia

Recorded Speech Hours by Language

Each point represents a language, colored by family

24 / 38

Data availability

Project steps

Create IPA transcriptions

- chosen languages all belong to NorthEuraLex
- for these languages, orthography-to-IPA transducers are available

Project steps

Train multi-lingual ASR system

- **Model Implementation**: Implement and train a version of the wav2vec-u model that inputs an audio recording and a language identifier.
- **Output Format**: The model will output a sequence of IPA (International Phonetic Alphabet) symbols.
- Training Approach: Training will utilize transcriptions from the earlier phase as a guide.

Phonetic vector representations of NorthEuralex

- **Concept Selection**: The 1,016 concepts in NorthEuralex are data-driven, selected for their clear reflexes in Northern Eurasian languages and diachronic stability.
- **Concept List Basis**: This concept list extends the Swadesh list (Swadesh 1955), a foundational tool in historical linguistics.
- **Data Extraction**: The next step involves extracting spoken counterparts of the entries from the NorthEuralex database.
- Transcription Process: This will be achieved by querying the database for IPA transcriptions of the words and using the wav2vec-u model to transcribe the audio recordings.

Project steps

IPA2vec model for missing data imputation

- **Model Training**: Train a model that inputs a sequence of IPA symbols and a language identifier, outputting a vector representation of the word.
- **Model Type**: The model will use a neural sequence autoencoder to mimic the embedding from a spoken version of the word.
- **Application of Model**: The model will be used to impute all NorthEuralex entries not covered by the previous extraction step.

Lexicon-based phylogenetic inference

- Vector Usage: Use the vector representations of words from the NorthEuralex database as input for phylogenetic inference.
- Model Training for Vector Conversion: Train a straight-through autoencoder (Bengio et al. 2013) to convert phonetic vector embeddings into binary vectors.
- **Binary Vector Concatenation**: Concatenate the binary vectors of all words in a language (or a selected subset) to serve as input for phylogenetic analysis.
- **Phylogenetic Inference Tool**: Perform phylogenetic inference using a standard package such as BEAST or MrBayes.

Project steps

Ancestral state reconstruction

- perform ancestral state reconstruction with binary vectors
- convert reconstructed vectors back into phonetic vectors

Phylogenetic inference from direct language embeddings

- **High-Risk Approach Exploration**: Investigate the feasibility of performing phylogenetic inference directly from representations of entire phonetic systems of languages.
- **Model Configuration**: Train a deep neural network that inputs a language identifier and the sound recording of an entire sentence.
- Internal Mapping: Internally map the language identifier onto a dense vector within the neural network.
- Loss Function Design: Utilize a classifier as the loss function to determine the familial origin of the sound recording, incorporating a BERT-style masking of parts of the audio input.

Feature interpretation

- Feature Identification with LIME: Utilize the LIME method to determine the most informative features for phylogenetic inference.
- **High-Dimensional Mapping**: Map the phylogenetic tree onto a high-dimensional vector space by applying multidimensional scaling to pairwise co-phenetic language distances.
- **Deep Network Training**: Train a deep network to predict the position of a language from its vector representation, which could be either a concatenation of word embeddings from its NorthEuralex entries or a direct language embedding.
- Explainable AI Application: Apply explainable-AI methods to identify and interpret the features most significant to the model's decision-making process.

34 / 38

Related work

• came to my attention this morning (He et al., 2024):

WAV2GLOSS: Generating Interlinear Glossed Text from Speech

Taiqi He¹, Kwanghee Choi¹, Lindia Tjuatja¹, Nathaniel R. Robinson², Jiatong Shi¹, Shinji Watanabe¹, Graham Neubig¹, David R. Mortensen¹, Lori Levin¹

¹Language Technologies Institute, Carnegie Mellon University ²Center for Language and Speech Processing, Johns Hopkins University

Abstract

Thousands of the world's languages are in danger of extinction—a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages' communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose WAV2GLOSS: a task to extract these four annotation components

Thank You for Your Attention!

Questions or feedback are welcome.

Contact

Gerhard Jäger gerhard.jaeger@uni-tuebingen.de

References I

- Baevski, A., W.-N. Hsu, A. Conneau, and M. Auli (2021). Unsupervised speech recognition. *Advances in Neural Information Processing Systems*, **34**:27826–27839.
- Baevski, A., Y. Zhou, A. Mohamed, and M. Auli (2020). wav2vec 2.0: A framework for self-supervised learning of speech representations. *Advances in neural information processing* systems, **33**:12449–12460.
- Blasi, D. E., S. Moran, S. R. Moisik, P. Widmer, D. Dediu, and B. Bickel (2019). Human sound systems are shaped by post-neolithic changes in bite configuration. *Science*, **363**(6432):eaav3218.
- Bouckaert, R., P. Lemey, M. Dunn, S. J. Greenhill, A. V. Alekseyenko, A. J. Drummond, R. D. Gray, M. A. Suchard, and Q. D. Atkinson (2012). Mapping the origins and expansion of the Indo-European language family. *Science*, **337**(6097):957–960.
- Carling, G. and C. Cathcart (2021). Evolutionary dynamics of Indo-European alignment patterns. *Diachronica*, **38**(3):358–412.

37 / 38

References II

- Dunn, M. (2012). Indo-European lexical cognacy database (IELex). URL: http://ielex.mpi.nl/.
- He, T., K. Choi, L. Tjuatja, N. R. Robinson, J. Shi, S. Watanabe, G. Neubig, D. R. Mortensen, and L. Levin (2024). Wav2gloss: Generating interlinear glossed text from speech. ArXiv, abs/2403.13169.
- Jäger, G. and J. Wahle (2021). Phylogenetic typology. Frontiers in Psychology, 12:682132.
- Kolipakam, V., F. M. Jordan, M. Dunn, S. J. Greenhill, R. Bouckaert, R. D. Gray, and A. Verkerk (2018). A Bayesian phylogenetic study of the Dravidian language family. *Royal Society open science*, 5(3):171504.
- Schneider, S., A. Baevski, R. Collobert, and M. Auli (2019). wav2vec: Unsupervised pre-training for speech recognition. *arXiv preprint arXiv:1904.05862*.